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Summary 20 

 21 
Despite the central role of alternative sigma factors in bacterial stress response and 22 

virulence their regulation remains incompletely understood. Here we investigate one of 23 

the best-studied examples of alternative sigma factors: the σB network that controls the 24 

general stress response of Bacillus subtilis to uncover widely relevant general design 25 

principles that describe the structure-function relationship of alternative sigma factor 26 

regulatory networks. We show that the relative stoichiometry of the synthesis rates of 27 

σB, its anti-sigma factor RsbW and the anti-anti-sigma factor RsbV plays a critical role in 28 

shaping the network behavior by forcing the σB network to function as an ultrasensitive 29 

negative feedback loop. We further demonstrate how this negative feedback regulation 30 

insulates alternative sigma factor activity from competition with the housekeeping sigma 31 

factor for RNA polymerase and allows multiple stress sigma factors to function 32 

simultaneously with little competitive interference. 33 

34 
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Introduction 35 

 36 

Bacteria survive in stressful environmental conditions by inducing dramatic changes in 37 

their gene expression patterns [1,2]. For a variety of stresses, these global changes in 38 

gene expression are brought about by the activation of alternative σ-factors that bind 39 

the RNA polymerase core enzyme and direct it towards the appropriate stress response 40 

regulons [3]. Consequently, to ensure that these σ-factors are only active under specific 41 

environmental conditions, bacteria have evolved regulatory systems to control their 42 

production, activity and availability [3,4]. These regulatory networks can be highly 43 

complex but frequently share features such as anti-σ-factors, partner switching 44 

mechanisms and proteolytic activation [4]. The complexity of these networks has 45 

impeded a clear mechanistic understanding of the resulting dynamical properties. In this 46 

study, we focus on one of the best studied examples of alternative σ-factors, the 47 

general stress-response regulating σB in Bacillus subtilis [5] to understand how the 48 

structure of the σ-factor regulatory networks is related to their functional response. 49 

 The σB-mediated response is triggered by diverse energy and environmental 50 

stress signals and activates expression of a broad array of genes needed for cell 51 

survival in these conditions [5]. Activity of σB is tightly regulated by a partner-switching 52 

network (Fig. 1A) comprising σB, its antagonist anti-σ-factor RsbW, and anti-anti-σ-53 

factor RsbV. In the absence of stress, RsbW dimer (RsbW2) binds to σB and prevents its 54 

association with RNA polymerase thereby keeping the σB regulon OFF. Under these 55 

conditions most of RsbV is kept in the phosphorylated form (RsbV~P) by the kinase 56 

activity of RsbW2. RsbV~P  has a low affinity for RsbW2 and cannot interact with it 57 

effectively [6]. However, in the presence of stress, RsbV~P is dephosphorylated by one 58 

or both of the dedicated phosphatase complexes (thereafter, phosphatases): RsbQP for 59 

energy stress and RsbTU for environmental stress [7-10]. Dephosphorylated RsbV 60 

attacks the σB-RsbW2 complex to induce σB release, thereby turning the σB regulon ON 61 

[11]. Notably, the genes encoding σB and its regulators lie within a σB-controlled operon 62 

[12], thereby resulting in positive and negative feedback loops.  63 

Recently, it was shown that under energy stress σB is activated in a stochastic 64 

series of transient pulses and increasing stress resulted in higher pulse frequencies 65 

[13]. It has also been shown that increase in environmental stressor such as ethanol 66 

leads to a single σB pulse with an amplitude that is sensitive to the rate of stressor 67 

increase [14]. While it is clear that the pulsatile activation of σB is rooted in the complex 68 

architecture of its regulatory network (Fig. 1A) its mechanism is not fully understood. 69 

Previous mathematical models of the σB network either did not produce the pulsatile 70 

response [15] or made simplifications to the network [13] that are somewhat 71 

inconsistent with experimentally observed details. As a result, it remains unclear which 72 

design features of the σB network enable its functional properties.   73 
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 To address these issues we develop a detailed mathematical model of the σB 74 

network and examine its dynamics to understand the mechanistic principles underlying 75 

the pulsatile response. By decoupling the post-translational and transcriptional 76 

components of the network we show that an ultrasensitive negative feedback between 77 

the two is the basis for σB pulsing. Moreover we find that the relative synthesis rates of 78 

σB and its operon partners RsbW and RsbV, plays a critical role in determining the 79 

nature of the σB response. We also use our model, together with previously published 80 

experimental data from [13,14], to explain how the σB network is able to encode the rate 81 

of stress increase and the size of stochastic bursts of stress phosphatase into the 82 

amplitudes of σB pulses. 83 

 84 

 85 
 86 

Figure 1. σB general stress response network. A. Network diagram of the σB general stress 87 

response. Energy and environmental stresses activate the stress-sensing phosphatases RsbQP 88 

(QP) and RsbTU (TU) which dephosphorylate RsbV which in turn activates σB by releasing it 89 

from the σB-RsbW2 complex. Note only the monomeric forms of RsbW and RsbV have been 90 

shown for simplicity. B-D. Dynamics of free σB in response to a step-increase in phosphatase 91 

concentration for different combinations of the relative synthesis rates of σB operon partners (λW 92 

= RsbWT/BT, λV = RsbVT/BT). 93 

  94 

We further develop this model to investigate how the network functions in the 95 

context of other σ-factors. As in many other bacteria, σB is one of the many σ-factors 96 

that complex with RNA-polymerase core that is present in limited amounts [3,16]. 97 

Therefore, when induced these alternative σ-factors compete with one another and the 98 

housekeeping σ-factor σA for RNA polymerase. We use our model to investigate how 99 

the design of this network enables it to function even in the presence of competition 100 

from σA which has a significantly higher affinity for RNA polymerase [17]. Lastly, we 101 

investigate how multiple alternative σ-factors compete when cells are exposed to 102 

multiple stresses simultaneously. Using our model we identify design features that are 103 

ubiquitous in stress σ-factor regulation and critical to bacterial survival under diverse 104 

types of stresses. 105 
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Results 106 

Biochemically accurate model of σB pulsing  107 

In a recent study, Locke et. al. [13] demonstrated that a step-increase in energy stress 108 

results in pulsatile activation of σB. The study also proposed a minimal mathematical 109 

model of the network which reproduced pulsing in σB. However, this model included 110 

several assumptions inconsistent with experimentally observed details: (i) 111 

Phosphorylation and dephosphorylation reactions were assumed to follow Michaelis-112 

Menten kinetics despite the fact that kinase (RsbW) and phosphatase concentrations 113 

are known to be comparable to substrate (RsbV) concentrations [18] so the 114 

approximation breaks down [19], (ii) σB and RsbV are represented as a single lumped 115 

variable rather than separate species and, (iii) partner-switching, and the formation and 116 

dissociation of various RsbW2 complexes were not included explicitly. Though this 117 

minimal model produces pulses resembling their experimental observations, it does not 118 

depict a biochemically accurate picture of the σB network. Consequently it cannot be 119 

used to uncover the design features that enable σB pulsing. 120 

 To understand the σB network response we built on our earlier study [15] to 121 

develop a detailed mathematical model that explicitly includes all known molecular 122 

interactions in the network. Note that we made one significant change to the model 123 

discussed in [15]. The model in [15] assumed that the synthesis rates for σB and its 124 

operon partners (RsbW and RsbV) follow the stoichiometry of their binding ratios (i.e. 125 

/  2T TRsbW B  and /  1T TRsbW RsbV ; where ,   and T T TB RsbW RsbV  represent total σB, 126 

RsbW and RsbV concentrations respectively). However experimental measurements  127 

have shown that σB, RsbW and RsbV are produced in non-stoichiometric ratios [18]. 128 

Accordingly, in contrast to our earlier study, we assumed σB, RsbW and RsbV can be 129 

produced in non-stoichiometric ratios and studied how changes in relative synthesis 130 

rates of σB operon partners affect the response of the σB network to step-increases in 131 

energy stress phosphatase levels. We note that RsbX, a negative regulator of RsbTU 132 

phosphatase [20], is not included in our model. RsbX was excluded for simplicity since it 133 

is not essential for the pulsatile response of the σB network [14].  134 

Simulations of this detailed model showed that different combinations of 135 

RsbW:σB
 and RsbV:σB relative synthesis rates lead to qualitatively different dynamical 136 

responses of the σB network. For operon partner synthesis ratios similar to those 137 

estimated in [18], our model responded to a step-up increase of the phosphatase with a 138 

pulsatile σB response (Fig. 1B) that resembled the experimentally observed behavior 139 

[13]. In contrast, when RsbW:σB
 and RsbV:σB relative synthesis rates follow the 140 

stoichiometry of their binding ratios pulsing is not observed and the σB activity 141 

monotonically increases over time (Figs. 1C). Pulsing also disappears when RsbW 142 

synthesis is high enough to neutralize both its binding partners (Figs.1D).  143 

 144 
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Pulsing originates from emergent negative feedback in the network 145 

To understand why the pulsatile response is only observed for certain operon 146 

partner synthesis rates, we investigated our mathematical model by decoupling the 147 

network’s transcriptional and post-translational responses. By varying the σB operon 148 

transcription rate, while keeping the relative synthesis rates of RsbW:σB and RsbV:σB   149 

fixed, we were able to calculate the post-translational response (Fig. 2A, blue curve) of 150 

the σB network:  Bσ ,][    P T TF B P . This function describes how the free σB concentration 151 

( B[σ ] ) varies as a function of total σB (BT) and total phosphatase (PT) concentrations. In 152 

parallel, we calculated the transcriptional response (Fig. 2A, black curve)  ( ) B
T TB F  153 

which describes how changes in the free σB concentration affect total σB concentrations. 154 

In this analysis framework, the steady state of the complete closed loop network can be 155 

determined by simultaneously solving the post-translational and transcriptional 156 

equations,  Bσ ,][    P T TF B P  and B([ ])σT TB F  at each phosphatase concentration PT. 157 

Graphing both functions provided the steady-state solution as their intersection point 158 

(Fig. 2A, red circle).  159 

 160 
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Figure 2. Negative feedback drives the pulsatile response of the σB network. A. Decoupled 161 

post-translational (blue curve) and transcriptional (black curve) responses of the σB network for 162 

/ 4,  W T TRsbW B  / 4.5  V T TRsbV B . σB and BT represent the concentrations of free 163 

and total σB. Red circle marks the steady states of the full system. B. Sensitivity of the post-164 

translational response (LGP) to changes in total σB concentration (operon production). C. 165 

Representation of the σB pulsatile trajectory in the σB-BT phase plane (green curve). Blue and 166 

cyan curves are the decoupled post-translational responses at high and low phosphatase 167 

concentrations. Black curve is the transcriptional response. D.  ,   W V  stoichiometry 168 

parameter space is divided into regions with positive (Region I), negative (Region II) and zero 169 

(Region III) post-translational sensitivity that respectively correspond to an effective positive, 170 

negative and no feedback in the σB network. Red and black lines represent the analytically 171 

calculated region boundaries  2    W V  and 2 / )(1    W V deg kk k .  172 

 173 

 This decoupling approximation allows us to quantify the sign and strength of 174 

feedback in the full model. The effective sign of the feedback in the σB network is given 175 

by the sign of the product of the sensitivities of two response functions, i.e. 176 

  B/ [σsign ( ]) /   T P TF F B . Since σ-factors function as activators of transcription, 177 

B( )σTF  is a monotonically increasing function of σB (i.e. B/ [σ ] 0 TF ). Consequently, 178 

the sign of the feedback in the σB network is given by the sign of the sensitivity of the 179 

post-translational response to BT (i.e. / P TF B ). In other words, if increase in the operon 180 

production leads to an increase in free σB then the feedback is positive, whereas if 181 

increase in the operon production leads to a decrease in free σB then the feedback is 182 

negative. Our results show that for the parameters chosen in Fig. 1B PF  is a non-183 

monotonic function of BT (Fig. 2A, blue curve). At low BT, free σB increases as a function 184 

of BT because RsbW is sequestered in the W2V2 complex. However at higher BT, the 185 

kinase flux dominates the phosphatase flux resulting in an increased RsbV~P and the 186 

freeing of RsbW2 from RsbV. Freed RsbW2 sequesters σB in the W2σB complex. 187 

Furthermore, in the total σB concentration range where ∂FP/∂BT < 0 in Fig. 2B, the post-188 

translational response is quite steep (Fig. 2A), i.e. small changes in BT lead to 189 

significant decreases in free σB. This ultrasensitivity can be quantified by calculating the 190 

slope in logarithmic space, i.e. 191 
B B B] / [ ] ]

/

[σ σ log[σ

log
 P

T T T

d d
LG

dB B d B
 192 

This dimensionless quantity characterizes the ratio of relative changes in σB and BT at 193 

steady state (Fig. 2B). The sign of PLG  defines the effective sign of the feedback loop 194 

and if the magnitude of |LGP|>1 defines a super-linear (sigmoidal) response.  For  195 

|LGP| ≫1 the response is ultrasensitive. For the σB network, in the region around the 196 
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steady state LGP<-1 indicating that the σB network operates in an ultrasensitive negative 197 

feedback regime. Two types of post-translational reactions that are known to produce 198 

ultrasensitivity play a role here (Fig. S1A,B): (1) Zero-order ultrasensitivity due to 199 

competition between RsbW kinase and RsbQP/RsbTU phosphatases for RsbV and (2) 200 

molecular titration due to sequestration of σB by RsbW. Therefore, near the steady state 201 

the σB network operates in an ultrasensitive negative feedback regime.  202 

 Notably, negative feedback is one of the few network motifs capable of producing 203 

adaption-like pulsatile responses [21]. Moreover, ultrasensitivity of the feedback 204 

ensures homeostatic behavior – making the steady state robust to variations of 205 

parameters [21]. This explains why in Fig. 1B a step-increase in the phosphatase 206 

concentration in our model leads to a σB pulse followed by return to nearly the same 207 

steady state. Plotting the trajectory of the σB pulse (green curve, Fig. 2C) on the 208 

,(  [ ] ) B
TB  plane and over the post-translational and transcriptional responses (Fig. 2C) 209 

illustrates the mechanism driving this pulsatile response. Starting at the initial steady 210 

state (red circle), an increase in phosphatase shifts the ultrasensitive post-translational 211 

response (cyan to blue curve) so that free σB is rapidly released from the RsbW2-σB 212 

complex whereas total σB levels remain relatively unchanged. The increase in σB 213 

operon transcription eventually causes accumulation of total σB and the anti-σ-factor 214 

RsbW. This in turn forces the σB level to decrease, following the post-translational 215 

response curve, to the new steady state (gray circle) which has very little free σB 216 

thereby completing the σB pulse.  217 

 The same analysis can be applied for different values of relative synthesis rates, 218 

i.e. those that correspond to Fig. 1CD. As shown in Fig. S2 these parameter values do 219 

not produce an ultrasensitive non-monotonic post-translational response. Consequently 220 

they do not lead to the emergence of overall negative feedback explaining their non-221 

pulsing dynamics. To determine if the presence or absence of negative feedback more 222 

generally explains the different dynamical responses in Fig. 1B-D, we sampled different 223 

combinations of relative synthesis rates ( /  and  /    T T W T T VRsbW B RsbV B ) and 224 

calculated the post-translational sensitivities. Our calculations showed that based on the 225 

sign of post-translational sensitivity ( PLG ) the relative synthesis parameter space can 226 

be divided into three regions (Fig. 2D). For (λW, λV) combinations in Region I the 227 

sensitivity is always positive. Increase in λW leads the system into an ultrasensitive 228 

negative regime ( 0PLG  and 1PLG ) in Region II. A further increase in λW or a 229 

decrease in λV transitions the system into a non-responsive ( ~ 0PLG ) state in Region 230 

III. Dynamic simulations for sampled (λW, λV) combinations confirm that pulsatile 231 

responses to step-up in phosphatase concentration are restricted to Region II where the 232 

effective feedback is negative (Fig. S2).  233 
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To understand the boundaries between the three regions and how the level of 234 

the phosphatase affects the network, we developed a simplified analytical model that is 235 

based on the observation that RsbW and RsbV bind strongly to each other [18] (see 236 

Supporting Text for details). This approximation allowed us to determine the boundaries 237 

in Fig. 2D (black and red lines) and resulted in a clear biological interpretation of the 238 

three regions. In Region I the amount of RsbW, irrespective of phosphatase level, is 239 

insufficient to bind all of its partners and consequently some fraction of σB always 240 

remains free or unbound to RsbW. In contrast in Region II, the amount of phosphatase 241 

determines how much RsbV is in its inactive phosphorylated form RsbV~P and 242 

therefore whether the amount of RsbW is sufficient to bind all of its partners depends on 243 

the levels of RsbV~P. As a result, for this region, the ratio of kinase and phosphatase 244 

(PT) fluxes determines the post-translational response. Lastly, Region III is the opposite 245 

of Region I in that the amount of RsbW is more than sufficient to bind all of its partners, 246 

even when all RsbV is unphosphorylated. As a result, irrespective of phosphatase 247 

levels, very little σB is free and its level is nearly insensitive to changes in total σB. Thus 248 

negative feedback and consequently pulsing are only possible in Region II where 249 

changes in phosphatase can shift the balance between the prevalent partner 250 

complexes. 251 

The role of negative feedback in producing a pulsatile response also explains 252 

why pulsing does not occur in strains where σB operon is transcribed constitutively [13]. 253 

In this case, the σB network lacks the negative feedback necessary to produce a 254 

pulsatile response. A step-increase in phosphatase still leads to an increase in free σB 255 

due to the change in the post-translational response; however, this not followed by an 256 

increase in total σB levels (Fig. S2C). Consequently, an increase in phosphatase results 257 

in a monotonic increase in free σB rather than a pulse (Fig. S2F). 258 

 Further our decoupling method also sheds light on another experimental 259 

observation by Locke et. al. [13]: the dependence of σB pulse amplitude on the 260 

phosphatase level. Specifically, we found that σB pulse amplitude is a threshold-linear 261 

function of the phosphatase concentration (Fig. S3). Our decoupling method shows that 262 

this threshold-linear behavior arises because the σB network only operates in a negative 263 

feedback regime for phosphatase concentrations higher than a threshold. Below the 264 

phosphatase threshold, the post-translational response  Bσ ,  ~ 0 P T TF B P  and is 265 

insensitive to BT
 (Fig. S3BC). Thus, the full system lacks the negative feedback and as a 266 

result σB does not pulse. Using our analytical approximation we found that this 267 

phosphatase threshold is proportional to the basal level of RsbW kinase synthesis rate 268 

and the ratio of the kinase and phosphatase catalytic rate constants (Fig. S3DE). 269 

Increase in the basal σB operon expression rate increases the phosphatase threshold. 270 

Further, an increase in the relative synthesis rate of RsbW (λW=RsbWT/BT) makes the 271 

phosphatase threshold more sensitive to the σB operon expression rate, whereas a 272 
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decrease in ratio of the kinase and phosphatase catalytic rate constants makes it less 273 

sensitive (Fig. S3DE). This shows that the phosphatase threshold represents the 274 

concentration at which the phosphatase is able to match the basal kinase flux.  275 

Altogether these results show how the ultrasensitive negative feedback plays a critical 276 

role in determining many properties of the σB network pulsatile response and how the 277 

decoupling method can facilitate the identification of essential design features that 278 

enable the existence of this negative feedback. 279 

 280 

Under energy stress conditions σB network encodes phosphatase burst size into 281 

pulse amplitudes 282 

In the preceding sections we have shown how the σB network responds to a 283 

step-increase in RsbQP or RsbTU phosphatases by producing a single pulse of activity. 284 

However, Locke et. al. [13] have shown that an increase in energy stress leads to a 285 

sustained response with a series of stochastic pulses in σB activity. This study further 286 

showed that this sustained pulsing response is driven by noisy fluctuations in level of 287 

energy-stress-sensing phosphatase RsbQP. While the mean level of RsbQP level is 288 

regulated transcriptionally by energy stress [8,13], its concentration in single cells can 289 

fluctuate due to the stochasticity of gene expression. To determine if our model could 290 

explain this response to stochastic fluctuations in RsbQP, we modified it to include 291 

fluctuations in the concentration of this phosphatase. 292 

 Based on previous theoretical [22,23] and experimental [24] studies we assume 293 

that fluctuating phosphatase level follows a gamma distribution which is described by 294 

two parameters - burst size (b, average number of molecules produced per burst) and 295 

burst frequency (a, number of bursts per cell cycle). The mean phosphatase in this case 296 

is the product of burst size and burst frequency (  TP ab ). Thus, energy stress can 297 

increase mean phosphatase by changing burst size or burst frequency or both. In other 298 

words, stress conditions can increase phosphatase levels by either producing more 299 

phosphatase molecules per transcription-translation event or by making these events 300 

more frequent. While the results of [13] cannot exclude either mechanism, we can use 301 

our model to uncover which mechanisms is dominant. 302 

 First, we performed stochastic simulations in which mean phosphatase 303 

concentration was varied by changing burst size. These simulations reproduced all the 304 

experimentally-observed features of the σB pulsatile response. Specifically our results 305 

show that stochastic bursts in stress phosphatase levels lead to pulses of σB activity 306 

(Fig. 3A). Moreover, consistent with the experimental observations of [13], our model 307 

showed that the amplitude of σB pulses increases linearly with the stress phosphatase 308 

level (Fig. 3A,B). Finally, we found that stress-mediated increases in phosphatase 309 

concentration lead to an ultrasensitive (effective Hill coefficient ~5.6) increase in the 310 
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frequency of σB pulsing (Fig. 3C) and an ultrasensitive (effective Hill coefficient ~2) 311 

increase in the level of σB target expression (Fig. 3D). 312 

 313 

 314 

 315 
 316 

Figure 3. Pulsatile response of the σB network to stochastic phosphatase bursts during 317 

energy stress. Model simulations for σB network response where energy stress leads to an 318 

increase in stress-sensing phosphatase RsbQP burst size (A-D) or RsbQP burst frequency (E-319 

H). A,E. Simulations show stochastic bursts in levels of RsbQP lead to pulses of σB target 320 

promoter activity. Light and dark green curves are sample trajectory from stochastic simulation 321 

at high and low stress respectively. Note that σB target promoter activity pulse amplitude 322 

increases significantly with increasing stress for burst size modulation (A) but not for burst 323 

frequency modulation (E). B,F. Mean σB pulse amplitude increases linearly as a function of 324 

mean phosphatase level for burst size modulation (B) but is insensitive to mean phosphatase 325 

level for burst frequency modulation (F). Green circles and errorbars show means and standard 326 

deviations calculated from stochastic simulations. Black line is a linear fit. C,G. With increasing 327 

mean phosphatase level, mean σB pulse frequency increases ultrasensitively for burst size 328 

modulation (C) and linearly for burst frequency modulation (G). Green circles and errorbars 329 

show means and standard deviations calculated from stochastic simulations. Black curves are a 330 

Hill-equation fit with nHill=5.6 in (C) and a linear fit in (G) respectively. D,H. Mean σB target 331 

expression increases ultrasensitively as a function of mean phosphatase level for both burst 332 

size (D) and burst frequency (H) modulation. Green circles are the mean σB target expression 333 

calculated from stochastic simulations. Black curve is a Hill-equation fit with nHill = 2 in (D) and in 334 

nHill = 1.2 (H).  335 

 336 
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Next, we compared these results with stochastic simulations in which burst frequency 337 

was modulated (Fig. 3E-H). These simulations also led to an increase in σB pulsing (Fig. 338 

3E) and a non-linear increase in the level of σB target expression as mean phosphatase 339 

level was increased with more frequent bursts (Fig. 3H). However, we found that σB 340 

pulse amplitude remains constant for burst frequency modulation (Fig. 3E,F) unlike the 341 

~5-fold increase for burst-size modulation (Fig. 3B). Moreover, the frequency of σB 342 

pulses increase linearly with phosphatase level unlike the non-linear increase observed 343 

with burst-size-increase simulations (compare Figs. 3C and 3G). Notably the 344 

experimental observations reported in [13] show that σB pulse amplitude does increase 345 

(~3-fold) with an increase in energy stress thus suggesting that increase in phosphatase 346 

concentration at high stress is primarily the result of increase in burst size. 347 

 348 

To further reinforce the role of mean burst-size modulation in controlling the σB pulsatile 349 

response we next examined the cumulative histograms of pulse amplitudes at different 350 

phosphatase concentrations. These histograms carry different signatures for burst-size 351 

or burst-frequency encoding. The distribution of pulse amplitudes is unchanged with 352 

increase in burst frequency (Fig. S4A) because σB pulse amplitude is determined by 353 

phosphatase burst size and not burst frequency. In contrast, if phosphatase levels are 354 

controlled by changing mean burst size then the distribution of pulse amplitudes 355 

changes accordingly. Consequently, the normalized cumulative histograms of pulse 356 

amplitudes overlap for burst-frequency encoding (Fig. S4A), but not for burst-size 357 

encoding (Fig. S4B). Applying this test to the data from [13], we found that the 358 

normalized cumulative pulse amplitudes histograms do not overlap (Fig. S4C). These 359 

results predict that stress affects the σB network via burst-size modulation of 360 

phosphatase production which is then encoded into σB pulse amplitudes. While the 361 

molecular mechanism that introduces energy stress to the network is still not fully 362 

understood, our prediction places an important constraint on it.  363 

 364 

σB network encodes rate of environmental stress increase into pulse amplitudes 365 

Our model can also be used to study the response of σB network to 366 

environmental stress. Unlike the energy stress phosphatase, the environmental stress 367 

phosphatase RsbU is regulated post-translationally by binding of RsbT [25-27]. RsbT is 368 

trapped by its negative regulators under unstressed conditions but is released upon 369 

stress. Consequently, the concentration of RsbTU complex is tightly controlled at the 370 

post-translational level and is therefore expected to be relatively insensitive to gene 371 

expression fluctuations but sensitive to the level of environmental stress. As a result, 372 

step-up increases in environmental stress agents like ethanol produce rapid increases 373 

in RsbTU and result in only a single pulse of σB activity [14]. However it has been shown 374 

that for gradual increases in stress, σB pulse amplitude depends on the rate of stress 375 

increase [14]. To explain this response, we modeled gradual stress with ramped 376 
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increase in RsbTU complex concentration (Fig. 4A). Our simulations showed that the 377 

detailed model of σB network is indeed able to capture the effect of rate of stress 378 

increase on σB pulse amplitudes. Specifically for a fixed increase in RsbTU complex, the 379 

pulse amplitude decreases non-linearly as a function of the duration of phosphatase 380 

ramp (Fig. 4B, E).  381 

 382 

 383 
 384 

Figure 4. Rate sensitivity of the σB pulsatile response to environmental stress. A. Ramped 385 

increases in RsbTU complex concentration were used as model inputs to simulate different 386 

rates of stress increase in σB network. B. σB pulse amplitudes in the wildtype model (kdeg = 0.72 387 

hr-1 is the degradation rate of σB operon proteins) resulting from the ramped increases in 388 

phosphatase concentration shown in (A). C,D. σB pulse amplitudes resulting from the ramped 389 

increase in phosphatase concentration shown in (C) for various degradation/dilution rates (D). 390 

E. Non-linear dependence σB pulse amplitude on phosphatase ramp duration for various 391 

degradation/dilution rates. Circles and solid curves represent simulation results and Hill-392 

equation fits respectively. Colors represent different kdeg values as in (D). F. Kramp, the half-393 

maximal constant of the non-linear dependence of amplitude on ramp duration, as a function of 394 

kdeg. 395 

 396 

We hypothesized that this ramp rate encoding is the result of the timescale separation 397 

between the fast post-translational and the slow transcriptional responses of the σB 398 

network. During the pulsed σB activation, post-translational response is rate-limited by 399 

the phosphatase ramp. In contrast, the transcriptional response is slow and its rate is 400 

set by the degradation rate of σB operon proteins. Following a step-increase in 401 

phosphatase, the fast post-translational response ensures that σB reaches its post-402 
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translational steady state before the slow increase in RsbW sequesters σB and turns off 403 

the pulse (Fig. 4AB). However, for a ramped increase in phosphatase the post-404 

translational increase in σB is limited by the rate of phosphatase ramp. This allows 405 

RsbW to catch up and terminate the σB pulse earlier, thereby decreasing the pulse 406 

amplitude. To test this, we varied the degradation rate of σB operon proteins and 407 

proportionally changed the operon transcription rate to ensure that the total 408 

concentrations of σB, RsbW and RsbV are kept fixed. We found that indeed pulse 409 

amplitude decreases with increase in degradation/dilution rate (Fig. 4CD). Our 410 

simulations showed that Kramp, the half-maximal constant for the dependence of pulse 411 

amplitude on ramp duration, was indeed sensitive to the degradation rate (Fig. 4EF). 412 

This suggests that the timescale separation between the post-translational and 413 

transcriptional responses is the basis of ramp rate encoding into pulse amplitude.  414 

 415 

The design of the σB network enables it to compete with σA for RNA polymerase 416 

The results thus far indicate that σB network functions in the effectively negative 417 

feedback regime where increase in the operon expression decreases σB activity. 418 

Negative feedback loops have been shown to increase the robustness of the system to 419 

perturbations. We therefore decided to investigate how the σB network design affects its 420 

performance when it faces competition for RNA polymerase from other σ-factors, e.g. 421 

from the housekeeping σ-factor σA [16,28,29]. Since σA has a much higher affinity for 422 

RNA polymerase [17], a small increase in σA can dramatically increase the amount of σB 423 

necessary to activate the transcription of the σB regulon. Thus, changes in σA can alter 424 

the input-output relationship of a stress-response σ-factor like σB (Fig. S5AB) and 425 

thereby adversely affect the survival of cells under stress. 426 

 To understand how the σB network handles competition for RNA polymerase, we 427 

expanded our model to explicitly include σA, RNA polymerase (RNAPol) and its 428 

complexes with both σ-factors. The presence of σA will affect transcriptional activity of 429 

σB but not post-translational interactions between σB operon partners (Fig. 5A, left 430 

panel). Therefore, post-translational response  Bσ  ,   P T TF B P  is not affected by σA. In 431 

contrast, in the transcription response, an increase in σA decreased the ‘effective 432 

affinity’ of σB for RNApol and consequently higher levels of free σB are necessary to 433 

achieve the same production rate for σB target genes.  434 

Using our model, we examined how changes in σA level affect the network 435 

response to energy stress signal, i.e. under stochastically fluctuating RsbQP 436 

phosphatase levels. Our simulations showed that phosphatase bursts lead to pulses of 437 

free σB and pulsatile transcription of σB-controlled promoters (Fig. 5BC) as the presence 438 

of σA does not affect the effective feedback sign. Notably our results also showed that 439 

the amplitudes of σB target promoter pulses are hardly affected by a ~30% increase in 440 

σA (Fig. 5C, left panel). This surprising insensitivity of the phosphatase-σB target dose-441 
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response to RNApol competition is the result of the ultrasensitive negative feedback 442 

between free σB and total σB. Due to the ultrasensitivity of this feedback, a small 443 

decrease in total σB levels resulting from the increase in σA causes a large increase in 444 

σB pulse amplitude (Fig. 5B left panel, 5D green line). This increased amplitude 445 

compensates for the increased competition for RNApol and insulates the network from 446 

perturbations (Fig. 5DE, green curves).  447 

 448 

 449 

 450 
 451 

Figure 5. Negative feedback insulates the σB response from competition with 452 

houskeeping σ-factor σA. A. Simplified network diagrams of stress σ-factor σB competing with 453 

housekeeping σ-factor σA for RNA polymerase. In all cases, a σB phosphatase controls the 454 

stress-signal driven activation of σB. (B,C). Trajectories of free σB (B) and σB target promoter 455 

activity (C) in response to stochastic phosphatase input for both networks at two different levels 456 

of σA (σA = 9µM – low competition-regime and σA = 12µM – high-competition regime for RNA 457 

polymerase). D-E. Mean free σB concentration (D) and mean σB target promoter activity (E) as a 458 

function of total σA concentration (AT) for both networks in (A) at fixed mean phosphatase (mean 459 

PT = 0.5 µM). Gray vertical line shows the total RNA polymerase level which was fixed at 10 µM.  460 

  461 
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To further illustrate the importance of the negative feedback in insulating the 462 

network, we compared the response of the wildtype network to an “in silico” mutant 463 

network wherein the σB operon is constitutive rather than σB dependent (Fig. 5A). 464 

Consequently this network lacks any feedback between free σB and total σB. Our 465 

simulations (Fig. 5B, right panel) show that the free σB concentration of the no-466 

feedback-network does not show adaptive pulsing and therefore σB concentration 467 

fluctuates along with the phosphatase levels. Increase in σA did not affect this response. 468 

This is expected since in the absence of feedback σA only affects the expression of σB 469 

targets in this network (Fig. 5A, right panel). Without an increase in free σB (Fig. 5D), the 470 

increased competition for RNApol at higher σA reduced the σB target promoter activity 471 

(Fig. 5CE). Similarly a positive feedback network design is also incapable of increasing 472 

free σB in response to an increase in σA (Fig. S5CDE). Thus fluctuations in σA can 473 

interfere with the σB stress-response of these alternative network designs. In contrast, 474 

the wildtype σB network with its ultrasensitive negative feedback design can 475 

compensate for competition effects (Fig. 5DE). 476 

 477 

Negative feedback designs of stress-response σ-factor networks minimizes 478 

interference 479 

 The emergent negative feedback design of the network discussed here is not 480 

unique to σB. Transcription of many alternative σ-factors in B. subtilis as well in other 481 

bacteria is often positively auto-regulated but sigma-factor operons often include post-482 

translational negative regulators [3,12,30-33]. For example σW, a σ-factor in B. subtilis 483 

that controls the response to alkaline shock [34] is co-transcribed with its anti-σ-factor 484 

RsiW. In the absence of stress, RsiW sequesters σW in an inactive complex. σW is 485 

activated by stress signals which trigger the cleavage and degradation of RsiW thereby 486 

releasing and activating σW target expression [35]. Although it is unknown whether the 487 

σW network functions in a negative feedback regime similar to σB or if it pulses, it is 488 

possible for this network to exhibit these design properties. If RsiW is expressed in 489 

stoichiometric excess of its binding partner σW from the σW-regulated operon which they 490 

share [36], then similar to the σB network, σW would operate in a negative feedback 491 

regime. 492 

 To determine if negative feedback control offers any advantages when multiple 493 

stress σ-factors are active, we built a new model that includes three σ-factors: σB
, σW 494 

and σA. Anti-σ-factors RsbW (RsiW) and other details of post-translational regulation 495 

were excluded for simplicity. Instead the regulation of free σB and σW was modeled with 496 

simplified identical versions of the negative feedback design of the σB network (Fig. 497 

S5A). Under this simplification, free σB and free σW are non-monotonic functions of their 498 

respective total concentrations, an d T TB W . These non-monotonic functions are 499 

qualitatively similar to the post-translational response function shown in Fig. 2B and 500 
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depend on a signaling proteins PB (for σB) and PW (for σW). Following the previous 501 

section, this model explicitly includes σA, RNApol and its complexes with σ-factors. As a 502 

result, transcriptional activity of both σB and σW depend on σA and RNApol 503 

concentrations (see Supplementary Text). Concentrations of RNApol and σA were 504 

chosen to ensure that amount of RNApol is insufficient to bind to all σ-factors at the 505 

same time. All other parameters of the simplified model were chosen to approximately 506 

match the full σB network model and ensure that both σB and σW operate in the negative 507 

feedback regime. Consequently for the chosen parameters this simplified model acts 508 

like our detailed model and responds to step increases in the stress signaling protein PB 509 

(or PW) by producing a pulse of σB (or σW) activity (Fig. S5CD). To enable a comparison 510 

of the competition between σ-factors for different types of feedback we hereafter focus 511 

on only steady state response, however our conclusions are also valid for the averaged 512 

pulsatile dynamical responses that could be characteristic of the negative feedback σ-513 

factor networks. 514 

 We used this simple model to study the response when cells are simultaneously 515 

exposed to multiple stresses creating competition for RNApol. For these simulations we 516 

fixed σA levels and studied how activation signals for one alternative σ-factor affects the 517 

activity of another. As before (Fig. S5AB), increased availability of one stress σ-factor 518 

leads to a competition for RNA polymerase and as a result reduces the activity of 519 

another stress σ-factor (Fig. S6EF). However, when negative feedback loops are 520 

present, surprisingly, increasing the stress signal for one σ-factor did not lead to any 521 

significant change in the activity of another σ-factor. For example, increasing stress 522 

signaling protein PB while keeping PW fixed leads to an increase in free σB but also 523 

results in a small increase in free σW (Fig. 6C). This response can be explained by the 524 

ultrasensitive negative feedback loops controlling the two stress σ-factors. An increase 525 

in free σB by stress signaling protein PB leads to increased competition for RNApol 526 

resulting in a decrease in the production of RsbW. But since σW is regulated by a 527 

negative feedback, a decrease in total RsbW concentration actually frees up more σW 528 

thereby insulating σW target activity from the effects of RNApol (Fig. 6E). Similarly the 529 

dynamic response of the stress σ-factors is also insulated from competition and an 530 

increase in fixed PW levels increases the pulse amplitude of σB in response to step 531 

changes in stress signaling protein PB (Fig. S6A-D). This compensation of changes in 532 

RNA polymerase availability comes about because both σB and σW are regulated by 533 

ultrasensitive negative feedbacks in our model. As a result of this negative feedback, 534 

both σ-factor networks function as homeostatic modules. Homeostatic resistance to 535 

changes in signals is an intrinsic property of ultrasensitive negative feedback motifs .  536 

 Thus the two stress σ-factors are able to function simultaneously despite the 537 

scarcity of RNApol. The mechanism minimizing competition between stress σ-factors 538 

becomes clearer when we track the changes in σ–RNApol complexes as a function of 539 

the stress signaling protein PB. As PB increases, more free-σB becomes available and 540 
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binds to RNApol (Fig. 6G). However this RNApol must be accounted for by the RNApol 541 

lost by the other operating σW and σA factors. Comparing the contributions of each σ-542 

factor shows that despite the fact that σA has a much higher affinity for RNApol, most of 543 

the RNApol in the σB-RNApol complex is drawn from the σA-RNApol pool rather than 544 

σW-RNApol pool (Fig. 6G). Thus the negative feedback design allows stress σ-factors to 545 

minimize their competition with each other at the expense of the housekeeping factor 546 

σA.  547 

 548 

 549 

 550 
Figure 6. Negative feedback minimizes competition between stress σ factors for RNA 551 

polymerase. A,B. Simplified network diagrams of stress σ-factors σB and σW and housekeeping 552 

σ-factor σA competing with each other for RNA polymerase. σB and σW activities are regulated 553 

by negative and positive feedbacks in (A) and (B) respectively. In both cases, signaling proteins 554 

PB and PW control the stress-signal driven activation of σB and σW respectively. C, D. 555 

Dependence of free σB and σW levels on PB at fixed PW (= 2µM). In the wildtype negative 556 

feedback system (C), increase in σB phosphatase leads to an increase in both free σB (green 557 

curve) and free σW (red curve). In the positive feedback system (D), increase in σB phosphatase 558 

leads to an increase in free σB (green curve) and a decrease in free σW (red curve). E, F. σB and 559 

σW target promoter activities as a function of PB at fixed PW in the wildtype negative feedback 560 

system (E), and the positive feedback system (F). G, H. RNA polymerase bound σB (Rpol-σB) as 561 

a function of PB at fixed PW in the wildtype negative feedback system (G) and the positive 562 

feedback system (H). Increase in σB phosphatase (PB) leads to an increase in Rpol-σB (green 563 

curve) and corresponding decreases ∆Rpol-σW in Rpol-σW (red area) and ∆Rpol-σA in Rpol-σA 564 

(blue area).  565 

 566 

 The role of the negative feedback in producing this response becomes clear 567 

when we compare the response of an “in silico” mutant network with positive feedback 568 
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loops between σB and BT and σW and WT. These positive feedback loops are expected 569 

to display no homeostatic properties and as a result, in this network activation of σB 570 

should significantly decrease σW activity. Indeed, our simulation for the positive 571 

feedback network (Fig. 6D) demonstrates that with increase in stress signaling protein 572 

PB and the resulting increase in free σB, the free σW concentration decreases. As a 573 

result of the increased competition for RNApol and the decreased free σW, σW target 574 

promoter activity in this network decreases as a function of PB (Fig. 6F). Moreover 575 

comparing changes in σ–RNApol complexes as a function of stress signaling protein PB 576 

we find that most of the RNApol in the σB-RNApol complex is drawn from the σW-577 

RNApol pool rather than σA-RNApol pool (Fig. 6H). Thus the negative feedback designs 578 

are essential for stress σ-factors not only to tolerate competition from σA, but also to 579 

avoid competing with each other when the cell is simultaneously exposed to multiple 580 

types of stresses. 581 

 582 

Discussion 583 

 Taken together, our results show how the design of the σB network includes an 584 

implicit ultrasensitive negative feedback that plays multiple functional roles. This design 585 

enables pulsatile activation of σB in response to energy stress and rate-sensitivity to 586 

increases in environmental stress. Moreover, our model predicts that the same design 587 

feature allows the network to effectively compete with house-keeping and other 588 

alternative σ-factors for RNA polymerase core.  589 

 Prompted by recent observations of the highly dynamic pulsatile response of the 590 

σB network [13,14], we have developed a mathematical model that reproduces all 591 

reported features of the response including pulsatile activation in response to stress. 592 

Our model avoids making ad hoc simplifications and instead captures all the known 593 

molecular details of the network. By decoupling the post-translational and transcriptional 594 

responses in our model we were able to derive a simplified view of the network that 595 

illustrates how the pulsatile response is mechanistically based on the ultrasensitive 596 

negative feedback in the network. Using this method we identified the relative 597 

stoichiometry of σB, RsbW and RsbV synthesis rates as the most critical design 598 

property, which by controlling the post-translational response determines the sign of the 599 

feedback in the network as well as all qualitative features of the network response. This 600 

highlights how ignoring non-transcriptional interactions and focusing on transcriptional 601 

regulatory interactions alone can be misleading when trying to identify or characterize 602 

network motifs. Notably, recent analyses of networks like bacterial two-component 603 

systems [37] and the sporulation phosphorelay [38] have similarly shown how the 604 

effective sign of feedback in these networks depends critically on their post-translational 605 

interactions.  606 

 The decoupling of the post-translational and transcriptional response greatly 607 

facilitated the identification of critical design features despite the complexity of the 608 
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network. This separation greatly reduces the dimensionality of the dynamical system by 609 

enabling an independent input–output analysis for the two modules. Similar methods 610 

have also been applied to deduce core functional properties in other bacterial networks 611 

comprising two-component systems and alternative σ-factors [39-41]. Interestingly our 612 

analysis revealed that the post-translational and transcriptional module structures of the 613 

σB network and the phosphorelay controlling B. subtilis sporulation are remarkably 614 

similar [38]. Despite the differences in molecular details, in both networks increase in 615 

total transcription factor levels produces a non-monotonic response in the active 616 

transcription factor. Combining this response with the transcriptional feedback produces 617 

an ultrasensitive negative feedback in both networks. The relevance of these similarities 618 

is evidenced by the fact that both networks produce dynamically similar pulsatile 619 

responses even though they are activated by entirely different stimuli.  620 

 We further showed that energy stress can control σB pulses frequency by 621 

modulating the size of stochastic bursts of energy stress phosphatase. This result raises 622 

the question whether pulsatile σB response can achieve proportional expression of 623 

downstream genes, as was previously suggested [13,42]. This proportional control 624 

requires the distribution of pulse amplitudes to remain fixed even as stress levels 625 

increase. However under the burst-size encoding strategy, pulse amplitude distributions 626 

change as stress levels increase thereby negating the efficacy of a pulsed response in 627 

producing proportional expression of downstream genes. The functional significance of 628 

pulsatile response may instead lie in its ability to encode the rate of environmental 629 

stress increase. Our model showed that this rate encoding follows from the timescale 630 

separation between the fast post-translational and the slow transcriptional responses in 631 

the network. As a result cells are able to encode the rate of stress increase into σB 632 

pulses. This rate responsiveness is only possible with adaptive pulsatile responses and 633 

thus may explain the need for σB pulsing to control the general stress response. 634 

 We also used our model to understand the response when placed in the larger 635 

context of other σ-factor networks and competition for RNA polymerase. Our results 636 

show how the network design is uniquely suited to insulating its response from RNA 637 

polymerase competition from the housekeeping σ-factor. Finally we demonstrate how 638 

ultrasensitive negative feedback, a ubiquitous feature of stress σ-factor regulation 639 

enables different stress σ-factors to operate simultaneously without inhibiting each 640 

other. These results are relevant not only for understanding the stress response of 641 

bacteria but also increasingly for the design of synthetic circuits. The movement towards 642 

the construction of larger genetic circuits has produced numerous recent designs that 643 

include multiple independent modules that rely on shared resources or actuators to 644 

function [43-45]. Our results highlight how competition between modules for shared 645 

resources can significantly affect the performance of these synthetic circuits. Further, 646 

inspired by the design of naturally occurring stress σ-factor network we provide new 647 
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design rules that can improve the performance and robustness of the synthetic 648 

networks. 649 
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 656 

Methods 657 

 658 

Mathematical model of the σB network 659 

The details of all biochemical reactions in the model and the corresponding differential 660 

equations are described in the Supplementary Text.  661 

 662 

Mathematical model of σB stress-response network 663 

Our mathematical model of σB network is based on a previous model proposed in [15]. 664 

This ODE-based model explicitly includes all known molecular species, post-665 

translational reactions and the transcriptional regulation of the σB operon by σB. Below 666 

we formulate the set of reactions and associated differential equations.  667 

 668 

Model reactions 669 

 670 

The events shown in Figure 1A can be described by the following set of biochemical 671 

reactions: 672 

 673 

 Dimerization of anti-σ-factor RsbW 674 

22RsbW RsbWbw

dw

k

k
              (1) 675 

 Reversible binding of the anti-anti-σ-factor RsbV to anti-σ-factor dimer RsbW2 to form 676 

the complexes RsbW2-RsbV and RsbW2-RsbV2 677 

1

1
2 2RsbW +RsbV RsbW Rs V- bb

d

k

k
            (2) 678 

2

2
2 2 2RsbW RsbV +RsbV RsbW RsbV- -b

d

k

k
           (3) 679 

 Phosphorylation of the anti-anti-σ-factor RsbV by RsbW2  680 

1

2 2 PRsbW RsbV Rs- bW +RsbV
kk

            (4) 681 

2

2 2 2 PRsbW RsbV RsbW RsbV +R- - sbV
kk

           (5) 682 

 Reversible binding of σB to RsbW2 to form the complex RsbW2-σB 683 
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3

3

B B
2 2 -RsbW +σ RsbW σb

d

k

k
             (6) 684 

 Reversible displacement of σB by RsbV in the complex RsbW2 685 

4

4

B B
2 2RsbW σ +RsbV RsbW RsbV +- - σb

d

k

k
          (7) 686 

 Dephosphorylation of phosphorylated anti-anti-σ-factor RsbV~P  687 

5

5
P PRsbV +RsbP RsbV RsbP RsbV +RsbP- b p

d

k k

k
         (8) 688 

 Protein degradation/dilution due to cell growth 689 

degk

X 0                 (9) 690 

where X is any protein or protein complex in the σB network. For simplicity equal rates of 691 

degradation for all proteins and their complexes are assumed. 692 

 693 

 Production of σB, RsbW and RsbV  694 

B + RsbW + RsbVσ  
Bv

W V             (10) 695 

σB, RsbW and RsbV were assumed to be synthesized proportionally as all three are 696 

part of the same operon. W  and V  are the proportionality constants of the relative 697 

synthesis rats of operon genes. Synthesis was modeled as a hyperbolically increasing 698 

function of  σB concentration,[ ] B , due autoregulation:  699 

 0
 [ 1 

(
]

][ ) 


 


 
 
 

B

BB
fv v

K
        (11) 700 

Here 0v  is the basal synthesis rate, f is the fold change in protein synthesis due to 701 

positive autoregulation and K is the equilibrium dissociation constant for the binding of 702 

σB to the promoter DNA.  703 

 704 

The stress signals were assumed to control the concentrations of stress phosphatases 705 

RsbTU and RsbQP. For RsbQP, energy stress was assumed to regulate the 706 

transcription rate of the phosphatase and the phosphatase concentration was assumed 707 

to be subject to stochastic fluctuations resulting from gene expression noise. In contrast, 708 

RsbTU concentration is regulated by environmental stress post-translationally, 709 

consequently RsbTU concentration was assumed to be stress-dependent but not 710 

subject to stochastic fluctuations. 711 

 712 

Model equations 713 

 714 

We assume mass-action kinetics for all the above reactions (equations 1-10) to obtain 715 

the following set of equations that describe network dynamics: 716 
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Here   
B  is the concentration of free σB;  [W2] is the concentrations of dimeric RsbW; 720 

[ ]V and [ ]PV  are the concentrations of unphosphorylated and phosphorylated RsbV; 721 

     2 2 2 2,  ,   and   
B

PW W V W V V P  are the concentrations of the corresponding protein 722 

complexes.        ,  ,    and  T T T TB RsbW RsbV P  are the concentrations of total σB, RsbW, 723 

RsbV and phosphatase: 724 
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 725 

 726 

All model parameters are summarized in Table 1. 727 

 728 

To study the effects of competition for RNA polymerase, the σB network model was 729 

expanded to include reactions for σA, RNA polymerase (RNApol) and σ–RNApol binding 730 

(see Supplementary Text). To investigate the competition between σB, σW and σA, we 731 

used a phenomenological non-monotonic function to model the post-translational 732 

regulation of stress σ-factors (σB and σW; see Supplementary Text for details).  733 
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 734 

Calculation of steady state post-translational and transcriptional responses 735 

The decoupled transcriptional and post-translational responses of the network at steady 736 

state were calculated using the MATLAB bifurcation package MATCONT. The post-737 

translational response  [  ,] B
P T TF B P , was calculated by varying the rate of operon 738 

transcription while keeping the component synthesis rates (λW, λV) and the total 739 

phosphatase concentration (PT) fixed. Similarly, the transcriptional response BT = 740 

FT(σB), was calculated by varying the free σB concentration as an independent variable 741 

to calculate the total concentrations of σB, RsbW and RsbV. 742 

 743 

Simulations 744 

The parameter values for reversible binding and phosphorylation reactions were taken 745 

from [15] or were analysis driven to obtain pulsing in σB. All the parameters used in the 746 

model are summarized in Table S1. In the deterministic set-up (Figs. 1, 2, 4, 6, S1, S2, 747 

S3 and S6) the system of differential equations was solved using standard ode15s 748 

solver in MATLAB. For stochastic simulations in Figs. 3, 5 and S5, the time-varying total 749 

phosphatase level PT (= P + VPP) was pre-computed using a gamma distributed 750 

Ornstein-Uhlenbeck process as in [13]. This gamma distributed Ornstein-Uhlenbeck 751 

process permits independent modulation of mean burst size (b) and frequency (a) [46]. 752 

For each phosphatase level, 50 simulations were performed each lasting 10 hours. 753 

Pulses were detected by examining local maxima and minima of the simulated 754 

trajectories, and subsequently this information was used to compute statistics for pulse 755 

amplitude and frequency.  756 

 757 

For the simulations of the effect of competition for RNA polymerase (Figs. 5 and S5), 758 

the total housekeeping σ-factor concentration was varied between 5 and 15 µM. In 759 

these simulations we used (λW = 4, λV = 4.5) and (λW = 2, λV = 2) to simulate the wildtype 760 

(negative feedback) and positive feedback networks respectively. For the simulations of 761 

the no feedback network we used (λW = 4, λV = 4.5) and f = 0 and v0 = 8.64 µMhr-1 to 762 

model the σB–independent constitutive production of operon components. 763 

 764 

For the simulations of the competition between σB, σW and σA (Figs. 6 and S6), the total 765 

housekeeping σ-factor concentration was kept fixed at 12 µM. We used (nb = 7, mb = 5) 766 

and (nb = 0, mb = 3) to simulate the wildtype (negative feedback) and positive feedback 767 

networks respectively. KB and KW were fixed at 5µM for simulations of both networks. 768 

 769 

 770 

771 
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Table 1. List of parameters values used in the model for σB network 772 

 773 

Parameter Value References 

kbw 72 µM-1hr-1 [15,18] 

kdw 18 hr-1 [15,18] 

kb1, kb2, kb3, kb5, kbb, kba, kbpb 144 µM-1hr-1 [15] 

kd1, kd2, kd3, kd5  18 hr-1 
Assuming binding affinity of σB operon 
partner complexes ~ 8nM [18] 

kb4 72 µM-1hr-1 [15] 

kd4 72 µM-1hr-1 [15] 

kdb 172.8 hr-1 
RNApol- σB dissociation constant assuming 
a binding affinity of 1.2µM [16] 

kda  2.88 hr-1 
RNApol- σA dissociation constant assuming 
a binding affinity of 0.02µM [16] 

kdpb  14.4 hr-1 
RNApol- σB-pB dissociation constant 
assuming a binding affinity of 0.1µM  

kk1, kk2 36 hr-1 
Turnover rate for RsbW2 kinase: 10-3-10-2 s-1 
[18] 

kp 180 hr-1 [15] 

kdeg  0.7 hr-1 Based on ~1hr doubling time 

v0 0.4 µMhr-1 
Chosen to ensure total σB level ~1µM in the 
absence of stress [18] 

f 30 [13] 

K 0.2 µM 
Intermediate binding constant for σ-factor 
promoters (Typical range: 10-9-10-6 M; [16]) 

λW, λV 4, 4.5 Varied 

[pB]tot 0.05 µM 
Assuming ~50 specific binding sites for σB 
per genome 

RNApoltot 10 µM [16] 

 774 

  775 

776 
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Supplementary Figures 916 

 917 

 918 
Figure S1. Ultrasensitive negative feedback in the σB network. A. Decoupled post-translational (blue 919 

curve) and transcriptional (black curve) responses of the σB network for / 4,  W T TRsbW B  920 

/ 4.5  V T TRsbV B . σB and BT represent the concentrations of free and total σB. Gray circle marks 921 

the steady states of the full system. Red and blue lines represent the piecewise analytical approximations 922 
of the post-translational response. B. Decrease in the fraction of phosphorylated RsbV (Vp+VpP – orange 923 
curve) and unbound (green curve) as a function total operon expression level according to the post-924 
translational response. C. Sensitivity of the post-translational response of phosphorylated RsbV (Vp+VpP 925 
– orange curve) and unbound (green curve) to changes in total operon expression level (BT). At the 926 
shown steady state (gray circles) both responses have LG<-1.  927 
 928 
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 929 
 930 
Figure S2. σB does not pulse for networks that lack negative feedback. A-C. Decoupled post-931 
translational and transcriptional responses of σB networks that lack negative feedback. (A) λW = 2, λV = 2 932 
(Region I in Fig. 2D) - positive feedback system; (B) λW = 8, λV = 4.5 (Region III in Fig. 2D) a non-933 
responsive system; (C) λW = 4, λV = 4.5 with no transcriptional feedback – no feedback system. In each 934 
panel cyan and blue curves show the post-translational response at low and high phosphatase 935 
concentrations, and black curve shows the transcriptional response. Gray and black circles mark the 936 
steady states of the full system. Step-increase in phosphatase causes a shift in the post-translational 937 
response from low phosphatase-cyan to high phosphatase-blue and leads to an increase in σB (green 938 
curve) in all three systems. D-F. Time-course representations of green trajectories described in A-C. Note 939 
that σB does not pulse in any of the three systems. 940 
 941 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 17, 2016. ; https://doi.org/10.1101/032359doi: bioRxiv preprint 

https://doi.org/10.1101/032359


32 

 

 942 
 943 
Figure S3. Dependence of σB pulse amplitude on phosphatase concentrations and post-944 
translational parameters. A. Time-course representations of σB pulse trajectories for small (0.1µM-945 
orange curve) and large (0.4µM-blue curve) step-increases in phosphatase. λW = 4, λV = 4.5 for both 946 
trajectories. B,C. Representation of the σB pulse trajectories and decoupled post-translational and 947 
transcriptional responses of σB network for small (B) and large (C) step-increases in phosphatase. Cyan 948 
and green curves show the post-translational responses at initial and final phosphatase levels. Black 949 
curves show the transcriptional response. Black and gray circles mark the steady states of the full system. 950 
Note that at the initial phosphatase level the σB~0 and BT is at the basal level of σB operon transcription. 951 
The small step-increase in phosphatase does not significantly shift the post-translational response around 952 
the initial steady state leading to minor, transient increase in σB (orange curve in B). The large step-953 
increase in phosphatase (C) does significantly shift the post-translational response around the initial 954 
steady state leading to prominent pulse in σB (blue curve in C). D. σB pulse amplitudes show a threshold 955 
linear response to increase in phosphatase level. The threshold phosphatase level increases with 956 
increasing basal level of σB operon transcription (Basal BT). E,F. Phosphatase threshold for pulsing as a 957 
function of Basal BT for different values of the (E) RsbW relative synthesis rate (λW) and (F) the ratio of 958 
phosphatase to kinase rates (kp/kk). The circles represent threshold levels calculated from simulations. 959 
The black lines represent the analytical approximation: PT=v0*kk*(λW/2 - 1- λWkdeg/kk)/kp/kdeg, where v0 and 960 
kdeg are the basal rate of σB operon transcription and protein degradation/dilution rate respectively. Basal 961 
BT= v0 /kdeg.  962 
 963 
 964 
 965 
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  966 
 967 

Figure S4. Pulsatile response of the σB network encodes phosphatase burst size not burst 968 
frequency. A-C. Simulation results for the response of the σB network model to stochastic fluctuations in 969 
levels of stress-sensing phosphatase RsbQP for fixed mean burst size and varying burst frequency. 970 
Green circles and errorbars show mean levels and standard deviations calculated from stochastic 971 
simulations. Black line is a linear fit. Mean σB pulse amplitude (A) is insensitive to mean phosphatase 972 
level. Mean σB pulse frequency (B) increases linearly as a function of mean phosphatase level. Mean σB 973 
target expression (C) increases non-linearly as a function of mean phosphatase level. D-F. Normalized 974 
pulse amplitude cumulative histograms for stochastic simulations with (D) burst frequency modulation, (E) 975 
burst-size modulation and (F) experimental data taken from [13]. Different colors represent varying levels 976 
of mean phosphatase (PT) in the model or mycophenolic acid (MPA, energy stress) in experiments. 977 
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 979 
 980 

 981 
Figure S5. Sensitivity of the σB target expression to σA and competition for RNA polymerase. A. 982 
Steady-state dependence of the  σB target expression on free σB for different total levels of the 983 
housekeeping σ-factor (AT). B. KsigB, the half-maximal constant of the dependence of σB target 984 
expression, as a function of the total levels of the housekeeping σ-factor (AT). C. Simplified network 985 
diagrams of a positive feedback regulated stress σ-factor σB competing with housekeeping σ-factor σA for 986 
RNA polymerase. D-E. Trajectories of free σB (D) and σB target promoter activity (E) in response to 987 
stochastic phosphatase input at two different levels of total σA (AT

 = 9µM-low competition for RNA 988 
polymerase; AT = 12µM-high competition for RNA polymerase).  989 
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 990 
Figure S6. Pulsatile response and RNApol competition in the multiple stress σ-factor model. A,B. 991 
Decoupled σB post-translational and transcriptional components in the simplified model for the 992 
competition of stress σ-factors. Cyan and blue curves show the post-translational response at low and 993 
high concentration of σB stress signaling protein PB. Black curve shows the transcriptional responses. A 994 
step-increase in PB causes a shift in the steady-state post-translational response (from low phosphatase-995 
cyan to high phosphatase-blue) and leads to a pulsatile σB response trajectory (green curve). 996 
Concentration of σW stress signaling protein PW was kept fixed at 0.1 µM (A) and 2 µM (B). C,D. Time-997 
course representations of the green trajectories in (A,B) showing σB (C) and σB promoter activity (D) 998 
respectively. E. Steady state dependence of the concentration of σB target promoter activity, on the level 999 
of free σB for different levels of the σ-factor σW. F. KsigB, the half-maximal constant of the dependence of 1000 
target expression on σB as a function of the concentration of the stress σ-factor σW for different levels of 1001 
the housekeeping σ-factor σA. Total RNA polymerase core concentration was kept fixed at 10µM for all 1002 
simulations. 1003 

 1004 
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Supplementary Methods 1005 
      1006 

Derivation of steady state asymptotes for the σB post-translational response 1007 

 1008 

To understand the steady state post-translational response of σB network (Figs. 1, 2) we 1009 

used the mass balance for the operon components RsbW, RsbV and σB together with 1010 

the phosphate flux balance to derive approximate dependence of free σB on BT. We 1011 

found that the post-translational response of the network varies depending on whether 1012 

the concentration of operon components is lower or higher than a threshold level 1013 

defined by the concentration of the stress phosphatase PT.  1014 

 1015 

For low BT (BT < 2PTkp/kk/min[λW, λV]), the maximum phosphatase flux (kP*PT) exceeds 1016 

the maximum kinase flux (kk*min[WT, VT]/2) and as a result, VP≈0. In addition most of 1017 

the anti-anti-σ-factor V is in the W2V2 complex. Taking this into account and applying the 1018 

mass balance for RsbV, 1019 

 1020 

VT = V + VP + VPP + W2V + 2W2V2 ≈ VPP + 2W2V2 1021 

 1022 

Next applying the balance for kinase and phosphatase fluxes, 1023 

 1024 

kk(W2V + W2V2) = kdegVP + (kp+kdeg)VPP 1025 

or, kkW2V2 ≈ (kp+kdeg)VPP 1026 

 1027 

This implies that: W2V2 = min[VT/(2 + kk/(kp+kdeg)),WT/2], where the minimum function is 1028 

applied to account for the fact that the concentration of W2V2 cannot exceed half the 1029 

total RsbW concentration.  1030 

 1031 

Using the above equation in the mass balance for W we solve for W2B and thereby σB,  1032 

 1033 

2W2B = WT - 2W2V2 = WT – 2*min[VT/(2 + kk/(kp+kdeg)),WT/2] 1034 

 1035 

BT = σB + W2B = σB + min[WT/2 - VT/(2+kk/(kp+kdeg)),0] 1036 

 1037 

σB = BT + min[WT/2 - VT/(2+kk/(kp+kdeg)),0]= BT(1 + min[λV/(2+kk/(kp+kdeg)) - λW/2,0])  1038 

    ≈ BT(1 + min[λV/2 - λW/2,0]) 1039 

 1040 

In contrast, for higher BT (BT>2PTkp/kk/min(λW, λV)), where the RsbW kinase dominates 1041 

the phosphatase, VP is not negligible and the phosphatase is saturated (VPP≈PT). Again 1042 

using this in the mass balance for RsbV, 1043 

 1044 
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VT = V + VP + VPP + W2V + 2W2V2 ≈ VP+VPP+2W2V2 1045 

 1046 

And applying the balance for kinase and phosphatase fluxes, 1047 

 1048 

kkW2V2 = kdegVP + (kdeg + kp)VPP ≈ kdegVP+(kdeg + kp)PT 1049 

 1050 

VT = (kkW2V2 - (kdeg + kp)PT)/kdeg + PT + 2W2V2 1051 

 1052 

W2V2 = (VT + PTkp/kdeg)/(2 + kk/kdeg) ≈ VTkdeg/kk + PTkp/kk 1053 

 1054 

2W2B = WT - 2W2V2 = WT - 2VTkdeg/kk - 2PTkp/kk 1055 

 1056 

BT = σB + W2B = σB + WT/2 - VTkdeg/kk - PTkp/kk 1057 

 1058 

σB= BT + VTkdeg/kk + PTkp/kk - WT/2 1059 

 1060 

σB = BT(1 + λVkdeg/kk - λW/2) + PTkp/kk= BT(1 + λVkdeg/kk - λW/2) + B0(PT) 1061 

 1062 

where B0(PT) = PTkp/kk  1063 

 1064 

Note that since σB concentration cannot be negative this approximation only applies for 1065 

BT<B0(PT)/(λW/2 - 1- λWkdeg/kk). For higher BT, σB ~0. 1066 

 1067 

Taken together the dependence of σB on BT can be described by the following system of 1068 

equations: 1069 

 1070 

 1071 
 1072 

Based on the above equation, the sensitivity of the σB post-translational response 1073 

depends on (λW, λV), i.e. the stoichiometry of operon components:  1074 

 1075 

 1076 
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 1077 
 1078 

Which shows that the (λW, λV) parameter space can be divided into three regions based 1079 

on qualitative differences in the post-translational response.  1080 

 1081 

Region I (λW<2+λVkdeg/kk): ∂σB/∂BT>0 and free σB increases as a function of BT 1082 

irrespective of PT. 1083 

Region II (2+2*λVkdeg/kk<λW<2+λV): ∂σB/∂BT>0 for BT<2PTkp/kk/min[λW, λV] and 1084 

∂σB/∂BT<0 for BT>2PTkp/kk/min[λW, λV]. Thus free σB is a non-monotonic function of BT. 1085 

Region III (λW>2+λV): ∂σB/∂BT<0 and free σB decreases as a function of BT irrespective 1086 

of PT. 1087 

 1088 

Thus the asymptotic description shows how relative synthesis rate of σB operon partners 1089 

by controls the sign of post-translational response sensitivity (∂σB/∂BT). Specifically it 1090 

shows that ∂σB/∂BT <0 is only possible in Region II where 2 + 2*λVkdeg/kk < λW < λV + 2. 1091 

This implies that the overall feedback in the σB network can only be negative in Region 1092 

II, thereby explaining why pulsatile responses are only seen combinations sampled from 1093 

this region (Fig. 1B-D). Note also that the boundary equations for Region II closely 1094 

approximate the boundaries of the operon stoichiometry space calculated by sampling 1095 

(λW, λV) combinations (Fig. 2D). 1096 

 1097 

The asymptotic description also explains (Fig. S3) the observation that a threshold level 1098 

of phosphatase is essential for pulsing [13]. As shown above, ∂σB/∂BT<0 in Region II 1099 

only when: 1100 

  1101 

BT<B0(PT)/(λW/2 - 1- λVkdeg/kk)  1102 

 1103 

where B0(PT) = PTkp/kk.  1104 

However BT>v0/kdeg since σB operon transcription has a basal rate independent of σB 1105 

level. v0 and kdeg are the basal rate of transcription and protein degradation/dilution rate 1106 

respectively.  1107 

Consequently, ∂σB/∂BT<0 in Region II only for: 1108 

  1109 

PT> v0*kk*(λW/2 - 1- λVkdeg/kk)/kp/kdeg 1110 
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 1111 

This defines the threshold level of phosphatase essential for ∂σB/∂BT<0 and for the σB 1112 

network to operate in a negative feedback regime. As a result, the σB network only 1113 

pulses for phosphatase levels above this threshold. Note that this threshold level is 1114 

proportional to both the basal level of σB operon expression and the ratio of kinase to 1115 

phosphatase rate constants and increases as a function of the RsbW synthesis ratio λW 1116 

(Fig. S3). This indicates that it represents the basal level of kinase flux that the stress-1117 

regulated phosphatase flux must exceed to trigger a response. 1118 

 1119 

Mathematical model of competition between σB and σA 1120 

 1121 

Additional reactions for the model of competition between σB and σA 1122 

 1123 

To model the competition for RNA polymerase between σB and the housekeeping σ-1124 

factor σA (Figs. 5 and S5), we extended the model described above and supplemented 1125 

reactions (1-9) with the following reactions: 1126 

 1127 

 Reversible binding of σ-factors and RNA polymerase  1128 

B B

A A

σ RNApol RNApol σ

σ RNApol RNApo

-

-l σ









bb

db

ba

da

k

k

k

k

                                (1) 1129 

 1130 

 Reversible binding of RNApol-σB complexes to target promoters  1131 

--B B
B BRNApol σ +p RNApol σ- pbb

dpb

k

k
                  (2) 1132 

 1133 

 Production of σB, RsbW and RsbV  1134 

B B B
B B W VRNApol σ -p RNApol σ- - + RsbW + RsbV+p σ λ λ

Bv

      (3) 1135 

0
B

W V+ Rsσ λ λbW + RsbV
v

                                         (4) 1136 

 1137 

Where v0 is the basal synthesis rate and vB=v0*f/[pB]tot is the maximal rate. f is the fold 1138 

change in protein synthesis due to positive autoregulation and [pB]tot is the total 1139 

concentration of the σB promoter. 1140 

 1141 

Model equations 1142 

The following set of equations that describe network dynamics of this extended model: 1143 
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Model equations for the model of competition between σB, σW and σA 1147 
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 1148 

To model the competition for RNA polymerase between σB the housekeeping σ-factor 1149 

σA and the alkaline stress response σ-factor σW (Figs. 6 and S6), we simplified the 1150 

model for the post-translational control of stress σ-factors while explicitly including 1151 

reactions for the binding/unbinding of RNA polymerase, σ-factors and target promoters. 1152 

This model included the following set of equations: 1153 
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