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Abstract 
 
We have previously established two lines of rat for studying the functional basis of 
aerobic exercise capacity (AEC) and its impact on metabolic health. The two lines, high 
capacity runners (HCR) and low capacity runners (LCR), have been selectively bred for 
high and low intrinsic AEC, respectively. They were started from the same genetically 
heterogeneous population and have now diverged in both AEC and many other 
physiological measures, including weight, body composition, blood pressure, body mass 
index, lung capacity, lipid and glucose metabolism, and natural life span. In order to 
exploit this rat model to understand the genomic regions under differential selection 
within the two lines, we used SNP genotype and whole genome pooled sequencing 
data to identify signatures of selection using three different statistics: runs of 
homozygosity, fixation index, and aberrant allele frequency spectrum, and developed a 
composite score that combined the three signals. we found that several pathways (ATP 
transport and fatty acid metabolism) are enriched in regions under differential selection. 
The candidate genes and pathways under selection will be integrated with the previous 
mRNA expression data and future F2 QTL results for a multi-omics approach to 
understanding the biological basis of AEC and metabolic traits.   
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Introduction 
 
Aerobic exercise capacity (AEC) can influence many complex traits including obesity 
and Type 2 diabetes. We established two rat lines by divergent selection of intrinsic 
aerobic capacity. The high capacity runners (HCR) and low capacity runners (LCR) 
differed by ~9-fold in endurance running distance after 32 generations, and diverged in 
other physiological measures, including blood pressure, body mass index, lung 
capacity, lipid and glucose metabolism (reviewed in Koch et al. 2012). The LCR, relative 
to the HCR, manifest numerous clinically relevant conditions, including increased 
susceptibility to cardiac ventricular fibrillation (Lujan et al. 2006) and hepatic steatosis 
(Thyfault et al. 2009).  At the behavioral level the LCR score higher for dysfunctional 
sleep (Muncey et al. 2010), diminished behavioral strategies for coping with stress 
(Burghardt et al. 2011), and impaired memory and learning (Wikgren et al. 2012).  In 
contrast, the HCR have reduced weight gain (Wisloff et al. 2005), increased resistance 
to the deleterious effects of a high fat diet (Noland et al. 2007, Novak et al. 2010), 
increased capacity for fatty acid oxidation in skeletal muscle (Lessard et al. 2009) and 
liver (Thyfault et al. 2009), and an 28-45% higher lifespan (Koch et al. 2011). At 
generation 10 of selection, HCR and LCR were phenotyped across several 
physiological measures to test if disease features had segregated differentially between 
the lines. Wisloff et al. discovered that adult LCR rats develop cardiovascular risks 
consistent with the metabolic syndrome, including large gains in visceral adiposity, 
increased blood pressure, dyslipidemia, endothelial dysfunction occurring within carotid 
arteries, and insulin resistance (Wisloff et al. 2005). Using HCR and LCR rats from 
generation-18 Kivela et al. (2010) found that gene expression differences related to 
oxidative phosphorylation and fatty acid metabolism in skeletal muscle correlated 
significantly with disease risk phenotypes such as physical activity levels, serum high 
density lipoproteins, and mitochondrial structure.  Despite all of these remarkable 
phenotypic differences, the genetic basis linked to AEC has not been established. We 
hypothesize that divergent trait selection in these two lines of rats may have resulted in 
selective sweeps (or partial sweeps) of variants that underlie the running capacity and 
associated metabolic and physiological traits.  In this study, we used SNP genotyping 
and pooled whole-genome sequencing data from rats in both lines (HCR and LCR) and 
two non-adjacent generations (5 and 26) to identify signatures of selection. We 
implemented three different statistics as well as a composite score that combines the 
signals from the three statistics in an attempt to uncover swept genes/pathways. The 
test statistics included (1) runs of homozygosity (ROH), which captures long stretches of 
homozygous variants that could be due to the "hitchhiking" effect near a region under 
positive selection; (2) fixation index (Fst), which measures increased genetic 
differentiation due to divergent selection (although it could also be due to random 
genetic drift); and (3) aberrant allele frequency spectrum (AFS), with which a region 
under selection may show a local AFS that departs from the genome-wide AFS. 
Previous studies have proposed several methods of combining multiple selective sweep 
signals into a composite signal to improve the detection of true signatures of selection 
(Grossman et al. 2010, Utsunomiya et al. 2013, Randhawa et al. 2014). The basic 
rationale, as stated in Grossman et al., is that “If each signature provides distinct 
information about selective sweeps, combining the signals should have greater power 
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for localizing the source of selection than any single test.” Our method follows the same 
rationale.  
Using the composite score we identified genes that have diverged between time points 
during selection or between the two lines, and interpreted their potential roles in relation 
to the trait under selection by analyzing pathway enrichment of the genes. The results 
therefore provide useful insight into the underlying genetic basis of intrinsic aerobic 
capacity and other metabolic and physiological phenotypes in our HCR-LCR rat model. 
 
Materials and Methods 
 
Study overview  
 
The protocols of animal maintenance, phenotyping, and rotational breeding have been 
described previously (Koch and Britton 2001). The characterization of the genetic 
structure, heritability, linkage equilibrium using both pedigree and genotype data have 
also been published (Ren et al. 2013). This study was approved by the University 
Committee on Use and Care of Animals, Ann Arbor, Michigan (Approval Numbers: 
#08905 and #03797). The proposed animal use procedures are in compliance with 
University guidelines, and State and Federal regulations. 

  
Genotyping data collection and quality control 
 
In this study we analyzed samples representing four sample groups: two lines (HCR 
and LCR) in two non-adjacent generations (G5 and G26, counting from the start of the 
selection experiments). We first collected genotype data for 10-12 breeders for each of 
the four groups. Genomic DNA was extracted from frozen liver tissue, and genotyped 
across 803,484 SNP loci using a SNP array described before (Baud et al. 2014).  
Attempts to extract DNA from generations earlier than G5 revealed that many samples 
in G0 and G4 were degraded. We therefore chose G5 as the earliest generation in our 
analysis due to its assured DNA quality. During data QC we removed 21,295 SNPs with 
genotype missing rate >10%. This step led to 782,189 “pass QC” SNPs, which were 
used in calculations of runs of homozygosity (ROH) and fixation index (Fst), described 
below.  

 
Pooled whole-genome sequencing (WGS) and quality control 
 
DNA for four sample groups, containing 10 female breeders from each the four groups 
(total n=40; 10 samples overlapped with those genotyped on the array [H5 n=2, H26 
n=1, L5 n=4, L26 n=3]), was extracted from frozen liver tissue and sequenced for the 
whole-genome in four pools using the Illumina Hiseq system at the U-M DNA 
Sequencing Core. The reads were mapped to the rat reference genome RGSC-3.4 
using the read alignment software Burrows-Wheeler Alignment tool (BWA) (Li and 
Durbin 2009). The average read depth for the four pools were 8.4X for HCR G5, 9.9X 
for HCR G26, 9.9X for LCR G5, and 9.2X for LCR G26. We made joint variant calls 
using Genome Analysis Toolkit (GATK) (McKenna et al. 2010) and obtained 8,909,190 
single nucleotide variants (SNV) representing alternative alleles observed in at least one 
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of the four pools. We considered a genotype in a given pool as missing if its read depth 
is less than half of the pool-average. This step led to high-quality genotypes at 
6,806,440 sites for HCR G5, 7,533,943 sites for HCR G26, 7,430,142 for LCR G5, and 
7,218,598 for LCR G26. In all, there are 5,101,259 SNV sites with high-quality 
genotypes in all four pools, and these sites were used in the identification of genomic 
regions with aberrant allele frequency spectrum. 

 
Identification of long runs of homozygosity (ROH) 
 
ROHs for each group (HCR G5, HCR G26, LCR G5, LCR G26) were identified in PLINK 
(Purcell et al. 2007) using the pass-QC markers and the following parameters: 
--homozyg-window-snp 50  --homozyg-window-missing 5 --homozyg-window-het 1 --
homozyg-window-threshold .001 --homozyg-snp 25 --homozyg-kb 500 
The first parameter means that the search is by sliding a moving window of 50 SNPs 
across the genome to detect long contiguous runs of homozygous genotypes. An 
occasional genotyping error or missing genotype occurring in an otherwise unbroken 
homozygous segment could result in the under-calling of ROHs. To address this, we 
allowed five missing calls and one heterozygous call per window, as described by the 
second and third parameters. Each SNP is then assigned an ROH status (yes/no) 
based on the proportion of windows that are called homozygous among all the 50-SNP 
windows that overlap this SNP.  We have set this proportion (the fourth parameter) to 
be 0.001. While the above parameters describe how to define sliding windows and 
SNPs as ROH or not, the ROH SNPs are then merged into longer ROH segments, with 
the next two parameters used to set the thresholds for the minimum number of SNPs 
(25) and minimum length (500 kb) needed to be called an ROH segment. ROH SNP-
containing segments that are shorter than both of these two thresholds would be 
considered not an ROH. Note that given the SNP density of the array (about 290 SNPs 
per 1000 Kb), the 500 Kb threshold to be called an ROH is dominant over the 25 SNP 
threshold. 
After finding ROHs for each animal, we calculated the ROH frequency for each of the 
four groups across the entire genome.  Then we assigned an ROH score to each 
Refseq gene based on the average frequency of the ROHs that overlapped its position 
(a score of 1 indicates 100% of the individuals within that group have an ROH across 
that position). This is based on an un-weighted average of all ROH segments that 
overlap any part of the gene. We then calculated ΔROH for temporal (G5 vs G26) and 
between-line (HCR vs LCR) comparisons, for a total of four analyses.  The ΔROH value 
for every gene was ranked, and the fractional rank was transformed into a z-score via 
the inverse normal distribution. The z scores are used in constructing the composite 
scores described below.  

 
Fixation index (Fst) 
 
Fst is a measure of genetic differentiation between two groups.  It is constructed as the 
squared allele frequency difference between the two groups divided by a scaling factor, 
such that its range is from 0 (no differentiation) to 1 (complete differentiation, i.e., the 
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two groups are fixed for different alleles). The formula for calculating Fst for each SNP is 
: 

Fst = (x-y)^2/(4*avg*(1-avg)) 
where x and y are the allele frequencies of the two groups being compared, and avg is 
the average of x and y (Wright 1965). We calculated Fst for every SNP for temporal (G5 
vs G26) and between-line (HCR vs LCR) comparisons, for a total of four analyses (an 
example is shown in Figure 1). We then assigned a score to each 1 Mb window as the 
80th percentile of the Fst values of the SNPs in that window (about 290 SNPs per 
window). We then assigned an Fst value to each gene based on the unweighted 
average Fst of the windows that overlapped its position.  The per-gene Fst values are 
transformed by a cubic root function when constructing the composite scores. 
 
Aberrant allele frequency spectrum (AFS) 
 
AFS analysis requires fully ascertained variant sets; that is, all variants in a region as 
discovered by sequencing. Genotyping data focus on pre-selected panels of SNPs and 
are therefore not suitable for characterizing AFS.  To identify genomic regions with 
aberrant AFS we collected pooled WGS data, and used the observed alternative allele 
fraction in the pool as the surrogate of the allele frequency in each of the four groups.  
The difference between a local AFS, in our case defined in 1 Mb windows, and the 
genomewide AFS, is quantified in a parametric test described by Nielsen and 
colleagues, implemented in the program SweepFinder (Nielsen et al. 2005). When a 
new beneficial mutation increases in frequency in a population because of positive 
selection, the standing genetic variation in its neighboring region on the same 
chromosome will also increase in frequency (i.e., selective sweep). The pattern of allele 
frequencies will be skewed. Sweepfinder tests whether a local AFS differs from the 
spectrum of the whole genome by calculating a maximum composite likelihood ratio 
(CLR) for each window.  The CLR is the ratio of the likelihood of a selective sweep to 
the likelihood of no sweep given the observed AFS in a window and the genome-wide 
AFS. It outputs the CLR statistic as well as the parameter alpha (the strength of the 
sweep). After calculating the CLR for each of the four sequenced pools (an example is 
shown in Figure 1) in 1 Mb windows, we assigned the score from the windows to genes 
using a non-weighted averaged of the CLR values overlapping each gene. We then 
calculated ΔCLR for temporal (G5 vs G26) and between-line (HCR vs LCR) 
comparisons, for a total of four analyses, and then transformed the ΔCLR as described 
below when constructing the composite scores.  
 
Direction of comparisons 
 
HCR-LCR comparisons will be referred to as ‘between-line’, while the G26-G5 
comparisons will be referred to as ‘temporal’. The comparisons between the two lines 
are bi-directional.  That is, selections in either line, using the other as the reference, are 
meaningful and will be interpreted. For example, strong positive scores in the HCR-LCR 
analysis represent positive selection that occurred in the HCR line, more strongly than 
in the LCR. These would indicate the genomic regions under selective pressure as a 
consequence of the artificial selection for higher AEC. Inversely, strong negative 
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selection score in the HCR-LCR analysis would indicate positive selection that occurred 
uniquely in the LCR line.  
 
In contrast, the temporal comparisons are always G26-over-G5, as we are interested in 
finding signatures of positive selection at G26 using G5 as the reference. We currently 
do not know how to interpret these genomic regions, but it is possible that the LCR line 
experienced positive selection events not experienced by the HCR.  

 
Composite score  
 
The main challenge of detecting signatures of positive selection is that random genetic 
drift could also lead to apparent peaks in certain genomic regions in ΔROH, Fst, and 
ΔCLR values.  As these statistics capture different aspects of the true signal, a 
composite score that combines the three statistics is more likely to highlight true 
signatures of selection above the background effects of genetic drift. In other words, 
regions concordant across the three test statistics will show a high composite score, 
whereas those with conflicting signals may show reduced composite score that is closer 
to the genome-wide average. Several strategies for constructing such a composite 
score have been described in similar studies (Grossman et al. 2010, Utsunomiya et al. 
2013). In our case, each of the constituent statistics had its distinct, non-normal 
distribution, thus we need to transform them individually to ensure that (1) the three 
statistics have comparable contributions to the composite score - if the variance of one 
statistics is far larger than those of the other two, it will dominate the final composite 
score, and (2) the specificity of a scan statistics, as reflected by how frequent and how 
strong the peaks are, should preferably be preserved as much as possible.   
We developed a novel composite score that involves transforming the three statistics 
with different functions.  

• For ΔROH, the original scores are symmetrically distributed around 0, with a 
prominent peak in the middle (Figure 2a), and both tails are meaningful in that 
they capture the increase and decrease of ROH, respectively, in the comparison.  
We converted the fractional rank of ΔROH for every gene into a z-score based 
on the formula z = Φ-1(r) where Φ-1( ) is the inverse normal cumulative distribution 
function and r is the fractional rank, defined as n/(N+1), where n is the rank of the 
gene and N is the total number of genes. In the events of equal ranking; I used 
the function rank(x,tie.method=”random”) in R (R Development Core Team 2010) 
to add a random small noise. The resulting z score is a standard normal 
distribution, N(0,1), as shown in Figure 2b. The directionality is preserved after 
the transformation, as shown by the scatterplot (Figure 2c).  

• For ΔCLR, the distribution is symmetrical around zero, with extremely strong 
outlier values (Figure 2d).  To perform rank-based inverse normal transformation 
as above would have dampened the contribution of these strong peaks. To allow 
the peaks to make suitably large contributions to the composite score we decided 
to apply a cubic-root (x1/3) transformation.  The resulting score, shown in Figure 
2e, preserved the specificity of the strongest ΔCLRs. The directionality is 
preserved, and the majority of the observations fall near zero after the 
transformation (Figure 2f) 
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• For Fst, the original scores are all positive, where a larger score indicates a 
greater population differentiation, but it does not tell which population has 
experienced more changes.  Further, the Fst 's fall in the range of (0, 0.33) 
(Figure 2g), and need to be scaled up to make comparable contributions as the 
other two scores.  To convert the one-tailed distribution into two-tailed, 
symmetrical distribution we attributed a sign to each Fst by borrowing information 
from the other statistics.  Specifically, the assigned sign is equal to the sign of the 
summation of the other two transformed statistics: z-score and ΔCLR1/3.  We then 
scaled up the score by a factor of 10 in order to bring the three statistics to 
comparable scales of variability (Figure 2h). Given that about half of the Fst 
values flipped signs, the scatterplot between the raw and transformed values is 
mirrored on the y-axis (Figure 2i). 

Finally, the composite score is the simple average of the three transformed scores. 
When a pseudo-p-value is needed in pathway analysis using LRPath (described below) 
we converted the composite score to the fractional rank. 

 
Pathway analysis 
 
Pathway enrichment analysis was performed using LRpath for all genes, using the 
composite scores and their associated pseudo p-values. We tested for enrichment of 
Gene Ontology (GO) terms (across 5,948 terms) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways (across 214 terms). The analysis was done on September 
30, 2015. (Note that around June 2015 the GO annotation was updated and the results 
became different from those obtained before June 2015. Future updates are expected 
to cause further changes of the pathway analysis results.  The stability of gene 
annotation is a nuisance in this case, but also an opportunity for the same data to return 
new pathway results in the future.) For a moderate correction for testing thousands of 
pathways we reported those that satisfied the per-pathway p-value < 0.001 for both 
temporal and between-line analyses.  

 
Visualization of enriched pathways  
 
In many comparisons there are too many pathways that turn out to be apparently 
enriched and they become difficult to summarize.  To facilitate the interpretation of the 
pathway analysis results in terms of the most salient biological signals, we needed to 
consolidate the top pathways into clusters of biologically related clusters, and this can 
be done by evaluating how any two pathways share more or fewer genes.   
 
To detect and visualize the clustering of significant pathways from LRpath in an 
organized manner while incorporating the overlapping among gene sets, we used the 
Cytoscape plugin EnrichmentMap (Merico et al. 2010). For each LRPath result we 
selected pathways passing the p-value threshold of 0.01 to build cluster maps, and 
defined two pathways as connected if they share >20% of genes between them (i.e., 
overlap coefficient > 0.2).  In the cluster plots produced by EnrichmentMap, each node 
represents a pathway, and each green line links a pair of pathways with >20% overlap 
of their constituent genes. Red nodes indicate pathways showing higher composite 
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scores in the test group than the reference group, while blue nodes indicate the 
opposite.  The convention is that G26 and HCR are test groups and G5 and LCR are 
reference groups. The map of all the pairwise connections often reveal heavily 
connected nodes – pathways that are connected to many other pathways, thus forming 
the center, or "hub", of the clusters.  These clusters are highlighted by ovals; and by 
annotating the individual clusters we can capture the main biological signals in a given 
LRPath result. Currently there is no formal method to summarize all the pathway terms 
represented by a cluster as they often include very diverse concepts.  We decided to 
apply a WordCloud algorithm (Oesper et al. 2011) that returns the most commonly used 
words among the pathway names in each cluster, though the resultant phrases often do 
not have biological meaning. 
 
Results 
 
Begin by saying more about the data if you decide to put the Methods in the end.  
You will need to explain what G5 is and what pass-QC SNPs are, for example.  
Why move Methods to the end?   
 
Runs of homozygosity (ROH) 
 
Given that selective sweeps could result in long stretches of homozygous variants, we 
called ROH for the two lines and two non-adjacent generations (HCR-LCR, Generations 
(G) 5 and 26) in PLINK using the ~782K pass-QC SNPs.  From G5 to G26, the average 
number of ROH per animal did not change noticeably for HCR (383 to 382) or LCR (371 
to 391); but the average length of ROH per animal increased by ~26% (3.4 to 4.3 Mb) 
for HCR and by ~20% (3.6 to 4.3 Mb) for LCR (Figure 3). In parallel, the average 
number of SNPs per ROH also increased by ~28% for HCR (981 to 1,252) and by 
~19% for LCR (1,035 to 1,229) (Figure 4). Reflecting the lengthening of ROH, the 
average fraction of the genome covered by ROH per animal increased from 48% to 
60% for HCR, and 49% to 60% for LCR; and the average gap length between ROH 
regions decreased by ~25% for HCR (3.2 to 2.4 Mb) and by ~27% for LCR (3.3 to 2.4 
Mb) (Figure 5).  We calculated ROH frequencies for each of the four groups of samples, 
and ΔROH for each of the four pairwise comparisons.  Lastly, the ΔROH values were 
assigned to individual Refseq genes based on their genome coordinates. 

 
Fixation index (Fst) 
 
Given that divergent selection often results in frequency divergence at the loci under 
selection, we calculated Fst for every SNP to determine (1) between-line allele 
frequency changes at both time points and (2) within-line allele frequency changes 
between time points, for ~782K pass-QC SNPs. The average between-line Fst 
increased from 0.038 at G5 to 0.081 at G26, while the temporal Fst is ~0.048 in both 
lines (Figure 6). After calculating Fst for each of the four pairwise comparisons and 
summariziing to 1 Mb windows we assigned Fst values to Refseq genes. 

 
Aberrant allele frequency spectrum (AFS) 
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The AFS in a region under selection may depart from that of the genomewide average.  
For every 1Mb window across the genome we used the high quality SNVs called from 
the whole-genome sequence data for the four DNA pools to calculate the composite 
likelihood ratio (CLR), defined as the ratio between the likelihood of selection and that of 
no selection given the local AFS. The average CLR increased from G5 to G26 for both 
lines (9.9 to 23.7 for HCR and 9.1 to 19.9 for LCR), suggesting that more regions under 
selection became apparent in later generations (Figure 7). After calculating ΔCLR for 
each of the four pairwise comparisons for 1 Mb windows we assigned ΔCLR values to 
individual Refseq genes. 

 
Correlations among the three scan statistics 
 
We calculated the Spearman's rank correlation coefficient (ρ) between each pair of per-
gene post-transformation test statistics (see Methods) to evaluate the level of 
concordance among the three signals.  And we repeated the calculation for each of the 
four pairwise analyses, using ~16,000 genes with non-missing values in all three 
statistics.   
 
For HCR G26-G5, the correlations for ΔROH - Fst, ΔROH - ΔCLR, and Fst - ΔCLR are 
0.61, 0.17, and 0.52, respectively (Figure 8). For LCR G26-G5, the correlations for 
ΔROH - Fst, ΔROH - ΔCLR, and Fst - ΔCLR are 0.65, 0.22, and 0.55, respectively 
(Figure 9). For G5 HCR-LCR, the correlations for ΔROH - Fst, ΔROH - ΔCLR, and Fst - 
ΔCLR are 0.59, 0.07, and 0.47, respectively (Figure 10). For G26 HCR-LCR, the 
correlations for ΔROH - Fst, ΔROH - ΔCLR, and Fst - ΔCLR are 0.66, 0.36, and 0.63, 
respectively (Figure 11). Thus the recurring trend is that ΔROH and Fst have 
consistently high levels of concordance, followed by ΔCLR and Fst.  However, the 
concordance between ΔCLR and ΔROH is relatively low.  This confirms that the three 
statistics are related, but they also bring distinct signatures of selection. 

 
Overlap of top ranked genes among the three statistics 
 
To examine the genes that are highlighted in more than one statistic, we extracted the 
top 10% of the genes from each of the statistics and looked for overlap. This resulted in 
137 genes for HCR G26-G5, 67 genes for LCR G26-G5, 79 genes for G5 HCR-LCR, 
and 176 genes for G26 HCR-LCR. When we evaluated pathway signals in these gene 
sets by using DAVID (Huang et al. 2007), we observed no significant pathways. In an 
effort to improve the power of detecting significant pathways by integrating the three 
statistics systematically, we developed a composite score to represent concordant 
selection signatures. 
 
Composite selection scores  
 

We calculated the composite score to combine the three statistics described above.  
The composite scores for the four comparisons are shown in Figures 12.  These scores 
do not have a natural threshold for "significance"; but given the strong phenotypic 
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response to selection at as early as G5 (Ren et al. 2013) we expect that the genes with 
large HCR-LCR difference in G5 are also among the top ranked HCR-LCR genes in 
G26. Indeed, of the 100 genes with the highest HCR-LCR composite scores in G5, 12 
also appeared among the 100 genes with the highest HCR-LCR composite scores in 
G26 (Table 3), while fewer than one is expected between two independent lists of 100 
genes. These 12 genes fall in three top regions shared between G5 and G26 between-
line composite scores: on Chromosomes 9, 16, and 18 (Figures 12c & 12d). Of 
particular interest are FN1 (Fibronectin 1), which functions in cellular adhesion and 
extracellular matrix stability, and PRELID2 (PRELI Domain Containing 2), which 
functions in phospholipid transport. These functions are relevant because we have 
previously found that cellular adhesion and extracellular matrix stability are two of the 
primary biological pathways differentially regulated in transcriptomic data as both lines 
age; with LCR showing greater down-regulation in both pathways as a consequence of 
faster aging than HCR (Ren et al. 2015). Phospholipid transport is relevant because 
Overmyer et al. (2015) previously found that the HCR-LCR lines differ in their fuel 
preference and utilization, specifically in lipids and fatty acids.   

We then applied the composite scores through pathway analysis. The LRPath algorithm 
returned enrichment p values for 6,162 terms and we analyzed the results in two ways. 

First, we focused on the individual pathways passing p < 0.001.  For temporal analyses 
we focused on those with higher scores in G26 than G5.  In the H26-H5 analyses, the 
top three most significantly pathways are related to muscle contraction, including 
regulation of actin filament depolymerization, myosin filament, and actin filament 
depolymerization (Table 1). These show increased composite scors at H26, and are 
followed by other muscle-related pathways with slightly lower levels of significance, 
including negative regulation of actin filament depolymerization, actin cytoskeleton, and 
actin filament capping.  In the L26-L5 temporal analysis there are six pathways 
satisfying P < 0.001 and with increased composite score at G26 (Table 2), implicating 
various "signaling" functions, such as termination of signal transduction, apoptotic 
signaling, and G-protein coupled receptor signaling.  Further, for between-line analyses, 
the HCR-LCR comparison at G5 returned 13 pathways (Table 4), and at G26 returned 7 
pathways (Table 5). As is often the case in this type of analysis, the top 3-6 pathways 
do not converge on 1-2 coherent functional themes.  In Table 4, for example, regions 
with higher composite scores in HCR than LCR are enriched for genes in the homophilic 
cell adhesion pathway, echoing the aging effects found in gene expression data (Ren et 
al. 2015), but other pathways are difficult to interpret. Likewise, Table 5 showed that one 
of the top ranked pathways is for regulation of glycogen metabolic process, which is 
relevant to the metabolic differences between the two lines (Overmyer et al. 2015). 
There are 7 significant pathways in G5 and 4 significant pathways in G26 that are in hte 
HCR-low direction: these pathways show stronger signatures of selection in LCR 
compared to HCR (Tables 4 & 5). However, these pathways do not lead to a clear 
biological interpretation. 

One of the difficulties in interpreting LRpath results is in choosing the level of threshold: 
over four thousand pathways are provided in the output, each accompanied by 
significance levels and direction, and many of which are redundant pathways, i.e., they 
share the same genes with varying degrees of overlap. While in the above we examined 
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the "significant" pathways defined at P < 0.001, our second approach is to visualize the 
relationship of a more relaxed set of "top" pathways, defined at P < 0.01, while taking 
into account the overlap of genes among the pathways. This is done by summarizing 
over the larger number of pathways meeting P < 0.01 using EnrichmentMap (see 
Methods).  

For the temporal analysis in HCRs, there were 80 pathways and they formed many 
clusters (Figure 13).  Two clusters on the upper right, shown in red, contain pathways 
that are enriched with genes with higher score in G26 than G5, with the most frequently 
observed words of phospholipid-dephosphorylation and transport-acid-anion, 
respectively (Figure 13). Note that these names do not have inherent meaning as they 
come from the word frequency analysis (by the WordCloud algorithm), thus these 
names are attached to the clusters to serve as provisional cluster labels.  How to 
properly annotate the functional theme for a given pathway cluster in a formal, 
automated way remains a challenge. By manual annotation we determined that the 
phospholipid-dephosphorylation cluster mainly contains the pathways involved in 
phospholipid and fatty acid metabolism, while the transport-acid-anion cluster contains 
pathways involved in amino acid transport and metabolism. The most significant 
pathways related to muscle function shown in Table 1 is no longer apparent in this 
analysis as it involves a larger number of less significant pathways.  Several other 
clusters in Figure 13 showed opposite direction: they contain pathways enriched with 
genes with higher score in G5 than G26.  Such reduced effect of selection in later 
generations is difficult to interpret.   

For the temporal analysis of LCRs, there were 68 pathways at P < 0.01 and their 
clusters are shown in Figure 14.  Protein kinase and microtubule organization are the 
major clusters enriched with genes with higher score in G26 than G5.  Other clusters 
are difficult to interpret. 

The HCR-LCR comparison at G5 revealed multiple clusters containing pathways (in 
red) enriched with genes with higher scores in HCR than LCR, showing frequently 
observed words as cytoskeletal-protein-binding, activity-transmembrane, activity-
phosphatidylinositol-phospholipase, and growth-factor-binding (Figure 15). By manual 
annotation we found that the cytoskeletal-protein-binding cluster contains pathways 
involved in actin/myosin binding and muscle contraction; the activity-transmembrane-
cluster contains pathways involved in ATPase activity and ATP transport; the activity-
phosphatidylinositol-phospholipase cluster contains pathways involved in phospholipid 
and fatty acid metabolism; and the growth-factor-binding cluster contains pathways 
involved in cellular adhesion and extracellular matrix integrity. The clusters in blue 
contain pathways enriched with genes with higher scores in LCR than HCR, and include 
frequently observed words such as channel activity and phosphatase activity (Figure 
15). The channel activity cluster contains pathways involved in calcium and sodium 
channel activity; and the phosphatase activity cluster contains pathways involved in 
protein phosphatase activity. 

The HCR-LCR comparison at G26 (Figure 16) showed two clusters of pathways with 
stronger selection in HCR (in red), with words of phospholipid-dephosphorylation and 
transport-acid-anion, which resembles the same groups of pathways seen in the HCR 
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G26-G5 temporal comparison (Figures 13). The clusters in blue include words such as 
regulation process and positive regulation growth development (Figure 16). The 
regulation process cluster contains pathways involved in the regulation of metabolic 
processes; and the positive regulation growth development cluster contains pathways 
involved in cellular growth and proliferation. 

Discussion 
 
In this study we attempted to identify genomic regions under selection in the HCR-LCR 
rat model using high-density, whole-genome genotyping and pooled sequencing 
datasets. We identified genes and pathways under differential selection by line and by 
time. The majority of the increase in homozygosity between G5 and G26 in both lines is 
due to lengthening ROHs. The Fst analysis shows that the genome average of HCR-
LCR differentiation increased by 2-fold from G5 and G26. The AFS analysis shows that 
the genome-wide CLR increased in both lines from G5 to G26, indicating the increase in 
aberrant local AFS and increased regions experiencing the impact of selective events at 
later generations.  
The composite score we developed is an efficient and robust function that takes into 
account of the different distribution properties of the constituent test statistics. The 
composite signatures uncovered several physiological pathways, including those  
function in muscle contraction that seem to be selected in the HCR between G5 and 
G26, and this observation, if confirmed, offers a potential mechanistic link to the 
increased exercise capacity in the HCRs. In addition, the composite results provided 
further evidence for the importance of the aging-dependent adhesion pathways in the 
G5 HCR-LCR analysis.  
Physical exercise is a stressful event for all complex animals. To sustain muscle 
contraction during exercise, the demand for adenosine triphosphate (ATP) can increase 
1,000-fold compared to the resting state (Baker et al. 2010). In addition, cells must be 
able to have structural stability in the extracellular matrix to sustain the physiological 
stress. Taken as a whole, our study suggests that 1) genes in cellular integrity, 
actin/myosin binding and muscle contraction actin/myosin binding and muscle 
contraction pathways were swept in HCRs as a consequence of the increased 
physiological stress, and 2) genes involved in ATP-production and amino acid/lipid 
metabolism pathways were affected by selection and this led the HCRs to utilize 
multiple fuel sources to generate ATP and delay exhaustion compared to LCR during 
exercise.  We expected that these insights into the functional consequences of selection 
in the HCR-LCR system provide useful information in further analysis that integrate 
gene expression data and direct QTL analysis in intercross populations.   
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Legends 
 
Figure 1: Regional examples of three selection statistics. Shown are tracks for 
Chromosome 1 for HCR G5 and G26. (top panel) ROH frequency intervals for HCRs G5 
(green) and G26 (black). Change points are the naturally observed ROH junctions. The 
region highlighted in red oval represents a candidate signature of temporal selection, 
where all G26 animals possess a long ROH while most G5 animals do not. (middle 
panel) Fst values per 1 Mb window for the temporal comparison (G5-G26) in HCR. In the 
region highlighted in red oval the G5 and G26 groups have a high levels of genetic 
differentiation. (bottom panel) CLR values for 1 Mb windows for HCRs at G5 (green) 
and G26 (black). In the region highlighted in red oval the G26 animals show highly 
aberrant local AFS, while the G5 group does not.  
 
Figure 2: Distribution of the raw and transformed statistics. Shown are density 
plots for the raw values (a,d,g) and transformed values (b,e,h), and scatterplots 
between the raw and transformed values (c,f,i). 
 
Figure 3: Distribution of ROH lengths in HCR (a) and  LCR (b) animals.  
 
Figure 4: Distribution of the number of SNPs per ROH for HCR (a) and LCR (b) 
animals.  
 
Figure 5: Distribution of between-ROH gap length for HCR (a) and LCR (b) 
animals.  
 
Figure 6: Distribution of per-SNP Fst values for temporal (a) and between-line (b) 
comparisons.  
 
Figure 7: Distribution of log(CLR) values for HCR (a) and LCR (b) animals. Shown 
are CLR values for 1 Mb windows  
 
Figure 8: Two-way comparisons among the three test statistics for HCR G26-G5 
comparisons.   
 
Figure 9: Two-way comparisons among the three test statistics for LCR G26-G5 
comparisons. 
 
Figure 10 Two-way comparisons among the three test statistics for G5 HCR-LCR 
comparisons. 
 
Figure 11 Two-way comparisons among the three test statistics for G26 HCR-LCR 
comparisons. 
 
Figure 12: Genomewide track of per-gene composite scores.  Shown are scores for 
HCR G26-G5 (a), LCR G26-G5 (b), G5 HCR-LCR (c), and G26 HCR-LCR (d).  
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Figure 13: Clusters of enriched pathway for the HCR G26-G5 comparison. Shown 
are EnrichmentMap display of top pathways (P<0.01) obtained in the LRpath analysis of 
the composite scores.  
 
Figure 14: Clusters of enriched pathway for the LCR G26-G5 comparison. 
 
Figure 15: Clusters of enriched pathway for the G5 HCR-LCR comparison. 
 
Figure 16: Clusters of enriched pathway for the G26 HCR-LCR comparison. 
 
Table 1: Significant (p<0.0001) pathways for the composite HCR G26-G5 analysis. 
Only those with "up" direction are shown. 
 
Table 2: Significant (p<0.0001) pathways for the composite LCR G26-G5 analysis. 
Only those with "up" direction are shown. 
 
Table 3: 12 overlapping genes between the top 100 genes from the G5 and G26 
HCR-LCR composite analyses. 
 
Table 4: Significant (p<0.0001) pathways for composite G5 HCR-LCR analysis. 
 
Table 5: Significant (p<0.0001) pathways for composite G26 HCR-LCR analysis. 
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Figure 1 
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Name P-Value Direction 

regulation of actin filament depolymerization 4.44E-06 up 

myosin filament 6.47E-06 up 

actin filament depolymerization 7.30E-06 up 

regulation of protein depolymerization 2.08E-05 up 

regulation of protein complex disassembly 3.15E-05 up 

photoreceptor activity 3.73E-05 up 

zymogen granule 1.31E-04 up 

suckling behavior 3.71E-04 up 

cellular response to estradiol stimulus 4.48E-04 up 

zymogen granule membrane 4.70E-04 up 

negative regulation of protein complex disassembly 5.66E-04 up 

negative regulation of actin filament depolymerization 6.11E-04 up 
actin cytoskeleton 6.56E-04 up 

actin filament capping 6.69E-04 up 
cytoplasmic part 6.80E-04 up 

cellular response to estrogen stimulus 7.70E-04 up 
protein depolymerization 8.20E-04 up 

endocardial cushion morphogenesis 8.84E-04 up 
protein complex disassembly 8.93E-04 up 

prostate glandular acinus development 9.15E-04 up 
 

Table 1  
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Name P-Value Direction 

termination of signal transduction 1.16E-04 up 

positive regulation of apoptotic signaling pathway 1.50E-04 up 

termination of G-protein coupled receptor signaling pathway 2.65E-04 up 

prepulse inhibition 3.05E-04 up 

protein serine/threonine kinase activity 3.43E-04 up 

calmodulin-dependent protein kinase activity 5.72E-04 up 
 
Table 2  
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Gene Name Chromosome Start (Mb) End (Mb) H5-L5 
Rank 

H26-L26 
Rank 

SPAG16 Sperm Associated Antigen 16 9 68.8532 69.7383 70 71 

VWC2L 
Von Willebrand Factor C 

Domain Containing Protein 2-
Like 

9 69.7389 69.9447 37 99 

BARD1 BRCA1 associated RING 
domain 1 9 70.1202 70.1986 100 44 

ATIC 

5-Aminoimidazole-4-
Carboxamide Ribonucleotide 

Formyltransferase/IMP 
Cyclohydrolase 

9 70.6767 70.6969 5 9 

FN1 Fibronectin 1 9 70.7022 70.7712 81 93 

MREG Melanoregulin  9 71.3036 71.3580 37 28 

XRCC5 X-ray repair cross-
complementing protein 5 9 71.4725 71.5819 48 37 

IGFBP2 Insulin-Like Growth Factor 
Binding Protein 2 9 71.9669 71.9942 97 47 

SPATA4 Spermatogenesis Associated 4 16 0.7230 0.7323 25 32 

PRELID2 PRELI Domain Containing 2 18 35.0600 35.1542 22 96 

GRXCR2 Glutaredoxin, Cysteine Rich 2 18 35.1796 35.1941 28 68 

SH3RF2 SH3 Domain Containing Ring 
Finger 2 18 35.2429 35.3445 55 19 

 
Table 3  
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Name P-Value Direction 

translation factor activity, nucleic acid binding 2.24E-04 up 

hyperosmotic salinity response 2.51E-04 down 

ion channel complex 2.98E-04 down 

DNA replication initiation 4.08E-04 up 

negative regulation of cytokine-mediated signaling pathway 4.73E-04 down 

calcium ion binding 4.82E-04 up 

homophilic cell adhesion 5.37E-04 up 

One carbon pool by folate 6.59E-04 down 

endoplasmic reticulum-Golgi intermediate compartment 7.09E-04 up 

transcription factor TFIID complex 7.82E-04 up 

mitochondrial DNA metabolic process 8.54E-04 down 

mitochondrial genome maintenance 8.82E-04 down 

regulation of membrane potential 9.52E-04 down 

 
Table 4  
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Name P-Value Direction 

protein O-linked glycosylation 1.78E-04 up 

cell aging 4.17E-04 down 

ketone biosynthetic process 6.20E-04 down 
regulation of glycogen metabolic process 6.52E-04 up 

inorganic anion transport 6.88E-04 up 

phototransduction, visible light 8.98E-04 down 

calcium ion binding 9.72E-04 down 
 
Table 5  
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