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Abstract

Background: Many different methods exist to adjust for variability in cell-type

mixture proportions when analysing DNA methylation studies. Here we present

the result of an extensive simulation study, built on cell-separated DNA

methylation profiles from Illumina Infinium 450K methylation data, to compare

the performance of 8 methods including the most commonly-used approaches.

Results: We designed a rich multi-layered simulation containing a set of probes

with true associations with either binary or continuous phenotypes, confounding

by cell type, variability in means and standard deviations for population

parameters, additional variability at the level of an individual cell-type-specific

sample, and variability in the mixture proportions across samples. Performance

varied quite substantially across methods and simulations. In particular, the false

discovery rates (FDR) were sometimes unrealistically high, indicating limited

ability to discriminate the true signals from those appearing significant through

confounding. Methods that filtered probes had consequently poor power.

QQ-plots of p-values across all tested probes showed that adjustments did not

always improve the distribution. The same methods were used to examine

associations between smoking and methylation data from a case-control study of

colorectal cancer.

Conclusions: We recommend surrogate variable analysis for cell-type mixture

adjustment since performance was stable under all our simulated scenarios.

Keywords: DNA methylation; Cell-type mixture; Deconvolution; Matrix

decomposition
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Background

DNA methylation is an important epigenetic factor that modulates gene expression

through the inhibition of transcriptional proteins binding to DNA [1]. Examining the

associations between methylation and phenotypes, either at a few loci or epigenome-

wide (i.e. the Epigenome-Wide Association Study or EWAS [2]) is an increasingly

popular study design, since such studies can improve understanding of how the

genome influences phenotypes and diseases. However, unlike genetic association

studies, where the randomness of Mendelian transmission patterns from parents to

children enables some inference of causality for associated variants, results from

EWAS studies can be more difficult to interpret.

The choices of tissue for analysis and time of sampling are crucial, since methy-

lation levels vary substantially across tissues and time. Methylation plays a large

role in cellular differentiation, especially in regulatory regions [3, 4], and methyla-

tion patterns are largely responsible for determining cell-type-specific functioning,

despite the fact that all cells contain the same genetic code [5].

Ideally, methylation would be measured in tissues and cells of most relevance to

the phenotype of interest, but in practice such tissues may be impossible to obtain

in human studies. Many accessible tissues for DNA methylation studies, such as

saliva, whole blood, placenta, adipose, tumours, or many others, will contain mix-

tures of different cell types, albeit to varying degrees. Hence the measured methyla-

tion levels represent weighted averages of cell-type-specific methylation levels, with

weights corresponding to the proportion of the different cell types in a sample.

However, cell-type proportions can vary across individuals, and can be associated

with diseases or phenotypes [6]. For example, individuals with auto-immune dis-

ease are likely to have very different proportions of autoimmune cells in their blood

than non-diseased individuals [7, 8, 9, 10, 11], synovial and cartilage cell propor-

tions differ between rheumatoid arthritis patients and controls [12], and associations

with age have been consistently reported [13]. Hence variable cell-type-mixture pro-

portions can confound relationships between locus-specific methylation levels and

phenotypes, since these proportions are associated both with phenotype and with

methylation levels [14].

In situations potentially subject to confounding, although less biased estimates

of association can be obtained by incorporating the confounding variable as a co-
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variate, this is not a perfect solution, since it may not be possible to distinguish

lineage differences [14] or to accurately estimate the proportions of each cell type

in a tissue sample [15, 16]. Initial studies of associations between DNAmethylation

and phenotypes had largely ignored this potential confounding factor, which may

have led to biased estimates of association and failure to replicate findings [17, 18].

However, in parallel with the increasing prevalence of high-dimensional methyla-

tion studies, a number of methods that can account for this potential confounding

of methylation-phenotype associations have been developed or adapted from other

contexts. Among those developed specifically for methylation data (Ref-based [19],

Ref-free [20], CellCDecon [21], EWASher [22]), the first two were proposed by the

same author (Houseman), but the first of these requires an external reference data

set. Other methods were proposed in more general contexts where confounding

does not necessarily result from cell-type mixtures yet is still of concern; many of

these rely on some implementation of matrix decompositions (SVA [23] ISVA [24],

Deconfounding [25], RUV [26, 27]) .

Although there are numerous similarities between the approaches, there remain

some fundamental differences in terms of limitations and performance. Unbiased

comparison of methods has been difficult since true cell-type mixture proportions

are unknown, replications using alternative technologies such as targeted pyrose-

quencing do not lead to genome-wide data where cell type proportions can be

estimated, and new methods have tended to be compared with only a few other

approaches. Since the problem of confounding plagues all researchers in this field,

a careful comparison of existing methods correcting for cell-type heterogeneity is

essential, and this is the objective of our paper.

In an ongoing study of incident treatment-naive patients with one of four sys-

temic auto-immune rheumatic diseases (SARDs), whole blood samples were taken

at presentation, and immune cell populations (purity > 95%) were sorted from pe-

ripheral mononuclear cells (PBMCs) of these patients. Analysis of DNA methylation

was then performed with the Illumina Infinium HumanMethylation450 BeadChip

(450K) on the cell-separated data. These data provide a unique and valuable oppor-

tunity to compare the performance of methods for cell-type mixture adjustments.

We present here the results of an extensive simulation study where we remixed the

cell-separated methylation profiles to incorporate variable mixture proportions and
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confounding of associations, and we then compare performance of 8 different meth-

ods of adjustment. We also compare the ease of use of each method, and provide an

R script allowing for easy implementation of several of the best-performing meth-

ods. As far as we are aware, this is the first study to compare such an extensive set

of methods in a simulation based on cell-separated data.

Results

Patients and original methylation profiles

Whole blood samples were obtained from patients with incident, treatment-naive

rheumatoid arthritis (n = 11), systemic lupus erythematosus (n = 9), systemic

sclerosis (n = 14), and idiopathic inflammatory myositis (n = 3). Several control

samples were available as well (n = 9). CD4, CD19 and CD14 subpopulations

were sorted from PBMC by magnetic cell isolation and cell separation (MACS)

sorting (see Methods). Purity of the isolated populations was confirmed by flow

cytometry. Only in samples with a purity > 95% methylation profiles were assessed

by using the Illumina Infinium HumanMethylation 450 BeadChip on the separate

cell populations. Our simulation and results are based primarily on 46 patients for

whom cell sorted methylation profiles were available for both CD4+ T lymphocytes

and CD14+ monocytes.

The heatmap in Figure 1 shows some representative patterns of methylation in

the SARDs samples across CD14+ monocytes, CD4+ T-cells and CD19+ B-cells

(this latter cell type was not available for all patients), at 200 CpG sites that were

selected because of the inter-cell-type differences. The figure demonstrates that

there are sizeable differences in methylation levels between cell types, and it follows

that small variations in the proportions of these component cell types in a mixed

tissue sample can lead to great difficulties in interpreting any phenotype-associated

results.

Multilayer simulation design

We implemented a rich simulation design, based on the SARDs methylation data.

This simulation contains random sources of variability at multiple levels, including

both variability of population mean parameters as well as variability at individual

level parameters. Starting with the observed cell-separated methylation profiles for

T cells and monocytes from the SARDs data, we simulated a number of probes
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to have associations directly with the phenotype, and we induced confounding by

combining the two cell types in proportions that vary across individuals. Although

this simulation design is complex and depends on a large number of parameters,

it allows substantial flexibility in specifying consistency or variability between cell

types, individuals or probes, and easily allows us to create realistic and pathological

situations in the same framework.

Let i = 1, . . . n, where n = 46 denote the individuals in the SARDs data. In brief,

the simulation proceeds as follows (see Methods for more details):

1 Select a set of 500 CpG sites where “true” associations with a phenotype

will be generated by our simulation; we refer to these CpG’s as Differentially

Methylated Sites (DMS).

2 Generate a phenotype, either binary (Disease/No disease) or continuous.

3 For any probe not in the DMS set, the cell-type-specific methylation values

are the observed values from the real data.

4 For a probe in the DMS set, a randomly-generated quantity is added to the

observed cell-type-specific level of methylation, in a way that depends on the

phenotype.

5 The cell-type-specific methylation values are mixed together in proportions

that vary depending on the phenotypes

Over all DMS, one would expect to see a range of positive and negative associa-

tions with the phenotype. In step 4, we allow these associations to differ between

cell types in order to specify an association between change in methylation and

cell type. After having specified each of the site and cell type specific associations,

we then add between-subject variability to each site. The final step, #5, leads to

methylation proportions as they would appear had the mixed tissue been analyzed

directly.

After simulating data, we then test for association between the phenotype and

the methylation levels in the mixed data at each probe. We compare the p-values

obtained from these tests of association across 6 simulation scenarios and 8 different

methods for cell type adjustment. Some of the DMS were simulated to have very

small effects and therefore statistical tests of association may not be significant.

On the other hand, since the cell-type proportions vary with phenotype, this can

lead to non-DMS sites showing spurious associations with the phenotype. Notation
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for key parameters is given in Table 1, and the parameter choices across different

simulation scenarios are summarized in Table 2.

Scenario 1: DMS sites have differences in both means and variances between cell types

In our first simulation scenario (Table 2), we chose to specify distinct differences in

the strength and distribution of the methylation-phenotype associations (DMS) for

the two cell types, with a binary phenotype. Differences in the DMS distributions

include both direction of the effects as well as the amount of variability across sites

and individuals; Supplement Figure 1 displays histograms of the 500 simulated val-

ues of the DMS means µjk for the two cell types, showing the substantial differences

between these two distributions.

In this scenario, we would expect that an analysis not taking cell type into con-

sideration should result in many p-values that are smaller than expected, or equiv-

alently a greatly inflated slope in a p-value QQ-plot, due to the strong confounding

built into the simulation design. After performing analysis for all probes with un-

adjusted data, we repeated the epigenome-wide analysis with 8 popular or newly

developed adjustment methods (see Materials and Methods). QQ-plots for these 8

methods as well as the uncorrected analysis can be seen in Figure 2. Examination

of the left hand side of this plot (x-axis smaller than about 3.5) shows that there is,

indeed, a genome-wide inflation of p-values in the analysis uncorrected for cell-type

mixture. Encouragingly, most methods do a fairly good job in correcting for the

confounding, since the corrected QQ plots are close to the line of expectation up

until the tails of each set of p-values. The reference-free method, however, continues

to display inflation even after correction.

Several numeric performance metrics can be seen in Table 4a for this simulation

scenario. One of these metrics is the genomic inflation factor (GIF) [28], which is

the slope of the lines seen in Figure 2 after removing the 500 DMS. The unadjusted

GIF was 1.6, indicating a substantial inflation of significance across all p-values,

but after adjustment most values are quite close to 1.0, as would be expected in the

absence of any confounding. The Ref-based, EWASher and Deconf methods have

slopes slightly less than 1.0, implying possible overcorrection.

Due to the large number of statistical tests performed, all p-values corresponding

to the CpG-phenotype associations undergo the Benjamini-Hochberg procedure to

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2015. ; https://doi.org/10.1101/032185doi: bioRxiv preprint 

https://doi.org/10.1101/032185
http://creativecommons.org/licenses/by-nc-nd/4.0/


McGregor et al. Page 7 of 31

control for the false discovery rate (FDR) [29]. Adjusted p-values falling below the

0.05 threshold after this correction are considered significant. Since we know which

500 sites were generated to be truly DMS, Table 4a reports both the power—i.e.

the proportion of these DMS sites that were identified with adjusted p < 0.05—and

also the proportion of all the other sites that would be declared significant, i.e. the

false discovery rate (FDR). This table also shows a measure of performance based

on the Kolmogorov-Smirnov (KS) test for whether the p-value distribution matches

the expected uniform distribution. Of course, the KS test assumes independence of

all the individual tests, and therefore we are not using this test in order to perform

inference, but simply as a measure of deviation where smaller values imply less

deviation.

For this simulation (Scenario 1 with distinct association distributions in the two

cell types) all methods except the reference-free method achieved an improved

(smaller) FDR than the unadjusted analysis for the non-associated probes. Using

ISVA, the FDR was zero, and it was under 5% for the Ref-based, CellCDec, Deconf,

and RUV methods. Although the power (sensitivity) for all the methods appears

very low, many of the simulated effect sizes at the chosen DMS sites were very small,

and nevertheless the rankings of the different methods is still informative. Supple-

mental Figure 1 shows the simulated means of the cell-type distributions for the 500

probes; subsequently, additional random errors were introduced at the level of each

individual leading to substantial variability in the realized methylation differences.

The power of most methods was more or less on par with the unadjusted analysis,

except for Ref-free, EWASher and RUV. Power for EWASher is extremely poor; this

method removes probes with very high or very low levels of methylation prior to

constructing the components, and hence many DMS probes are not even included

in analyses. Results from the Ref-free power must be interpreted cautiously since

the type 1 error is so substantially elevated for this method. The RUV method’s

FDR is surprising given that the QQ-plot looks very similar to CellCDec and the

other statistics in Table 4a are good; possibly a large number of the DMS probes are

being captured for constructing of the deconfounding components. The KS statistic

confirms the conclusions obtained from other metrics, showing small values for most

methods except for the unadjusted data and the Ref-free method.
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Scenario 2: No confounding

It is also of interest to examine performance when there is no confounding. By

simulating data with the same cell-type-specific means and variances in both cell

types (Scenario 2, Table 2b), the unadjusted analysis should not be subject to any

bias. As expected, Table 4b shows low FDR and good power for the unadjusted

method, and similar results are obtained for CellCDec, Deconf and Ref-based. In

Supplemental Figure 2, it can be seen that the unadjusted results lie very close

to the line of expectation, apart from the tail of the distribution where the DMS

predominate. It is interesting to note that SVA, RUV, Ref-free and in particular

ISVA display high FDR values, implying that far too many DMS probes are being

inferred. Despite the fact that no confounding was simulated, the GIF for the un-

adjusted data is slightly inflated; in fact, after adjustment, the GIF increases for

Ref-free and ISVA. In contrast, the GIF is smaller than one for CellCdec, Deconf

and the Ref-based methods, implying some over-correction.

Scenario 3: Opposite effects in different cell types

To investigate a case of severe differential effects, the cell-type-specific means µk

were selected to have opposite signs in the two cell types in Scenario 3. In this case,

the mixed sample can have small DMS effects, since the two cell-type-specific effects

may cancel each other. Confirming this expectation, there is no inflation of the test

statistics in the unadjusted data (GIF=0.97). Similar to the previous scenarios, we

see very poor power and overcorrection with EWASher, and extremely inflated FDR

with the Ref-free method. Small power improvements over the unadjusted analysis

can be seen when using any of the other methods.

Scenarios 4 and 5: Altered precision simulations

Two scenarios were generated where we changed the precision of the individuals’

cell type distributions between cases and controls. That is, a higher precision corre-

sponds to a more pronounced separation in the cell type distributions between cases

and controls, while a lower precision makes the two distributions more difficult to

distinguish. Here, both T-cells and monocytes were chosen to have distinct, positive

net association with the phenotype, however the precision parameter, ρ, from the

Dirichlet distribution was varied such that ρ = 200 for high precision and ρ = 10
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for low precision. QQ-plots are shown in Supplemental Figures 4 (high precision)

and 5 (low precision), and numeric metrics are in Tables 4d and 4e.

In the high-precision scenario, the FDR rate is extremely high when no adjust-

ment is used. Most methods, however, perform quite well in reducing the GIF and

KS statistics, reducing the FDR and retaining decent power (with the exceptions

of Ref-free and EWASher as seen previously). In contrast, for the low precision sce-

nario, where there is much more variability from one individual to the next in the

mixture proportions, as well as substantial differences between cases and controls,

performance is generally poor. The QQ plots display substantial inflation, and most

methods have very high FDR. Even the Ref-based method has very high FDR, and

notably the QQ-plot for RUV has enormous inflation and the FDR is 97%. In fact,

the unadjusted analysis appears to be one of the better choices here, with lower

FDR and good power; CellCDec and Deconf also seem to have better performance

than the others.

Scenario 6: Continuous phenotype simulation results

In our simulation with continuous phenotypes, the relative performances of the

methods are different again. Table 4f and Supplement Figure 6 indicate that unlike

all the other scenarios, the Ref-free method performs fairly decently in this case,

leading to small reductions in the GIF and KS statistics and a small improvement

in power. RUV’s performance is one of the best choice here, with low FDR, good

power, and an excellent GIF value. In contrast, the CellCDec method, which had

performed quite well in all the other scenarios, shows extensive inflation across the

QQ plots (GIF=1.44) and very high FDR estimate; we were unable to obtain results

for the Deconf method with 3 components within the available computational time

limits on the Mammouth Compute Canada cluster. We note that the EWASher

method does not allow continuous phenotypes and cannot be used.

Estimated latent dimension

Our simulation is based on complex mixtures of methylation profiles from two sepa-

rated cell types. It is therefore interesting to note that all the methods that provide

estimates for the latent dimension (the last column of all subtables in Table 4) con-

sistently provide estimates that are much larger than 2. Estimates are obtained for

the Ref-free, SVA, ISVA and RUV methods. Both SVA and ISVA assume the num-

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2015. ; https://doi.org/10.1101/032185doi: bioRxiv preprint 

https://doi.org/10.1101/032185
http://creativecommons.org/licenses/by-nc-nd/4.0/


McGregor et al. Page 10 of 31

ber of surrogate variables is less than or equal to the number of true confounders

whose linear space they span, and for RUV, the authors themselves commented

that the estimated values for K do not necessarily reflect the true dimension [27].

All estimates are generally greater than 10, and RUV’s estimates tend to be over

30. In fact, there may be some additional sources of variation present in the origi-

nal cell-separated methylation data, and these factors are likely being captured by

these numerous latent variables. In fact, analyses of the original cell-type-separated

data using patient age as the predictor resulted in estimated latent dimensions that

were themselves large. For example, random matrix theory [30] (which is used for

dimension estimation in the reference-free method and ISVA) estimated a latent

dimension of 10 for both T-cells and monocytes when analyzed separately. Further-

more SVA estimated the number of surrogate variables to be 7 and 9 for T-cell and

monocytes, respectively.

Results from analysis of the ARCTIC dataset

We tested the performance of these 8 adjustment methods on 450K measurements

from the Assessment of Risk in Colorectal Tumors in Canada (ARCTIC) study

[31], and the methylation data are deposited in dbGAP under accession number

[phs000779.v1.p1]. We analyzed only 977 control subjects from this study, restrict-

ing to those where DNA methylation was measured on lymphocyte pellets, and

examined the association between smoking (ever smoked) and methylation levels

at all autosomal probes who passed quality control (473,864 probes). We excluded

the colorectal cancer patients from this analysis due to concerns that their methy-

lation profiles may have been affected by treatment. Patient age was included as a

covariate in all analyses.

Figure 3 shows the QQ-plots for 7 adjustment methods, and Table 5 provides

Kolmogorov-Smirnov and GIF numeric metrics of performance. The Deconf and

CellCDec methods could not be used in these data since the computational time

exceeded the 5 day limit allowed on the Mammouth cluster of Calcul Quebec. As

was seen in our simulations, the EWASher method seems to overcorrect, leaving

no significant probes, and the GIF is much smaller than 1.0. However, all other

methods lead to QQ-plots where the slope is larger after correction than before –

the GIF estimates are substantially larger than for the unadjusted analysis. For
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SVA and ISVA, the KS-statistic is increased after corrections are applied. Further-

more, among the top 1000 probes selected by each method (based on raw p-value),

none were shared by all methods (including unadjusted results). If EWASher was

excluded, 87 probes overlapped among the most significant 1000, and 89 probes

overlapped among methods excluding EWASher and the unadjusted results. There-

fore, the methods are highlighting quite different results for the most significant

probes.

In Table 6, p-values are shown for 7 probes that have been reliably associated

with smoking [32]. Although substantial evidence of association can be seen at all

probes, it is interesting to see the differences in significance across methods. For

example, at probe cg21161138, significance ranges from 10−7 to 10−25.

Computational performance

To compare computational time across the different adjustment methods, we se-

lected a random sample of 10,000 CpGs from the ARCTIC methylation matrix to

create a benchmark dataset. As we are not making any statistical inference here,

all samples were included, regardless of whether we had matching cell type sets

or quality control status. Some of the methods calculate p-values and parameter

estimates internally, and others require the use of an external function to perform a

linear fit. Therefore, to make the computational times comparable, we define start

time as when the adjustment method is first called, and end time when all estimates

and p-values have been obtained.

Figure 4 shows the running times on the log scale, as the sample size increases

(N = 50 to N = 500), and–for methods where a value of the latent dimension K

is required–as K increases with a fixed sample size (N = 50). There are major

differences in running times for the cell type adjustment methods. Not surprisingly,

the Ref-based method is very fast, as is RUV. The slowest methods are Deconf and

CellCDec; the computational time required for the Ref-free method also increases

quickly with the sample size. In panel (b) of Figure 4, it is interesting to note that

increasing K has very little effect on the speed of four of the six methods that

require a specification of K. However, both the computational time for CellCDec

and Deconf increase exponentially with larger values of K; as noted previously, we

were not able to obtain results for these methods on the ARCTIC data set when
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using all autosomal probes. We note also that the complexity of preparation of the

input files also varies from one algorithm to another.

Discussion

We have presented an extensive comparison of 8 different methods for adjusting for

cell-type-mixture confounding, by designing a rich simulation based on cell-type-

separated methylation data in SARDs patients. Our simulation contained multiple

levels of variability, between cell types, at the level of the probe means, and at the

level of the individual. We found that there was no adjustment method whose

performance was uniformly the best, and in fact in some of our scenarios, the

unadjusted results were quite comparable to the best adjusted results.

In many of our simulated scenarios, as might be expected, the Ref-based method

performed well. This method is very easy to implement, and as seen in the comput-

ing performance section, it runs very quickly, even on larger sample sizes. It usually

achieved good statistical power, and, with one exception, reduced the FDR from the

unadjusted model. It also has the advantage of being able to directly estimate the

cell type composition of each sample. Therefore, the Ref-based method is an obvious

choice when a complete set of the required cell-separated methylation profiles are

available, however, this is not always the case. For some tissues, cell types that are

of particular interest are very difficult or impossible to extract; one example here

would be the syncytiotrophoblast cells in placenta [33, 34].

In every case we examined, EWASher did a very good job in reducing p-value

inflation, and GIF values were substantially reduced from the unadjusted analyses.

However, the fact that this method so strictly forces the GIF factor downwards

may raise concerns about overcorrection. If there were, for example, global hyper-

methylation associated with a disease, adjustment using EWASher would be overly

conservative. Additionally, part of the algorithm involves filtering out loci that are

unilaterally high or low among all subjects. The assumption behind this filter is that

these loci are, for all intents and purposes, completely methylated or unmethylated

and any associations between these probes and the phenotype are not interesting.

This may be an overly strong assumption. In our simulations, this filter results in

the dramatically worse power of this method, since we did not restrict the randomly-

selected DMS loci to any particular mean level of methylation. Furthermore, the
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EWASher method is quite difficult to implement. Although most methods can be

run in R (www.cran.r-project.org) EWASher requires the user to create three sep-

arate input files for a stand-alone executable, and then to perform post-processing

in R.

We cannot explain the poor performance in our simulations of the Ref-free

method. The FDR rates were almost always more inflated than in the raw data,

and this inflation is clearly visible in the QQ-plots. Furthermore, implementation

was somewhat more complex since the approach involved one step to estimate the

latent dimension, a second to get parameter estimates, and then finally bootstrap

calculations to obtain standard errors. Performance of the Ref-free method was

good for Scenario 6 with a continuous phenotype, so we hypothesize that there are

some linearity assumptions in the correction that are being violated in our binary

phenotype simulations.

Performance of CellCDec and Deconf were generally quite good for binary phe-

notypes. The CellCDec method exists as a C++ program, and was quite easy to

implement. The number of latent cell types must be specified in advance, which

is a limitation. The run time was longer for this algorithm than the others, and

increased quickly with the assumed number of cell types–in fact, we were unable to

obtain results in the ARCTIC data. CellCDec does not use phenotype information;

it would be interesting to see how this program would perform if it took the pheno-

type and other covariates into account. For Deconf, the most important limitation

was the running time. In all cases, it took longer to run than the other adjustment

methods, and we were unable to obtain results for the ARCTIC data. Run time

was sensitive to both increases in sample size and number of cell types. Akin to

CellCDecon, the fact that it does not internally estimate the number of cell types

is an issue.

The results for ISVA and RUV were often among the better ones with a couple

of notable exceptions: FDR rates were extremely high for RUV in the low precision

scenario, and for ISVA in the no confounding scenario. Computational time for the

ISVA method also increased quite rapidly with sample size. RUV is very easy to

run and is available as an R function. It contains a function to estimate the latent

dimension (K), although, akin to the other methods that estimate K, the estimated

dimension tends to be much higher than the simulated reality. We performed some
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investigations into how RUV performs at a range of values for K, and the best

performance was observed, in most simulation scenarios, at smaller values such as

K = 3; recently Houseman has also found that estimated latent dimsions obtained

through random matrix theory may not be the best choices [35]. RUV is also ex-

tremely fast–slower only than the Ref-based method, and as shown in Figure 4, the

computational time is essentially invariant as the latent dimension is varied, making

this an attractive option. Nevertheless, the SVA method, although rarely the best,

was a method that did not have any notable failures across our scenarios, and was

easy to implement.

There are other methods for deconvolution that we did not examine, especially in

the computer science and engineering literature [36]. However, it is not clear whether

these methods would be easily adapted for use on methylation data. Also, new meth-

ods for DNA methylation analysis continue to be published, such as [37]. However

the spectrum of methods that we have examined includes the most-commonly used

approaches. All methods that we have examined assume approximately linear rela-

tionships between the phenotype and the methylation levels or covariates; however,

this should not be an important limitation since approximate linearity should hold

[35].

The latent dimension, when estimated, was rarely similar to the dimension of

K = 2 implemented in our simulation. However, these estimates of K capture

aspects of heterogeneity in the data that are only partially attributable to the

mixture of data from two cell types. This heterogeneity may also be partially due

to technological artefacts from batch effects or experimental conditions, and in

particular to the fact that more subtle cell lineage differences will still be present

even after cell sorting [35].

In summary, our simulation study comparing methods found a wide range of

performance across our scenarios with notable failures of some methods in some

situations. We recommend SVA as a safe approach for adjustment for cell-type

mixture since it performed adequately in all simulations with reasonable compu-

tation time. A set of scripts enabling implementation of all these methods can be

found at https://github.com/GreenwoodLab/CellTypeAdjustment.
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Conclusions

We have compared 8 different methods for adjusting methylation data for cell-type-

mixture confounding in a rich and multi-layered simulation study, and in a large set

of samples where methylation was measured in whole blood. No method performs

best in all simulated scenarios, nevertheless we recommend SVA as a method that

performed adequately without notable failures.

Competing Interests

The authors have no competing interests to declare.

Author Contributions

Study design: KM, AL, CG; Data collection: MH, SB, IC, TP; Data analysis: KM; Writing manuscript: KM, AL, CG,

MH.

Acknowledgements

This work was funded by the Ludmer Centre for Neuroinformatics and Mental Health and by Canadian Institutes of

Health Research operating grant MOP-300545. Computations were made on the supercomputer Mammouth
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Methods

Patient data and quality checks

Ethics approval was obtained at the Jewish General Hospital and at McGill University, Montreal, QC, to obtain

whole blood samples from the patients with SARDs, at the time of initial diagnosis prior to any treatment. Cell

purification and phenotyping Protocols for cell subset isolation, analysis, purity evaluation, fractionation and storage

were standardized and optimized. Forty millilitres of peripheral blood were obtained on the above subjects and

processed within 4 hours. Peripheral blood mononuclear cells (PBMCs) were separated with Lymphocyte Separation

Medium (Mediatech, Inc.). Isolated PBMCs were sequentially incubated with anti-CD19, anti-CD14 and anti-CD4

microbeads (Miltenyi Biotec). Automated cell separation of specific cell subpopulations was performed with

auto-MACS using positive selection programs. An aliquot of the specific isolated cell subtypes was used for purity

assessment with flow cytometric analysis. A minimum number of 2 million cells from each subpopulations with a

purity higher than 95% were frozen in liquid nitrogen for the epigenomic studies. The optimized protocols required

the isolation of sufficient numbers of CD4+ lymphocytes (9.04 ± 4.03 x106) and CD14+ monocytes (7.89±2.96

x106), and CD19+ B lymphocytes (2.02±1.42 x106), of sufficient purity to perform the epigenetic analyses.

The required number of cells and purity was not always available, especially for the CD19+ B lymphocytes, so we

did not have all three cell types for all patients; for this reason the simulation used only two cell types and 46

patients. Illumina Infinium HumanMethylation450 BeadChip data were normalized with funnorm [38]. Also, a

number of probes were removed, specifically those on the sex chromosomes as well as probes close to SNPs (ref).

There were 375,639 probes remaining after filtering.

Details of the Simulation Method

This simulation design was initially developed in the Masters thesis of the first author [39].

1 Selection of DMS probes: S = 500 probes were randomly selected to be associated with the phenotype.

2 Phenotype (zi, i = 1, . . . , n): A random sample of size 46 was drawn from either a Bernouilli distribution

(p = 0.5) for a binary phenotype, or from a standard normal distribution for a continuous phenotype.

3 Cell-type-specific methylation values for non DMS probes: Let βijk represent the true methylation value

for individual i, probe j and cell type k. For a probe that is not a DMS probe, the simulated value

β′ijk = βijk.

4 Cell-type-specific methylation values for DMS probes:

• Cell-type-specific means are sampled from normal distributions with given parameters. That is, for

chosen values µk, and σk, for k = 1, 2, cell-type-specific means for each DMS probe, µjk, are

generated from µjk ∼ N(µk, σ
2
k).

• The simulated cell-type-specific methylation effect, εijk, at a DMS, for an individual sample i and

an individual probe j, is another random quantity, so that

eijk ∼ N(µjk, σ
2
jk)
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where σjk is a parameter provided to the simulation.

• For either binary or continuous phenotype zi, the simulated methylation value βijk is then

β
′
ijk = logit−1

(logit (βijk) + zieijk) .

Although all the random effects were simulated on a linear scale, the results are reconverted to the

(0,1) scale since several of the cell type adjustment methods require this range.

5 Combining across cell types:

• Each individual is assumed to have a unique mixture of the two cell types in a way that depends on

the phenotype, z. Let α(0) = (α
(0)
1 , α

(0)
2 )> represent the average proportions of the two cell types

when zi = 0, and then let α(Z) = (α
(Z)
1 , α

(Z)
2 )> be these proportions when zi = Z. We then say,

α
(Z)

= α
(0)

+ Z

average change in proportion in monocytes

average change in proportion in T-cells

 (1)

• The cell type proportions pik for individual i were then generated from Dirichlet(ρα
(Z)
k ), where

ρ > 0 is a precision parameter, such that larger precision corresponds to less variation in the

observed values.

• The final simulated beta value for person i at CpG site j becomes

β
f
ij = pi1β

′
ij1 + pi2β

′
ij2 (2)

.

Key notation definitions are summarized in Table 1, and parameter choices for the simulations are in Table 2.

Description of adjustment methods

Performance of eight popular methods is compared. Brief descriptions of each methods are provided here, and

Table 3 compares some key features of the methods, including some details of the implementations. This set of 8

methods is not an exhaustive list of all methods available at this time. In fact, in other fields, particularly

engineering and computer science, there exists a plethora of other methods under the guise of “deconvolution”

providing the same kind of correction for unmeasured confounding both in other high-throughput data sources [36].

However, we include and compare many of the approaches that are in common usage in the last few years in the

world of genomics/epigenomics.

Reference-based

This method was published in 2012 by Houseman et al. [19]. It relies on the existence of a separate dataset

containing methylation measurements on separated cell types. The method uses methylation profiles for the

individual cell types to directly estimate the cell type composition of each sample. However, cell-separated data are

not always available for all constituent cell types.

Reference-free

The second method from Houseman et al. does not depend on a reference data set, and therefore can be used in

methylation studies on any tissue type [20]. Rather than directly estimating cell type composition, the reference-free

method performs a singular value decomposition on the concatenation of the estimated coefficient and residual

matrices from an initial, unadjusted model. A set of latent vectors is then obtained that accounts for cell type in

further analyses.

Surrogate Variable Analysis

Surrogate Variable Analysis (SVA) is a popular method that was introduced by Leek and Storey in 2007 [23]. It was

not specifically intended for use in methylation studies, but is nonetheless well-suited for such analyses. SVA seeks a

set of surrogate variables that span the same linear space as the unmeasured confounders (i.e. cell type proportions).
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It is based on a singular value decomposition on the residual matrix from a regression model not accounting for cell

type composition. The total number of surrogate variables included in the model is based on a permutation test.

Independent Surrogate Variable Analysis (ISVA)

ISVA from Teschendorff et al. [24] is very similar in principle to SVA. The main difference is that instead of applying

singular value decomposition, it uses Independent Component Analysis (ICA) that attemps to find a set of latent

variables that are as statistically independent as possible.

FaST-LMM-EWASher (EWASher)

This method from Zou et al. [22] extends the Factored Spectrally Transformed Linear Mixed Model algorithm

(FaST-LMM) [40] for use in the context of EWAS. A similarity matrix is calculated based on the methylation

profiles, and principal components are subsequently included in the linear mixed model until the genomic inflation

factor is controlled. The maximum number of principal components allowed was fixed to 10.

Removing Unwanted Variation

The method called ”Removing unwanted variation (RUV)” was published in 2012 [26] by Gagnon-Bartsch and

Speed. It performs a factor analysis on negative control probes to separate out variation due to unmeasured

confounders, while leaving the variation due to the factors of interest intact. Here we use RUV-4, an extension to

the original published version, which uses elements from RUV as well as SVA [27]. Control probes were chosen from

a list of 500 probes on the 450K platform known to be differentially methylated with blood cell type and age [13].

We selected probes that were not strongly correlated with the simulated phenotype.

Deconfounding (Deconf)

The Deconfounding method from Repsilber et al. [25] was developed for gene expression studies on heterogeneous

tissue samples, but is applicable for use in EWAS. The algorithm performs a non-negative matrix factorization on

the methylation matrix, but does not consider the phenotype in correcting for the heterogeneity and does not

estimate the number of cell types present.

CellCDecon

CellCDecon was developed by Wagner [21], and is similar to Deconfounding in that it does not consider the

phenotype in performing its decomposition and does not internally estimate the number of cell types present. The

method assumes a specific regression parameterization, and makes random perturbations to the model parameters

which are accepted if there is a decrease in the sum squared residuals.

Figures
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Tables

Table 1: Fixed parameters in the simulation design

Parameter Description

S Number of CpGs chosen to be associated with phenotype in simulation

µk Mean of the cell-type-specific DMS effects for cell type k, over all S DMS

σk Standard deviation of cell-type-specific DMS effects for cell type k, over all S DMS

σjk Variability of individual deviations

α(0) = (α
(0)
1 , α

(0)
2 )> Expected proportion of the mixture from cell types 1 and 2 when the phenotype zi is zero.

α(Z) = (α
(Z)
1 , α

(Z)
2 )> Average cell type mixture proportions

for cell types 1 and 2 for subjects with phenotype level Z (continuous or binary)

ρ Precision of simulated cell mixture distributions. A greater value corresponds to more

clearly defined differences in cell type proportions with respect to the phenotype

Table 2: Parameter choices for the simulation scenarios. k = 1 corre-

sponds to monocytes, and k = 2 corresponds to CD4+ T-cells.

Simulation scenario (µ1, µ2) (σ1, σ2) σjk ρ α(0) α(1) − α(0)?

1: Distinct differences (-0.05, 0.5) (0.05, 0.75) Unif(0.1, 2) 100
[
0.57
0.43

] [
0.08
−0.08

]
2: No confounding (0.25, 0.25) (0.5, 0.5) 0.1 100

[
0.57
0.43

] [
0.08
−0.08

]
3: Opposite effects (-0.75, 0.75) (0.1, 0.1) 0.1 100

[
0.57
0.43

] [
0.08
−0.08

]
4: High precision (0.3, 0.1) (0.1, 0.1) 0.1 200

[
0.57
0.43

] [
0.08
−0.08

]
5: Low precision (0.3, 0.1) (0.1, 0.1) 0.1 10

[
0.57
0.43

] [
0.08
−0.08

]
6: Continuous phenotype (-0.05, 0.25) (0.05, 0.15) 0.1 100

[
0.57
0.43

] [
0.03
−0.03

]
?: Average change in cell type proportion for unit increase in phenotype

Table 3: Comparison of some features of the methods for cell type

mixture adjustment

Method Phen. allowed1 Input values2 K3 Link

Ref-based Any Beta N/A http://people.oregonstate.edu/~housemae/software/TutorialLondon2014

http://bioconductor.org/packages/release/bioc/html/minfi.html

Ref-free Any Beta Estimated http://cran.r-project.org/web/packages/RefFreeEWAS/index.html

SVA Any Beta or logit(Beta) Estimated http://bioconductor.org/packages/release/bioc/html/sva.html

ISVA Continuous Beta or logit(Beta) Estimated http://cran.r-project.org/web/packages/isva/index.html

EWASher Binary Beta Estimated http://research.microsoft.com/en-us/downloads/472fe637-7cb9-47d4-a0df-37118760ccd1

CCD Not used Beta Input https://github.com/jameswagner/CellCDecon

Deconf Not used Beta or logit(Beta) Input http://web.cbio.uct.ac.za/~renaud/CRAN

RUV Any Beta or logit(Beta) Estimated https://cran.r-project.org/web/packages/ruv/index.html

1 : What kinds of phenotype are allowed?

2 : Does the method use methylation proportions (Beta values)? Or logit transformed Beta values?

3 : Does the method estimate the number of latent cell types K, or is K input into the algorithm?
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Figure 1: Clustered heatmap showing patterns of methylation in 46

SARDs samples (columns) and 200 CpG sites (rows), where the sites

were selected to highlight the methylation differences between cell

types. Consequently, the samples cluster by cell type: Monocytes, B-

cells, then T-cells
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Figure 2: QQ-plots showing distributions of p-values in simulation Sce-

nario 1 where the true effects in the different cell types have very dis-

tinct distributions. Results are shown with no adjustment for cell type

mixture as well as with 8 other methods; these are split across two

panels to clarify the display
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Figure 3: QQ-plots of − log10 p-values from the ARCTIC study with

different adjustment methods.
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Figure 4: Computational time comparison by (a) sample size and (b)

latent dimension. In Panel (a), the latent dimension was estimated by

the algorithms as needed. In panel (b), the sample size is fixed at 50
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Table 4: Performance metrics under all simulation scenarios

(a) Scenario 1. Distinct associations between cell types

Method FDR Power KS1 GIF2 K̂3

Unadjusted 0.179 0.096 0.1679 1.60 -

Ref-based 0.021 0.094 0.0255 0.92 -

Ref-free 0.53 0.206 0.0965 1.33 13

SVA 0.054 0.07 0.0205 1.05 10

ISVA 0 0.078 0.0035 0.97 12

EWASher 0.071 0.026 0.0437 0.92 -

CellCDec 0.021 0.094 0.0084 0.98 -

Deconf 0.037 0.104 0.023 0.93 -

RUV 0.017 0.116 0.0184 1.04 43

(b) Scenario 2. No confounding

Method FDR Power KS GIF K̂

Unadjusted 0.0246 0.632 0.059 1.09 -

Ref-based 0.0171 0.572 0.0296 0.90 -

Ref-free 0.499 0.702 0.0581 1.25 14

SVA 0.120 0.628 0.0148 1.06 10

ISVA 0.551 0.654 0.0613 1.27 15

EWASher 0 0.122 0.0662 0.83 -

CellCDec 0.0126 0.626 0.0205 0.93 -

Deconf 0.0792 0.628 0.0313 0.92 -

RUV 0.229 0.624 0.0074 1.00 38

(c) Scenario 3. Opposite effects

Method FDR Power KS GIF K̂

Unadjusted 0 0.462 0.0408 0.97 -

Ref-based 0 0.484 0.0362 0.87 -

Ref-free 0.259 0.594 0.0531 1.19 14

SVA 0.0582 0.55 0.0034 1.00 10

ISVA 0.0521 0.546 0.0063 1.01 14

EWASher 0 0.108 0.0915 0.74 -

CellCDec 0.0083 0.48 0.0326 0.88 -

Deconf 0 0.492 0.0346 0.89 -

RUV 0.0194 0.504 0.0118 1.00 37

(d) Scenario 4. High precision

Method FDR Power KS GIF K̂

Unadjusted 0.524 0.594 0.1423 1.32 -

Ref-based 0.161 0.406 0.0432 1.04 -

Ref-free 0.564 0.698 0.1007 1.36 13

SVA 0.136 0.494 0.0318 1.09 11

ISVA 0.297 0.482 0.0618 1.20 14

EWASher 0.118 0.06 0.0383 0.94 -

CellCDec 0.0781 0.472 0.0312 1.05 -

Deconf 0.0927 0.47 0.0138 1.02 -

RUV 0.265 0.542 0.0508 1.15 32

(e) Scenario 5. Low precision

Method FDR Power KS GIF K̂

Unadjusted 0.141 0.586 0.241 1.47 -

Ref-based 0.456 0.636 0.1975 1.49 -

Ref-free 0.686 0.7 0.1453 1.48 12

SVA 0.201 0.614 0.0911 1.23 6

ISVA 0.0876 0.396 0.0404 1.12 11

EWASher 0 0.042 0.0299 0.92 -

CellCDec 0.243 0.552 0.0082 1.27 -

Deconf 0.249 0.62 0.2038 1.41 -

RUV 0.976 0.784 0.2282 1.93 33

(f) Scenario 6. Continuous

Method FDR Power KS GIF K̂

Unadjusted 0.163 0.514 0.081 1.37 -

Ref-based 0.010 0.44 0.031 0.99 -

Ref-free 0.160 0.6 0.0606 1.17 14

SVA 0.045 0.464 0.006 0.99 10

ISVA 0.166 0.494 0.076 1.21 14

CellCDec 0.590 0.406 0.079 1.44 -

Deconf4 - - - - -

RUV 0.023 0.518 0.006 0.966 39

1KS: Kolmogorov-Smirnov statistic; 2GIF : Genomic inflation factor; 3K̂ : Estimated latent dimension; 4 No results were obtained with K=3 in the allowable time on the computational cluster mammouth
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Table 5: Performance metrics for the ARCTIC data with the most

significant probes removed (top 5%). It was not possible to obtain

results for the CellCDec and Deconf methods.

Method KS Stat GIF K̂

Unadjusted 0.0758 0.9142 -

Ref-based 0.0508 0.9907 -

Ref-free 0.0296 1.1499 32

SVA 0.0362 1.0962 15

ISVA 0.1208 1.6820 39

EWASher 0.7291 1.0164 -

RUV - 3 components 0.0906 1.2423 -

Table 6: P-values for sites previously found to be associated with smok-

ing. [32]

Site Unadj Ref-Based Ref-free SVA ISVA EWASher1 RUV

cg06644428 2.83E-20 2.04E-21 1.96E-27 9.19E-27 4.41E-20 - 1.64E-22

cg05951221 2.72E-43 1.21E-45 5.41E-56 3.96E-58 3.20E-45 5.77E-01 1.05E-53

cg21566642 1.72E-49 6.93E-50 4.20E-54 6.59E-58 8.09E-54 6.45E-01 5.94E-58

cg01940273 2.09E-35 3.30E-38 4.07E-43 7.07E-46 6.93E-42 3.07E-01 1.45E-44

cg19859270 4.91E-13 2.52E-22 4.76E-35 2.21E-35 5.15E-28 - 2.16E-35

cg05575921 1.58E-35 7.79E-39 7.89E-52 5.65E-41 1.34E-40 - 3.43E-41

cg21161138 2.43E-07 2.99E-10 1.24E-25 1.68E-25 2.84E-21 9.05E-01 6.07E-21

cg06126421 1.78E-23 1.06E-33 7.38E-34 7.37E-33 9.69E-34 7.05E-01 2.55E-36

cg03636183 9.27E-21 6.74E-24 6.10E-37 1.51E-34 4.77E-30 3.09E-01 1.60E-31
1Several sites were filtered out by EWASher
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Supplement Figure 1. Histograms of simulated effect means µjk for

truly associated probes in Simulation Scenario 1
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Supplement Figure 2: QQ-plots showing distributions of p-values in

when there is no confounding (Simulation Scenario 2).
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Supplement Figure 3: QQ-plots showing distributions of p-values in

when there are opposite effects (Simulation Scenario 3).
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Supplement Figure 4: QQ-plots showing distributions of p-values in

when there is high precision (Simulation Scenario 4).
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Supplement Figure 5: QQ-plots showing distributions of p-values in

when there is low precision (Simulation Scenario 5).
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Supplement Figure 6: QQ-plots showing distributions of p-values for

continuous phenotypes (Simulation Scenario 6).
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