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Abstract

Neptune locates genomic signatures using an exact k -mer matching
strategy while accommodating k -mer mismatches. The software identifies
sequences that are sufficiently represented within inclusion targets and suf-
ficiently absent from exclusion targets. The signature discovery process
is accomplished using probabilistic models instead of heuristic strategies.
We have evaluated Neptune on Listeria monocytogenes and Escherichia
coli data sets and found that signatures identified from these experiments
are highly sensitive and specific to their respective data sets. Neptune
has broad implications in bacterial characterization for public health ap-
plications due to its efficient signature discovery based upon differential
genomics. In addition, the identified loci may also provide a source ma-
terial for research leading to investigations of group-specific traits.

1 Introduction

The ability to identify and respond to emergent infectious agents in a time sen-
sitive manner is critical for ensuring public health safety [20]. The advancement
of high-throughput next generation sequencing (NGS) has allowed the possibil-
ities of using computational approaches for effective, real-time, comprehensive
outbreak investigation and response. An important component of public health
response is the characterization of infectious agents. This characterization in-
volves discovering discriminatory signature sequences which aim to uniquely
identify a group of organisms of interest from a background group.

This work defines a signature as a string of characters, representing nu-
cleotide bases, capable of discriminating targets of interest from a background
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group. These signatures are sufficiently unique to a set of targets and sufficiently
dissimilar from any sequence within a set of related non-targets. We define the
intended group of interest as the “inclusion group,” the background as the “ex-
clusion group,” and a reference as any inclusion target from which to extract
signatures. Targets will typically comprise of fully-assembled or draft genomes.
Signature discovery aims to locate unique and conserved regions within the
inclusion group that are not present within an exclusion group background.
Signatures will apply within the context of the user-defined groups; however,
their sensitivity and specificity may not hold when applied in a broader context.

A naive approach to signature discovery involves exhaustively comparing
all sequences using alignments to locate signature regions. However, such ap-
proaches do not scale effectively. An approximation to exhaustive comparisons
is sequence clustering, but clustering without optimization may remain too slow.
An effective algorithm is both sensitive and specific, while remaining computa-
tionally tractable. There are two common approaches towards ensuring sensi-
tivity, which trade speed and sensitivity. The first approach requires inclusion
sequence to match exactly [17]. This approach is extremely fast, but will be con-
founded by regions that are not highly conserved. The second approach involves
grouping similar sequences together using multiple sequence alignments [20],
seeding techniques [18], or leveraging clustering information [2]. While these
approaches are more sensitive, they are necessarily slower than exact matching
techniques. TOFI avoids this problem by only locating signatures for a single
target and not a group. The specificity of signatures is verified using com-
putationally expensive alignments of signature candidates [18–20] against the
background, which typically involves using BLAST [1] alignments. However,
verification is performed after significant data reduction, making this possible.
KPATH [20] performs verification by comparing a consensus sequence produced
from inclusion targets to a large non-target database. KPATH achieves accept-
able speeds by leveraging suffix trees to find matches.

A significant data reduction is required to perform signature discovery in
a reasonable time [18–20]. This involves identifying and removing sequences
that are “definitely not unique” [20] in a computationally inexpensive manner.
Insignia [17], TOFI [19], and TOPSI [18] use MUMmer [10] to precompute ex-
act matches within inclusion targets and an exclusion background. However,
depending on the size of the background database, this may remain a compu-
tationally expensive operation. CaSSiS [2] approaches the problem of signature
discovery more thoroughly than other signature discovery pipelines. The soft-
ware produces signatures simultaneously for all locations in a hierarchically
clustered data set, such as a phylogentic tree, thereby producing candidate sig-
natures for all possible subgroups. However, this process requires the input data
to be provided in a hierarchically clustered format.

Neptune leverages existing strategies for signature detection by using an
exact-matching k -mer strategy for speed, while making allowances for inexact
matches to enhance sensitivity. However, unlike other existing exact matching
approaches [17], Neptune performs signature discovery without precomputation
or restriction on targets. Furthermore, Neptune locates signatures that are not
perfectly conserved. Lee and Sheu [11] remark that existing signature discovery
approaches are not readily parallelizable. With this in mind, Neptune is de-
signed to operate on a high performance computing cluster. Neptune extracts
signatures from one or more targets, in a highly parallelizable manner, and is
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independent of multiple sequence alignments. Finally, Neptune’s signature dis-
covery pipeline is guided with probabilistic models, rather than heuristics, and
therefore makes decisions with a degree of certainty.

2 Methods

Neptune uses the distinct k -mers found in each inclusion and exclusion target
to identify sequences that are conserved within the inclusion group and absent
from the exclusion group. Neptune evaluates all sequence and may therefore
produce signatures that correspond to intergenic regions or contain multiple
genes. The k -mer generation step produces distinct k -mers from all targets and
aggregates this information, reporting the number of inclusion and exclusion
targets that contain each k -mer. The signature extraction step identifies candi-
date signatures from one or more references which are assumed to additionally
be inclusion targets. Candidate signatures are filtered by performing an analy-
sis of signature specificity using pairwise sequence alignments. The remaining
signatures are ranked by their Neptune-defined sensitivity and specificity scores.

We provide descriptions of the different stages of signature discovery be-
low and an overview of the signature discovery process is found in Figure 1.
The majority of parameters are automatically calculated by Neptune for every
reference. However, the user may specify any of these parameters. A full de-
scription of the mathematics used in the software is available in supplementary
materials. We assume that the probability of observing a nucleotide base in a
sequence is independent from all other positions and the probability of all single
nucleotide variant (SNV) events (e.g., mutations, sequencing errors) occurring
is independent of all other SNV events.

2.1 k-mer Generation

Neptune produces the distinct set of k -mers from every inclusion and exclusion
target and aggregates these k -mers together. The software is concerned only
with the existence of a k -mer within each target and not with the number of
times a k -mer is repeated within a target. Neptune converts all k -mers to the
lexicographically smaller of either the forward k -mer or its reverse complement.
This avoids maintaining both the forward and reverse complement sequence [14].
The number of possible k -mers is bound by the total length of all targets. The k -
mers of each target are determined independently and, when possible, in parallel.
In order to facilitate parallelizable k -mer aggregation, the k -mers for each target
may be organized into several output files. The k -mers in each file are unique
to one target and all share the same initial sequence index. This degree of
organization may be specified by the user.

The k -mer length is automatically calculated unless provided by the user.
A summary of recommended k -mer sizes for various genomes can be found in
supplementary material. We suggest a size of k such that we do not expect to
see two arbitrary k -mers within the same target match exactly. This suggestion
is motivated by wanting to generate distinct k -mer information, thereby having
matching k -mers most often be a consequence of homology. Let λ be the most
extreme GC-content of all targets and ω be the size of the largest target in
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Figure 1: An overview of Neptune’s signature discovery process. The first step
involves generating k -mers from all inclusion and exclusion targets. These k -
mers are aggregated and provided as input to signature extraction. Signature
extraction produces candidate signatures, which are filtered and then sorted by
their sensitivity and specificity scores.

bases. The probability of any two arbitrary k -mers, kX and kY , matching
exactly, P (kX = kY )A, where x 6= y, is defined as follows:

P (kX = kY )A =
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We use the probability of arbitrary k -mers matching, P (kX = kY )A, to
approximate the probability of k -mers matching within a target, P (kX = kY ).
This is an approximation because the probability of P (kX+1 = kY+1) is not
independent of P (kX = kY ). However, this approximation approaches equality
as P (kX = kY )A decreases, which is accomplished by selecting a sufficiently
large k, such that we do not expect to see any arbitrary k -mer matches. We
suggest using a large enough k such that the expected number of intra-target
k -mer matches is as follows:

∑
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The distinct sets of k -mers from all targets are aggregated into a single file
which is used to inform signature extraction. This process may be performed
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Figure 2: An overview of Neptune’s signature extraction process. The reference
is decomposed into its composite k -mers. These k -mers may be classified as ei-
ther inclusion or exclusion and are used to infer inclusion and exclusion sequence
in the reference. A signature is constructed from inclusion k -mers containing
sufficiently small k -mer gaps and no exclusion k -mers.

in parallel by aggregating k -mers sharing the same initial sequence index and
concatenating aggregated files. Aggregation produces a list of k -mers and two
values corresponding to the number of inclusion and exclusion targets containing
the k -mer. This information is used in the signature extraction step to categorize
some k -mers as inclusion or exclusion k -mers.

2.2 Extraction

Signatures are extracted from one or more references, which are drawn from all
inclusion targets, unless specified otherwise. However, our probabilistic model
assumes all references are included as inclusion targets. In order to identify
candidate signatures, Neptune reduces the effective search space of signatures
by leveraging the spatial sequencing information inherent within the references.
Neptune evaluates all k -mers in each reference, which may be classified as inclu-
sion or exclusion k -mers. An inclusion k -mer is observed in a sufficient number
of inclusion targets and not observed in a sufficient number of exclusion targets.
The sufficiency requirement is described below. Inclusion and exclusion k -mers
are used to infer inclusion and exclusion sequence, with signatures containing
primarily inclusion sequence. An inclusion k -mer may contain both inclusion
and exclusion sequence because, while they may contain exclusion sequence,
these k -mers will be unique to the inclusion group. An exclusion k -mer is, by
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default, any k -mer which has been observed at least once in any exclusion target.
However, in some applications it may be desirable to relax this stringency. For
example, leniency may be appropriate when the inclusion and exclusion groups
are not well understood. An exclusion k -mer should not contain any inclusion
sequence. A candidate signature begins with the last base position of the first
inclusion k -mer, contains allowable k -mer gaps and no exclusion k -mers, and
ends with the first base position of the last inclusion k -mer (Figure 2). This
process is conceptually similar to taking the intersection of inclusion k -mers and
allowable k -mer gaps. Furthermore, it avoids generating a candidate contain-
ing exclusion sequence found in inclusion k -mers which overlap inclusion and
exclusion sequence regions.

An inclusion k -mer is considered sufficiently represented when it is observed
in a number of targets exceeding a minimum threshold. We assume that if there
is a signature present in all inclusion targets, then the signature will correspond
to homologous sequences in all these targets and these sequences will produce
exact matching k -mers with some probability. We start with the probability
that two of these homologous bases, X and Y , match is:

P (X = Y )H = (1− ε)2 + (ε)2 · P (XM = YM )H (4)

where ε is the probability that two homologous bases do not match exactly, and
P (XM = YM )H is the probability that two homologous bases both mutate to
the same base. The default probability of ε is 0.01. We assume that when the
homologous bases do not match, the observed base is dependent on the GC-
content of the environment. Let λ be the GC-content of the environment. The
probability of P (XM = YM )H is defined as follows:

P (XM = YM )H =

(
2
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λ

λ+ 1

)2

+

(
1− λ
λ+ 1

)2
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+
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(5)

This probability depends significantly on GC-content of the environment. We
assume that the probability of each base matching is independent. Therefore,
the probability that two homologous k -mers, kX and kY , match:

P (kX = kY )H = (Pr(X = Y )H)k (6)

We model the process of homologous k -mer matches with a binomial distri-
bution. If we are observing a true signature region in a reference, we expect
that corresponding homologous k -mers exist in all inclusion targets and infer
this homology from aggregated k -mer information. An observed reference k -
mer will exactly match a corresponding homologous k -mer in another inclusion
target with a probability of p = P (kX = kY )H and not match with a probability
of q = 1 − p. The expected number of exact k -mer matches with a reference
k -mer will be µ = (n− 1) · p and the variance will be σ2 = (n− 1) · p · q, where
n is the number of inclusion targets. We require n − 1 because the reference
is an inclusion target and its k -mers will exactly match themselves. However,
we compensate for this match in our expectation calculation. We assume the
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probability of each k -mer match is independent and that k -mer matches are
a consequence of homology. When the number of inclusion targets and the
probability of homologous k -mers matching are together sufficiently large, the
binomial distribution is approximately normal. Let α be our statistical confi-
dence and Φ−1(α) be the probit function. The minimum number of inclusion
targets containing a k -mer, ∧in, required for a reference k -mer to be considered
an inclusion k -mer is defined as follows:

∧in = 1 + µ− Φ−1(α)σ (7)

The ∧in parameter is automatically calculated unless provided by the user
and will inform candidate signature extraction. However, there may be mis-
matches in the reference which exclude it from the homologous k -mer matching
group. We accommodate for this possibility by allowing k -mer gaps in our ex-
traction process. We model the problem of maximum k -mer gap size between
exact matching inclusion k -mers as recurrence times of success runs in Bernoulli
trials. The mean and variance of the distribution of the recurrence times of k
successes in Bernoulli trials is described in Feller 1960 [8]:

µ =
1− pk

q · pk
(8)

σ2 =
1

(q · pk)2
− 2k + 1

q · pk
− p

q2
(9)

This distribution captures how many bases we expect to observe before we
see another homologous k -mer match. The probability of a success is defined
at the base level as p = P (X = Y )H and the probability of failure as q =
(1−p). This distribution may not be normal for a small number of observations.
However, we can use Chebyshev’s Inequality to make lower-bound claims about
the distribution:

P (|X − µ| ≥ δσ) ≤ 1

δ2
(10)

where δ is the number of standard deviations, σ, from the mean, µ. Let
P (|X − µ| ≥ δσ) be our stastical confidence, α. The maximum allowable k -mer
gap size, ∨gap, is calculated as follows:

∨gap = µ+

√
1

1− α
· σ (11)

The ∨gap parameter is automatically calculated unless specified. Candidate
signatures are terminated when either no additional inclusion k -mers are located
within the maximum gap size, ∨gap, or an exclusion k -mer is located. In both
cases, the candidate signature ends with the last inclusion k -mer match. The
consequence of terminating a signature early is that one true signature may be
reported as multiple smaller signatures. We require the minimum signature size,
by default, to be four times the size of k. However, for some applications, such as
designing assay targets, it may be desirable to use a smaller or larger minimum
signature size. Signatures cannot be shorter than k bases. We found that smaller
signatures were more likely to overfit the data than larger signatures (data not
shown). There is no maximum signature size. As a consequence of Neptune’s
signature extraction process, signatures may never overlap each other.
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2.3 Filtering

The candidate signatures produced will be relatively sensitive, but not neces-
sarily specific, because signature extraction is done using exact k -mer matches.
The candidate signatures are guaranteed to contain no more exact matches with
any exclusion k -mer than specified by the user. However, there may be inexact
matches with exclusion targets. Neptune uses BLAST [1] to locate signatures
that align with any exclusion target and, by default, removes any signature that
shares 50% identity with any exclusion target aligning to at least 50% of the
signature. The remaining signatures are considered filtered signatures and are
believed to be sensitive and specific, within the bounds of the relative uniqueness
of the inclusion and exclusion groups, and the parameters supplied for target
identification.

2.4 Scoring

Signatures are assigned a score corresponding to their highest-scoring BLAST [1]
alignments with all inclusion and exclusion targets. This score is the sum of a
positive inclusion component and a negative exclusion component, which are
analogous to sensitivity and specificity, respectively. Let |A(S, Ii)| be the length
of the highest-scoring aligned region between a signature, S, and an inclusion
target, Ii. Let |S| be the length of signature S, PI(S, Ii) the percent identity
(identities divided by the alignment length) between the aligned region of S and
Ii, and |I| be the number inclusion targets. The negative exclusion component
is similarly defined. The signature score, score(S), is calculated as follows:

score(S) =

|I|∑
i=0

|A(S, Ii)| · PI(S, Ii)

|S||I|

−
|E|∑
i=0

|A(S,Ei)| · PI(S,Ei)

|S||E|

(12)

This score is maximized when all inclusion targets contain a region exactly
matching the entire signature and there exists no exclusion targets that match
the signature. Signatures are sorted based on their scores and the best ranking
signatures appear first in the output.

2.5 Output

Neptune produces a list of candidate, filtered, and sorted signatures for all
references. The candidate signatures are guaranteed to contain, by default,
no exact matches with any exclusion k -mer. However, there may still remain
potential inexact matches with exclusion targets. The filtered signatures contain
no signatures with significant sequence similarity to any exclusion target. Sorted
signatures are filtered signatures appearing in descending order of their signature
scores.
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ID Length Summary
1 23,338 O-antigen transport
2 50,038 toxin pilus
3 12,259 phage replication
4 9,652 phage integrase
5 4,282 N-acetylneuraminate lyase
6 10,155 neuraminidase

Table 1: Genomic islands naturally found within Vibrio cholerae (NC 012578.1)
chromosome I. These islands were used as in silico signatures and artificially
inserted within a Bacillus anthracis genome. These islands were identified with
IslandViewer 3 [7].

3 Results

We employ Neptune to identify signatures for several distinct bacterial genomes
of differing phyla. In order to validate our method and highlight mathematical
considerations, we use Neptune to locate signatures within an artificial data
set. Furthermore, we use Neptune to identify signatures within a clinically-
relevant Listeria monocytogenes data set to demonstrate Neptune’s behaviour
when operated on clonal isolate populations. Lastly, we employed a clinically-
relevant Escherichia coli data set to demonstrate Neptune’s capacity to locate
signatures for a diverse data set.

3.1 Artificial in silico Data Set

In order to show that Neptune identifies signatures as expected, the software was
run with an artificially created data set. We created an initial inclusion genome
by inserting non-overlapping, virulence- and pathogen-associated genes from
Vibrio cholerae (NC 012578.1) into a Bacillus anthracis genome (NC 007530)
(Table 1). We selected 6 signature regions varying from 4 to 50-kb in size
and spaced these signatures evenly throughout the B. anthracis genome. The
initial exclusion genome represented a copy of the original (naturally found)
B. anthracis genome lacking modification. We produced a set of 20 inclusion
genomes and 20 exclusion genomes by generating copies of the respective initial
genomes in each grouping. These copies each had a nucleotide mutation rate of
1% with all mutations being equally probable.

Neptune was used to identify inserted pathogenic and virulence regions in
our artificial B. anthracis data set. We specified a k -mer size of 27 and used
Neptune’s default SNV rate of 1%. The k -mer size was derived from Equation 3,
given a genome size of 5337-kb and a GC-content of 0.36. Neptune produced
signatures from all 20 inclusion targets (supplementary material). We aligned
these signatures to the initial inclusion genome and used GView Server [16] to
visualize the identified signatures (Figure 3). Neptune identified 6 complete
signatures, corresponding to the expected signature regions, from 11/20 (55%)
inclusion targets, 7 signatures from 7/20 (35%) targets, and 8 signatures from
2/20 (10%) targets. Acknowledging the low success rate, the additional signa-
tures corresponded to the pathogenic and virulence regions misreported as two
or more adjacent, but smaller, signatures, which is a consequence of mismatches
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Figure 3: An array of V. cholerae-based in silico signatures produced using
Neptune. All of the artificially inserted V. cholerae pathogenic regions were
extracted consistently from several artificial B. anthracis-V. cholerae inclusion
group targets against an endogenous B. anthracis exclusion group.

introduced into the inclusion sequences. As expected, the break locations for
misreported signatures are varied for every reference and, because of its size,
the largest (50-kb) V. cholerae region contains the majority (7/11) of these
locations. However, by Equation 10, we expect to see erroneous breaks with
a frequency inversely proportional to our confidence level (95%) in extending
signatures over k -mer gaps. This is not a serious issue because these events
are relatively rare and all but one of these broken signatures are several thou-
sand nucleotide bases in length. Furthermore, we observed that all identified
signatures corresponded to the artificially inserted V. cholerae regions and were
consistent for all references. Neptune reported all of the in silico signatures and
reported no false positives. Hence, we conclude that Neptune is able to locate
all in silico signature regions, though some of these regions are reported as two
adjacent signatures.

3.2 Listeria monocytogenes

Neptune was next used to locate signature regions within Listeria monocyto-
genes serotypes. L. monocytogenes is an opportunistic environmental pathogen
that causes listeriosis, a serious and life-threatening disease in humans and an-
imals [15]. Consumption of listeria-contaminated products have caused nation-
wide outbreaks in the United States and Canada and are a significant concern
to the food industry and to public health [6, 12, 13]. L. monocytogenes is a
clonal organism and recent L. monocytogenes evolution has been characterized
by deletion events of horizontally acquired bacteriophage and genomic islands.
We therefore expect to find signatures corresponding to these events.

We employ a draft genome data set produced by and analyzed for the
Canadian Listeria Detection and Surveillance using Next-Generation Genomics
(LiDS-NG) project (PRJNA301341). Listeria isolates were serotyped using
standard laboratory serotyping procedures [9]. Serotypes 1/2a and 4b were
selected for evaluation as they represent distinct bacterial lineages and are clini-
cally relevant [15]. Of the 13 L. monocytogenes serotypes, serotypes 1/2a, 1/2b,
and 4b are most commonly associated with human illness [15]. L. monocyto-
genes serotype 4b is found within lineage I and is characterized by low diversity
and low recombination, whereas serotype 1/2a is found within lineage II and
is characterized by high levels of genomic diversity, due to recombination and
horizontal gene transfer [15]. In total, 112 serotype 1/2a (inclusion) and 40
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ID Score Length Summary

1 0.99 5336 PTS system, L-ascorbate (L-Asc) family

2 0.99 4059 bvrABC locus, β-glucoside-specific sensory system

3 0.99 4830 peptidoglycan-bound protein

4 0.99 5455 PTS system, glucose–glucoside (Glc) family

5 0.98 1943 hypothetical

6 0.98 2839 internalin

7 0.98 4468 two-component response and ABC transport systems

8 0.98 1673 glycosyl-transferase

9 0.97 2567 lineage II specific heat-shock system

10 0.96 968 hypothetical

11 0.95 548 hypothetical

Table 2: A summary of L. monocytogenes serotype 1/2a signatures generated
by Neptune relative to background serotype 4b genomes. The signatures are
ordered by their signature score, which is comprised on a positive inclusion
component and a negative exclusion component. We show all signatures with a
score ≥ 0.95. As some signatures contain multiple genes, the summary column
contains a highlight of the region.

serotype 4b (exclusion) genomes were available. These genomes were randomly
divided into two groups of equal size: a training data set and a validation data
set.

Neptune was executed on the L. monocytogenes training data in order to
produce signatures for validation. We specified a k -mer size of 25, derived given
a genome size of 3048 kb, the length of the largest isolate in nucleotides, and
a GC-content of 0.38, the most extreme GC-content of all our isolates (Equa-
tion 3). Neptune produced an average of 1972 (min 1853, max 2056) candidate
signatures and 76 (min 56, max 92) filtered signatures from inclusion targets.
We further evaluated the top-scoring (≥ 0.95) signatures generated from the
inclusion target that generated the greatest number of filtered signatures. The
signatures produced from this target were aligned against a L. monocytogenes
1/2a strain 08-5578 genome (PRJNA43671). The top-scoring signatures (≥
0.95) identified for L. monocytogenes serotype 1/2a are listed in Table 2. These
signatures included phosphoenolpyruvate (PEP)-dependent phosphotransferase
systems (PTS) belonging to L-ascorbate (PTSAsc) and glucose–glucoside (PTS-
Glc) families [21], and a 4468 bp locus containing a two-component response
regulation system and an ABC transport system [5]. The presence of a vari-
ety of PTS systems and transport systems provides L. monocytogenes serotype
1/2a with a competitive advantage to survive under different environmental
conditions due to its ability to utilize a variety of compounds. A bvrABC locus
was found among these signatures which is known to be involved in environ-
mental regulation of virulence genes [4]. An internalin protein was also found,
which is known to be a critical factor for pathogenesis [3]. Also, a lineage
II-specific heat-shock system [22] constituting an operon with 3 genes, RNA
polymerase factor sigma C, lstR thermal regulator, and a cell division related
protein, was present among those high scoring signatures. Other signatures in-
cluded sequences coding for peptidoglycan-bound protein, glycosyl-transferase,
and hypothetical proteins.

These training-generated signatures were compared against the validation
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data set to evaluate their in silico sensitivity and specificity. We used BLAST [1]
to align the signatures against our validation data set. The complete alignment
output can be found in supplementary material. With a percent identity thresh-
old of 95% and a minimum alignment length of 95% the size of the signature
length, 614 out of 616 (99.7%) signature-validation alignments met our sensi-
tivity criteria. The 2 alignments that did not meet this criteria corresponded to
signature ID #3 (Table 2) producing broken alignments against distinct valida-
tion targets. However, these alignments were all greater than 1 kb in length and
over 99% sequence identity. Similarly, with a percent identity threshold of 50%
and a minimum alignment length of 50% the size of the signature length, we
found no significant hits against any of the serotype 4b validation targets. This
suggests that our top-scoring Neptune-generated L. monocytogenes serotype
1/2a signatures are highly sensitive and specific to 1/2a against a L. monocyto-
genes serotype 4b background.

3.3 Escherichia coli

In an attempt to model a real application of signature discovery, we employ Nep-
tune to locate signatures corresponding to shiga-toxin producing Escherichia
coli (STEC). The shiga toxin requires both the stx1a and stx1b subunits to be
functional. Therefore, we expect to locate these subunits using Neptune. As E.
coli exhibits increased genomic diversity over L. monocytogenes, it makes dif-
ferentiating lineages within the species a more challenging signature discovery
problem.

The inclusion and exclusion data sets comprised of 6 STEC (stx1) and 11
non-STEC draft assemblies, respectively. Neptune was run with a k -mer size of
25 (Equation 3; see supplementary materials), and produced an average of 558
(min 429, max 703) candidate signatures and 202 (min 177, max 245) filtered
signatures from inclusion targets. The top-scoring signature produced from each
target had 100% sensitivity and at least 98% specificity. We further evaluated
the top-scoring (≥ 0.95) signatures generated from the target that generated
the greatest number of filtered signatures (245) (Table 3). We aligned these
signatures against an E. coli O157:H7 str. Sakai reference (NC 002695.1) to
infer sequence annotations. This alignment included the chromosome and both
plasmids. The E. coli O157:H7 str. Sakai reference was selected because it
contains a copy of the Shiga toxin and is well characterized. A summary of
the Neptune-identified, stx1-containing E. coli signatures regions is located in
Table 3.

Neptune identified top-scoring signature regions corresponding to known E.
coli virulence and pathogenic elements. These included shiga toxin I subunits
stx1a and stx1b (1), an integrase (4), and hemolysin (5). Additionally, Neptune
identified signatures corresponding to pathogenic elements, including a tail pro-
tein (3) and a colonization factor (6). Furthermore, using BLAST [1], we found
that many of the top-scoring signatures aligned to known E. coli O157:H7 O-
Islands. This included signatures 1, 3, 4, 6, 7, 8, 10; notably shiga toxin I, a
tail protein, and an integrase. The hemolysin-predicted signature was the only
top-scoring signature located on one of the E. coli O157:H7 str. Sakai plasmids.
We located this region on the pO157 plasmid. We conclude that Neptune is ef-
fective at locating known pathogenic regions within STEC with high sensitivity
and high specificity.
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ID Score Inclusion Exclusion Length Summary

1 1.00 1.00 0.00 1375 shiga toxin I

2 0.98 1.00 0.01 438 intimin regulator

3 0.98 1.00 0.02 1223 bacteriophage element

4 0.98 0.99 0.02 3293 bacteriophage integrase

5 0.97 0.99 0.02 7778 hemolysin

6 0.96 1.00 0.03 1260 colonization factor

7 0.96 1.00 0.04 474 hypothetical

8 0.96 0.98 0.02 1161 membrane protein

9 0.96 0.99 0.03 193 hypothetical

10 0.96 1.00 0.04 956 bacteriophage elements

Table 3: A summary of stx1-containing E. coli signatures generated by Neptune
relative to background non-toxin E. coli. The signatures are ordered by their
signature score, which is comprised on a positive inclusion component and a
negative exclusion component. We show all signatures with a score ≥ 0.95.
As some signatures contain multiple genes, the summary column contains a
highlight of the region.

4 Discussion

4.1 Parameters

While many of Neptune’s parameters are automatically calculated, there are
a few parameters that deserve special mention. We recommend odd-sized k -
mers to avoid the possibility of a k -mer being the reverse complement of itself.
The minimum number of inclusion hits and maximum gap size are sensitive to
the SNV rate and the size of k. When estimating these parameters, a slightly
higher than expected SNV rate is recommended. This overestimation will avoid
false negatives at the expense of false positives. However, many of these false
positives will be removed during the filtering stage.

4.2 Memory and Computation Time

Neptune is highly parallelizable and performs well on high-performance comput-
ing clusters. When identifying signatures within a data set of 122 L. monocyto-
genes inclusion genomes of approximately 3,000 kb in length and 40 related L.
monocytogenes exclusion genomes, Neptune required 27 minutes on a 40-node
computing cluster. The memory requirements of all processes never exceeded
more than 10G. Nepune benefits significantly from parallelization and will run
much slower in a single-CPU environment.

4.3 Limitations

Neptune’s signature extraction step avoids false negatives at the expense of false
positives. The software attempts to locate signatures that may not contain an
abundance of exact matches. This approach produces some false positives. How-
ever, false positives are removed during signature filtering and requires increased
computational time. As signatures are extracted from a reference, repeated re-
gions do not confound signature discovery. However, if a repeated region is a
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true signature, then Neptune will report each region as a separate signature. In
this circumstance, user curation may be required.

Neptune cannot locate isolated SNVs and small mutations. Any region with
a high degree of similarity to the exclusion group will either not produce can-
didate signatures or be removed during filtering. Neptune is designed to locate
general-purpose signatures of arbitrary size and does not consider application-
specific physical and chemical properties of signatures. Furthermore, Neptune
is not capable of selecting the best substring within a signature region. This
operation would have the effect of optimizing signature efficacy for applications
where smaller signature lengths are desirable. While Neptune is capable of
producing signatures as small as the k -mer size, we observed that very short
signatures (approximately < 100 bases) tend to overfit the targets from which
the signatures are derived. We do not recommend identifying signatures of this
size unless application-specific.

Finally, Neptune makes assumptions about the probabilistic independence of
bases and SNV events; while these events do not occur indpendently in nature,
they allow for significant mathematical simplification. Nonetheless, Neptune
is capable of producing highly sensitive and specific signatures using these as-
sumptions.

5 Conclusion

We show that Neptune is capable of locating signatures in an artificial data
set. While some signatures are reported as two smaller, adjacent signatures,
Neptune reports all the expected signature regions. We apply Neptune to a L.
monocytogenes data set and show that top-scoring Neptune-identified signatures
have high in silico sensitivity and specificity to a wet-lab verified validation
data set. Finally, we employ Neptune to locate pathogen-associated signatures
related to STEC. Neptune locates many expected signature regions with high
confidence. As expected, no top-scoring signatures corresponded to rDNA or
housekeeping genes. The signatures found in groups of pathogenic bacteria can
also provide an array of gene candidates to further investigate their possible role
in their pathogenesis. We conclude that Neptune is a powerful and flexible tool
for locating signature regions with minimal prior knowledge.

6 Availability

The data used in the manuscript is stored under the PRJNA301341 NCBI ac-
cession. Neptune is developed in Python using DRMAA, NumPy, SciPy, and
Biopython libraries. The software requires a standard 64-bit Linux environment.
The software is available at: http://github.com/phac-nml/neptune
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