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Originality-Significance Statement 1 

We provide the first population genetic evidence that patterns of Streptomyces biogeography, 2 

which manifest in geographically explicit patterns of gene flow and a latitudinal gradient of 3 

nucleotide diversity, result from dispersal limitation and regional diversification due to drift. This 4 

contribution elucidates evolutionary processes that underlie patterns of microbial biogeography. 5 

 6 

Summary 7 

We examined the biogeography of Streptomyces at regional spatial scales to identify factors that 8 

govern patterns of microbial diversity. Streptomyces are spore forming filamentous bacteria which 9 

are widespread in soil. Streptomyces strains were isolated from perennial grass habitats sampled 10 

across a spatial scale of more than 6,000 km. Previous analysis of this geographically explicit 11 

culture collection provided evidence for a latitudinal diversity gradient in Streptomyces species. 12 

Here we evaluate the hypothesis that this latitudinal diversity gradient is a result of evolutionary 13 

dynamics associated with historical demographic processes. Historical demographic phenomena 14 

have genetic consequences that can be evaluated through analysis of population genetics. We 15 

applied population genetic approaches to analyze population structure in six of the most 16 

numerically abundant and geographically widespread Streptomyces phylogroups from our culture 17 

collection. Streptomyces population structure varied at regional spatial scales and allelic diversity 18 

correlated with geographic distance. In addition, allelic diversity and gene flow are partitioned by 19 

latitude. Finally, we found that nucleotide diversity within phylogroups is negatively correlated 20 

with latitude. These results indicate that phylogroup diversification is constrained by dispersal 21 

limitation at regional spatial scales and they are consistent with the hypothesis that historical 22 

demographic processes have influenced the contemporary biogeography of Streptomyces. 23 
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 24 

Introduction 25 

Patterns of microbial biogeography have been widely documented (Whitaker et al., 2003; Vos and 26 

Velicer, 2008; Bissett et al., 2010; Martiny et al., 2011; Gilbert et al., 2012; Hatosy et al., 2013), 27 

and yet we are only beginning to understand the evolutionary forces that generate and maintain 28 

these patterns. Explorations of biogeography are valuable because biogeographical patterns 29 

illustrate fundamental principles of evolution and ecology. Biogeographical patterns are ultimately 30 

governed by rates of dispersal and diversification (Martiny et al., 2006; Hanson et al., 2012). Since 31 

microbial dispersal cannot be observed directly, rates of dispersal are typically inferred from extant 32 

patterns of genetic diversity. It has been hypothesized that microbes disperse ubiquitously due to 33 

their small cell size and massive population numbers (Finaly, 2002; Finlay and Fenchel, 2004). 34 

Yet endemism and dispersal limitation have been observed for a range of microbes (Cho and 35 

Tiedge, 2000; Green and Bohannan, 2006; Telford et al., 2006; Boucher et al., 2011), and microbial 36 

dispersal limitation has been verified experimentally (Bell, 2010). Contradictory findings in the 37 

literature can be explained by at least two factors: first, dispersal constraints are likely to vary with 38 

respect to different species and habitats; and second, methods used to define units of diversity vary 39 

dramatically in their taxonomic and phylogenetic resolution. Each of these factors has been 40 

discussed previously (Hanson et al., 2012; Choudoir et al., 2012), and we will only consider them 41 

briefly here. 42 

 43 

Patterns of microbial dispersal and gene flow appear to differ between habitats and species. At one 44 

end of the spectrum, globally widespread microbes such as Prochlorococcus and Pelagibacter 45 

show little variation in gene content between the Atlantic and Pacific Oceans suggesting that 46 
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dispersal can homogenize genetic diversity in pelagic systems (Coleman and Chisholm, 2010). At 47 

the other end of the spectrum are extremophiles such as Sulfolobus and thermophilic 48 

Synechococcus, which live in island-like volcanic habitats and exhibit strong patterns of allopatric 49 

divergence resulting from dispersal limitation (Papke et al., 2003; Whitaker et al., 2003; Cadillo-50 

Quiroz et al., 2012). Terrestrial microbes fall somewhere between these extremes. For example, 51 

soil dwelling microbes such as Burkholderia pseudomallei, Burkholderia mallei, and Bacillus 52 

anthracis exhibit biogeographical patterns governed by dispersal limitation at regional spatial 53 

scales (Kenefic et al., 2009; Pearson et al., 2009).  54 

 55 

The phylogenetic resolution at which microbial diversity is defined can have a profound impact 56 

on our ability to discern patterns of microbial biogeography (as reviewed Hanson et al., 2012). 57 

Surveys of SSU rRNA genes in terrestrial habitats indicate that environmental variables including 58 

temperature (Fierer et al., 2009; Miller et al., 2009), pH (Fierer and Jackson, 2006; Lauber et al., 59 

2009; Rousk et al., 2010), and salinity (Lozupone and Knight, 2007) are more important than 60 

geographic distance or latitude in determining spatial patterns of microbial diversity. However, 61 

SSU rRNA gene sequences have an extremely low rate of nucleotide substitution (Ochman et al., 62 

1999), and microbes with similar or even identical SSU rRNA genes can have extensive genomic 63 

and ecological diversity (Welch et al., 2002; Jaspers and Overmann; 2004). Thus, this marker has 64 

low sensitivity for detecting neutral processes that drive patterns of biogeography, such as dispersal 65 

limitation and genetic drift (Green and Bohannan, 2006; Hanson et al., 2012). However, these 66 

neutral processes are readily explored using geographically and ecologically explicit culture 67 

collections characterized at high genetic resolution. 68 

  69 
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Streptomyces are ubiquitous across soil habitats, and many species are easily cultured, making this 70 

genus an excellent candidate for making a taxon-specific survey of biogeography. Furthermore, 71 

Streptomyces species have high rates of gene exchange both within and between species 72 

(Doroghazi and Buckley, 2010). Hence, this genus is an ideal model to explore dispersal limitations 73 

and gene flow in terrestrial systems. Streptomyces are gram-positive Actinobacteria (Kâmpfer, 74 

2006) known for their complex developmental cycle, which entails filamentous growth and the 75 

formation of desiccation resistant spores which are readily dispersed (Keiser et al., 2000). 76 

Streptomyces play a significant role in the terrestrial carbon cycle (McCarthy and Williams, 1992; 77 

Takasuka et al., 2013), represent important agricultural pathogens (Loria et al., 2006; Labeda, 78 

2011), and are prolific producers of antibiotics (Watve et al., 2001). Despite their importance, we 79 

lack an evolutionary framework to understand Streptomyces biogeography.  80 

 81 

Streptomyces diversity varies spatially, though the influence of geographic distance and ecological 82 

variation remains poorly resolved. Ecological adaptation constrains the environmental distribution 83 

of Streptomyces and their genetic and phenotypic diversity can vary in relation to soil 84 

characteristics at small spatial scale (1 m – 60 m) in prairie soils (Davelos et al., 2004a and 2004b), 85 

and in dune habitats (Antony-Babu et al., 2008). There is also evidence for dispersal limitation at 86 

very large (continental) spatial scales with endemic species observed in North America and Central 87 

Asia (Wawrik et al., 2007). Remarkably, genetic analysis of Streptomyces pratensis has revealed 88 

that strains of this species are in linkage equilibrium (i.e. random association of alleles at different 89 

loci) across a range that spans 1,000 km (Doroghazi and Buckley, 2010 and 2014). One 90 

interpretation of this finding is that Streptomyces are subject to widespread dispersal and unlimited 91 

gene flow at regional spatial scales. However, linkage equilibrium can also be observed for 92 
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dispersal limited species that have undergone a recent historical demographic range expansion 93 

(Doroghazi and Buckley, 2010 and 2014). Demographic range expansion has previously been 94 

implicated as a factor that can explain ancestral patterns of gene exchange in Streptomyces clades 95 

(Andam et al., 2016a). Combined, these data suggest a role for both adaptive and neutral processes 96 

in governing the diversity and biogeography of Streptomyces, but the evolutionary interpretation 97 

of these data depends on the degree to which dispersal limitation drives patterns of diversity in 98 

Streptomyces.  99 

 100 

We evaluated Streptomyces biogeography to explore the ecological and evolutionary forces that 101 

govern diversification within this genus.  The most powerful approach for detecting evolutionary 102 

patterns that result from dispersal limitation is to examine taxon-specific biogeography patterns 103 

across ecologically similar sites. This approach controls for the effects of selection and provides a 104 

powerful test of neutral evolutionary processes (Hanson et al., 2012). We constructed a taxon-105 

specific isolate collection of Streptomyces found in ecologically similar grassland sites spanning 106 

the United States of America. In a study of Streptomyces species-level diversity, which evaluated 107 

polymorphism at a single locus (rpoB), we observed evidence for dispersal limitation manifesting 108 

in a latitudinal diversity gradient (Andam et al., 2016b). The latitudinal diversity gradient is one 109 

of the earliest and most well documented patterns of biogeography (Wallace, 1878; Hillebrand, 110 

2004), but it is essentially undocumented in terrestrial bacterial systems. We hypothesize that 111 

historical demographic phenomena associated with Pleistocene glaciation generated the latitudinal 112 

gradient of Streptomyces species diversity (Andam et al., 2016b). This hypothesis predicts that 113 

dispersal and gene flow will be limited and discontinuous across latitudes which correspond to the 114 

maximal extent of historical glaciation. The hypothesis also predicts that intra-species diversity 115 
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will vary with latitude as a consequence of limited time for diversification in northern latitudes. 116 

These hypotheses are best addressed using population genetic approaches. Here we test these 117 

specific predictions by using multilocus sequence analysis (MLSA) to characterize population-118 

level patterns of gene flow and genetic diversity within six phylogroups of Streptomyces which are 119 

distributed widely across the United States. 120 

 121 

Results 122 

Characterization of Streptomyces phylogroups 123 

We identified a total of 308 isolates representing the six targeted phylogroups, and these isolates 124 

spanned 13 sites (Table 1). Strains within phylogroups share 99.4-100% SSU rRNA gene sequence 125 

identity, and all strains share greater than 97% nucleotide identity in their SSU rRNA gene 126 

sequences (Figure S1). Strains within phylogroups also share 97.6%-99.5% average nucleotide 127 

identity (ANI) across concatenated MLSA loci, and all strains share greater than 88% ANI (Figure 128 

1, Table 2). The pattern of genetic ancestry as determined by population structure analysis (see 129 

Structure analysis, Experimental Procedures) is congruent with phylogroup boundaries (Figure 130 

S2), and this indicates that these phylogroups approximate biological populations. We observed 131 

122 unique MLSA haplotypes, with each phylogroup represented by 13-26 haplotypes (Figure 1, 132 

Table 2). Good’s coverage for each of the six phylogroups ranges from 0.88-1.0 for individual loci 133 

and 0.94-1.0 for concatenated MLSA loci clustered at 99% nucleotide identity (Table S1). Hence, 134 

allelic diversity and nucleotide diversity are well sampled (Table S1), though unique haplotypes 135 

remain under sampled (Figure S3). The per site nucleotide diversity (π) of each phylogroup ranges 136 

from 0.0026 to 0.011 (Table 2).  137 

 138 
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Four of the phylogroups do not match any Streptomyces species described in PubMLST (less than 139 

97% ANI across MLSA loci, Figure S4A) (Jolley et al., 2004). While the other two, phylogroups 140 

WA1063 and MS152 belong to the S. griseus species cluster (Rong and Huang, 2010). Isolates in 141 

phylogroup WA1063 share greater than 99% MLSA identity with S. anulatus and S. praecox and 142 

form a monophyletic clade with these type strains (Figure S4A). Isolates in phylogroup MS152 143 

share greater than 98% MLSA identity with S. mediolani, S. albovinaceus, and S. griseinus and 144 

form a paraphyletic clade that includes these type strains (Figure S4A).   145 

 146 

We find evidence of horizontal gene transfer consistent with previous observations of Streptomyces 147 

species (Doroghazi and Buckley, 2010; Andam et al., 2016a). There is significant phylogenetic 148 

incongruence between MLSA loci (Figure S4, Table S2), suggesting that inter-species horizontal 149 

gene transfer has shaped the phylogeny of these groups. The six phylogroups exhibit evidence of 150 

population structure with each phylogroup composed of 3.2 ± 0.8 (mean ± s.d.) subpopulations 151 

and with evidence for admixture (Figure 1). Evidence of admixture suggests horizontal gene 152 

transfer within phylogroups and is consistent with previous evidence of gene exchange in 153 

Streptomyces (Doroghazi and Buckley, 2010). Evidence of recombination within phylogroups 154 

MAN196, MS200, MS152, and F34 (PHI test, p < 0.05, Table 2) further supports the conclusion 155 

of gene exchange within populations. Furthermore, the standard index of association (IA) is 0.09 156 

for MAN125 suggesting a freely recombining population in linkage equilibrium (Table 2). In 157 

addition, phylogroups WA1063 and MS152 share two identical atpD alleles (Figure S4B), but it is 158 

not clear whether these alleles are shared as a result of contemporary horizontal gene transfer or 159 

vertical inheritance from the most recent common ancestor of the two clades. The latter 160 

explanation is more parsimonious given the low level of polymorphism between phylogroups 161 
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WA1063 and MS152. We do not observe evidence of inter-group horizontal gene transfer between 162 

these six phylogroups. 163 

 164 

Evidence for dispersal limitation  165 

Strains of the six phylogroups were obtained from soil samples from 13 sites of diverse geographic 166 

origin (Table 1). Each phylogroup was detected in 4.2 ± 0.4 sites, and this distribution differs 167 

significantly from expectations for a random distribution of strains across sites (permutation test, 168 

p < 0.0005), thereby rejecting the hypothesis of panmixia (i.e. the ability of organisms to move 169 

freely across habitats). Each phylogroup subpopulation was observed in 2.2 ± 0.9 sites (mean ± 170 

s.d.), and this value is lower than expected if subpopulations are randomly distributed across the 171 

sites occupied by each phylogroup (permutation test, p < 0.001). These results indicate that 172 

phylogroup distribution is constrained geographically and that phylogroups have subpopulation 173 

structure that is also geographically explicit. 174 

 175 

The geographic distribution of Streptomyces alleles indicates dispersal limitation. Identical alleles 176 

are shared among phylogroup members across each phylogroup’s geographic range, which can 177 

exceed 5,000 km (Figure 2, Table 1). However, dissimilarity in allele composition increases with 178 

geographic distance, and this result is significant (Bray-Curtis dissimilarity, Mantel r = 0.29, p = 179 

0.005) (Figure S5). Hence, alleles are more likely shared between geographically similar sites 180 

indicating dispersal limitation with potential for long range dispersal. This result is significant for 181 

all individual loci except recA (Bray-Curtis dissimilarity, aptD Mantel r = 0.31, p = 0.004; gyrB r 182 

= 0.22, p = 0.031; recA r = 0.16, p = 0.088; rpoB r = 0.27, p = 0.004; trpB r = 0.19, p = 0.047). In 183 

addition, all MLSA haplotypes (Figure 1, Figure 3) are unique to a single site, with the sole 184 
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exception being a haplotype from phylogroup MS200 which is observed in both MS and WI (Sun 185 

Prairie).  186 

 187 

Analysis of haplotype distribution is consistent with diversification due to dispersal limitation. We 188 

used nested clade analysis (NCA) combined with a rigorous statistical framework to evaluate 189 

population structure and demography (see Experimental Procedures). NCA establishes significant 190 

phylogeographic inferences for phylogroups MAN196, MAN125, WA1063, and MS152 (Figure 191 

3) but not for MS200 and F34. Nested clade phylogeographic inference postulates potential 192 

evolutionary and historical demographic processes that support extant patterns of diversity and 193 

biogeography (see legend of Figure 3). For instance, population subdivision of MAN125 across 194 

the Pacific Northwest (Figure 3A) and MAN196 between Maine and the Pacific Northwest (Figure 195 

3B) is consistent with restricted gene flow due to historical long distance dispersal events. 196 

Likewise, population subdivision of MS152 and between the Southeast (MS and FL) and CA 197 

(Figure 3C) and WA1063 between WI (Brookfield) and OR (Figure 3D) is consistent with 198 

allopatric fragmentation.  199 

 200 

Latitudinal diversity gradient  201 

The distribution and diversity of the phylogroups reveals a latitudinal diversity gradient. Strains 202 

from MAN125, MAN196, WA1063 occur mostly north of 40°N latitude, while strains from 203 

MS200, MS152, F34 occur mostly south of this latitude (Table 1, Figure 2). This pattern of 204 

North/South partitioning is significant for each phylogroup when evaluated against the expectation 205 

of a random distribution across sites (permutation test, p < 0.01 for each phylogroup after 206 

Bonferroni correction). Furthermore, partial Mantel tests were performed to evaluate the latitudinal 207 
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and longitudinal vector components of geographic distance in relation to the allele composition of 208 

sites. There remains a significant relationship between allele composition and geographic distance 209 

when we control for longitude, (Mantel r = 0.23, p = 0.022), but this relationship is no longer 210 

significant when we control for latitude (Mantel r = 0.15, p = 0.12). This result indicates that allele 211 

composition changes more across latitude than it does across longitude. The latitudinal partitioning 212 

of alleles can be readily observed in the pattern of allele sharing between sites (Figure 2). Finally, 213 

we also observed a significant relationship between per site nucleotide diversity of phylogroup 214 

MLSA loci and the average latitude of sites in which they are found (R = -0.91, p = 0.012; Figure 215 

4). This result indicates phylogroups recovered from lower latitudes have higher genetic diversity 216 

than those recovered from higher latitudes.  217 

 218 

Discussion 219 

We used population genetic approaches to analyze spatial patterns of genetic diversity for six 220 

Streptomyces phylogroups isolated from geographically disparate but ecologically similar sites 221 

across the United States (Table 1). The distribution of phylogroups is nonrandom and likely 222 

dispersal limited (Figure S5) with phylogroups inhabiting geographic ranges defined by latitude 223 

(Table 1, Figure 2). In addition, the genetic diversity of phylogroups is negatively correlated to the 224 

latitude from which they were isolated (Figure 4). These findings suggest that there are latitudinal 225 

barriers to dispersal, and that patterns of Streptomyces biogeography result from dispersal 226 

limitation and regional diversification due to genetic drift. Furthermore, these results are consistent 227 

with the hypothesis that historical demographic processes have influenced the contemporary 228 

biogeography of Streptomyces. 229 

 230 
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The phylogroups we describe are coherent phylogenetic groups that approximate biological 231 

populations (Figure S2). The members of each phylogroup share a distinguishable geographic 232 

range (Table 1, Figure 2), a recent common ancestor (Figure 1), and greater than 97% ANI across 233 

MLSA loci (Table 2). Despite geographic and genetic subpopulation structure (Figure 1), 234 

phylogroup members frequently share identical alleles across demes. It is worth noting that since 235 

all of the strains examined share > 97% SSU rRNA gene identity, these geographic patterns would 236 

not be detected using standard SSU rRNA analyses methods (Figure S1). We infer the presence of 237 

recombination within all phylogroups using both nucleotide polymorphism and phylogenetic 238 

methods (Table 2, Table S2).  239 

 240 

Regional patterns of biogeography among phylogroups are consistent with limitations to dispersal 241 

and gene flow. Allopatric processes like genetic drift can drive diversification between populations 242 

that are geographically isolated. The geographic distribution of our phylogroups is nonrandom, 243 

and we find regional subpopulation structure within phylogroups (Figure 1, Figure 3). Although 244 

we find identical alleles in sites thousands of kilometers apart (Figure 2, Figure S4), MLSA 245 

haplotypes are not shared across sites (with the single exception of a haplotype shared between 246 

MS and WI) (Figure 3). We also observe a significant distance decay relationship for MLSA allele 247 

composition and geographic distance between sites (Figure S5). Distance decay relationships 248 

driven by neutral processes can be challenging to identify given that environmental variables are 249 

often spatially structured (Nekola and White, 1999). However, Andam et al. (2016b) shows that 250 

Streptomyces community phylogenetic diversity across sites correlates significantly with latitude 251 

and temperature but not with soil pH, soil organic matter, or rainfall. Hence, it is unlikely that these 252 

coarse environmental variables determine regional population structure. This data implies that 253 
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while gene flow is moderate across the geographic range of a phylogroup, dispersal limitation and 254 

genetic drift create appreciable regional population structure.  255 

 256 

Streptomyces phylogroup diversity is consistent with a latitudinal diversity gradient. While the 257 

classical description of a latitudinal diversity gradient defines diversity at the level of species 258 

richness, these diversity gradients are also apparent at the level of intra-species genetic diversity 259 

(Hadly, 2013). We find that latitude is a significant predictor of gene flow (Figure 2). Furthermore, 260 

intra-phylogroup nucleotide diversity has a significant negative relationship with average latitude 261 

(Figure 4), which is congruous with the latitudinal diversity gradient observed for diverse 262 

macroorganisms (Hadly, 2013; Hillebrand, 2004). There is conflicting evidence for latitudinal 263 

diversity gradients among microorganisms. Evidence for microbial latitudinal diversity gradients 264 

comes from marine systems (Fuhrman et al., 2008; Sul et al., 2013; Swan et al., 2013), with 265 

contrary evidence obtained in terrestrial systems (Neufeld and Mohn, 2005; Chu et al., 2010). 266 

However, most analyses of terrestrial bacterial biogeography are derived from analyses of SSU 267 

rRNA genes, and we show that analyses of SSU rRNA genes lack the sensitivity needed to detect 268 

the biogeographic patterns that we observe for Streptomyces (Figure S1). 269 

 270 

Several hypotheses have been advanced to explain the formation of latitudinal diversity gradients 271 

(Wiens and Donoghue, 2004; Mittelbach et al., 2007). Ecological hypotheses posit that factors 272 

such as carrying capacity, productivity, and niche availability vary across latitude and that these 273 

factors impose constraints on biodiversity (Currie et al., 2004; Mouchet et al., 2015). Evolutionary 274 

hypotheses invoke the positive relationship between temperature and the kinetics of metabolism 275 

to predict that evolutionary rates and cladogenesis correspond with temperature (Allen et al., 276 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2016. ; https://doi.org/10.1101/032169doi: bioRxiv preprint 

https://doi.org/10.1101/032169


	  
	  

14	  

2002). Historical hypotheses propose that the latitudinal diversity gradient is the product of 277 

historical geological, ecological, or demographic events that have influenced dispersal and 278 

diversification (Wiens and Donoghue, 2004; Stevens, 2006). For example, the influence of 279 

Pleistocene glacial events on the biogeography of diverse species of terrestrial and aquatic plants 280 

and animals is well documented, with postglacial range expansion giving rise to the latitudinal 281 

partitioning of populations and species, and resulting in decreased molecular variation of northern 282 

lineages relative to southern ancestral lineages (Soltis et al., 1997; Bernatch and Wilson, 1998; 283 

Conroy and Cook, 2000; Milá et al., 2006; Maggs et al., 2008; Wilson and Veraguth, 2010). There 284 

is also evidence that Pleistocene glaciation events have impacted both microbial communities 285 

(Eisenlord et al., 2012) and populations (Kenefic et al., 2009; Mikheyev et al., 2008). 286 

 287 

The biogeography of our Streptomyces phylogroups is consistent with the hypothesis that historical 288 

demography and dispersal limitation have produced the latitudinal diversity gradient that we 289 

observe. For instance, MAN125 is nearly in linkage equilibrium (IA = 0.09) though its members 290 

span a geographic range of over 2,000 km across the Pacific Northwest. Similar patterns of 291 

recombination have also been observed in a S. pratensis population which spanned 1,000 km 292 

across sites present in North Carolina and northern New York (Doroghazi and Buckley, 2010 and 293 

2014). The observation of linkage equilibrium indicates that either the population lacks 294 

contemporary barriers to gene flow or the population has experienced a recent historical 295 

demographic expansion. Coupled with evidence of limitations to gene flow at regional scales 296 

(Figure 2, Figure S5), the most parsimonious explanation for these conflicting observations is a 297 

recent historical demographic range expansion. Conversely, latitudinal gradients in marine 298 

bacterial diversity have been attributed to correlations between temperature and the kinetics of 299 
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metabolism (Fuhrman et al., 2008). This kinetic effect has been hypothesized to increase 300 

evolutionary tempo and speciation rates in tropical latitudes and would be expected to generate 301 

latitudinal gradients of both species diversity and nucleotide diversity (Allen et al., 2002). Since 302 

latitude is correlated with temperature, we cannot completely dismiss the influence of kinetics as 303 

a cause of the intra-group latitudinal gradient of genetic diversity in terrestrial Streptomyces. 304 

However, the kinetic effects of temperature cannot account for partitioning of gene flow across 305 

latitude, while in contrast, this is a specific prediction of the historical demography hypothesis. It 306 

is possible, however, that unappreciated ecological variables, such as the species composition of 307 

perennial grass communities, could shape the diversity gradient. Ultimately, it is likely that 308 

latitudinal diversity gradients can arise from a combination of ecological, evolutionary, and 309 

historical processes that vary in their relative influence with respect to different species and 310 

different habitats. 311 

 312 

Evidence for a latitudinal diversity gradient coupled with evidence of contemporary dispersal 313 

limitation following historical demographic expansion, while not conclusive, suggests that 314 

phylogenetic niche conservatism has contributed to the formation of the Streptomyces latitudinal 315 

diversity gradient. Phylogenetic niche conservatism can cause diversity gradients when 316 

contemporary species distributions are determined by historical climate regimes (Wiens and 317 

Donoghue, 2004; Stevens, 2006). Climactic regimes oscillate widely across geologic time scales 318 

and these historical changes in climate produce demographic phenomena that impact the 319 

evolutionary dynamics of species. In particular, the genetic consequences of glaciation events are 320 

described in depth by Hewitt (1996, 2000, and 2004). The population structure we observe in our 321 

Streptomyces phylogroups is consistent with the effects of post-glacial demographic range 322 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2016. ; https://doi.org/10.1101/032169doi: bioRxiv preprint 

https://doi.org/10.1101/032169


	  
	  

16	  

expansion followed by dispersal limitation and regional diversification. Dispersal limitation may 323 

occur following range expansion as a result of density dependent blocking or by adaptive barriers 324 

that arise after the colonization of new habitat. One of the expectations of post-glacial expansion 325 

is “southern richness versus northern purity” (Hewitt, 2004). This is evident in the negative 326 

correlation we observe between latitude and the nucleotide diversity of phylogroups (Figure 4). 327 

Similar relationships between intraspecific nucleotide diversity and average latitude as result of 328 

post-glacial colonization are evident in other systems (Bernatchez and Wilson, 1998). Williams et 329 

al. (1998) justifies 40˚N latitude as approximating late Pleistocene glacial and non-glacial regions 330 

with respect to species distributions in North America. Hence, the latitudinal delineation of allele 331 

distributions for Streptomyces phylogroups roughly corresponds to the extent of ice coverage 332 

during the late Pleistocene (Figure 2), which suggests historical population expansion from lower 333 

to higher latitudes.  334 

 335 

Haplotype distributions of phylogroups MAN125, MAN196, WA1063, and MS152 are consistent 336 

with allopatric diversification resulting from dispersal limitation (Figure 3). Haplotype nested 337 

clade analysis (NCA) predicts that historical dispersal events and range expansion across northern 338 

regions resulted in limits on dispersal during intermediate timescales, allowing genetic drift to 339 

create the phylogroup population structures observed today. There is moderate criticism of NCA 340 

(Knowles and Maddison, 2002; Nielsen and Beumont, 2009) due to the subjective nature of 341 

inferring historical processes and the wide potential for stochastic processes creating similar 342 

patterns of biogeography. Yet these tools can provide useful hypotheses. Northern phylogroups 343 

MAN125 and MAN196 share a common ancestor with southern phylogroups MS200 and F34 344 

(Figure 1). The contemporary population structure of MAN125 and MAN196 is consistent with a 345 
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historical range expansion from a common ancestor shared by both clades (Figure 1, Figure 3). 346 

Further population structure within each phylogroup likely resulted from barriers to gene flow and 347 

historical dispersal events across the Pacific Northwest for MAN125 (Figure 3A) and between 348 

Maine and the Pacific Northwest for MAN196 (Figure 3B). Analysis of haplotype distribution 349 

within WA1063 and MS152 is also consistent with diversification of populations as a result of 350 

gene flow limitation between the Midwest and Pacific Northwest for WA1063 (Figure 3D) and 351 

between the Southeast and West for MS152 (Figure 3C).  352 

 353 

Phylogroups WA1063 and MS152 share a recent common ancestor (Figure 1, Figure S2) and also 354 

share two identical alleles at the atpD locus (Figure S4B). These phylogroups have distinct, non-355 

overlapping geographic ranges with WA1063 found in higher latitudes and MS152 in lower 356 

latitudes (Table 1, Figure 2). WA1063 and MS152 have 0.0205 net nucleotide substitutions per 357 

site across concatenated MLSA loci. We evaluate the possible time range for divergence between 358 

WA1063 and MS152 by extrapolating very roughly from the nucleotide substitution rate (µ = 359 

4.5x10-9) and generation time (100-300 generations per year) for E. coli (Ochman et al., 1999), 360 

since corresponding values are not available for Streptomyces or their relatives. Based upon these 361 

gross approximations, we would estimate that WA1063 and MS152 diverged 15,000-50,000 years 362 

ago, corresponding to events in the late Pleistocene (Clayton et al., 2006). Hence, it is likely that 363 

the identical atpD alleles found in both WA1063 and MS152 were inherited from a shared 364 

ancestral population (Figure S3B) as opposed to inheritance from contemporary gene exchange.  365 

 366 

Through population genetic analysis of six Streptomyces phylogroups, we find evidence for 367 

dispersal limitation associated with geographically explicit patterns of gene flow which manifest 368 
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in a latitudinal gradient of nucleotide diversity. Furthermore, these data support the hypothesis that 369 

historical demographic processes influence the contemporary biogeography of Streptomyces. Due 370 

to their spore forming capabilities and potential for long range dispersal, Streptomyces are an ideal 371 

system for assessing limits on gene flow among terrestrial bacteria. Future research should seek to 372 

determine the degree to which dispersal limitation is due to limits on spore mobility, density 373 

dependent blocking, or a result of adaptive constraints relating to phylogenetic niche conservatism. 374 

A better understanding of Streptomyces biogeography and the evolutionary forces that govern 375 

Streptomyces diversification may ultimately assist in the discovery of novel genetic diversity and 376 

possibly novel antibiotics within this genus.  377 

 378 

Experimental Procedures 379 

Strain isolation and DNA extraction 380 

We previously assembled a culture collection of more than 1,000 Streptomyces from 15 sites across 381 

the United States with soil sampled at 0-5 cm depth (Andam et al., 2016b). Sites were selected to 382 

represent a narrow range of ecological characteristics including meadow, pasture, or native 383 

grasslands dominated by perennial grasses and having moderately acidic soil (pH: 6.0 ± 1.0; ave. 384 

± s.d.). Strains were isolated using uniform conditions and this will select for strains having similar 385 

physiological characteristics. The analysis of physiologically similar strains from ecologically 386 

similar sites improves our ability to detect biogeographical patterns that result from drift by 387 

minimizing the importance of selection (as reviewed by Hanson et al., 2012).  Soil was air dried, 388 

and Streptomyces strains were isolated on glycerol-arginine agar plates of pH 8.7 containing 389 

cycloheximide and Rose Bengal (El-Nakeeb and Lechevalier, 1963; Ottow, 1972) as previously 390 

described (Doroghazi and Buckley, 2010). Genomic DNA was extracted for each isolate from 391 
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purified cultures, which were grown by shaking at 30˚C in liquid yeast extract-malt extract medium 392 

(YEME) containing 0.5% glycine (Kieser et al., 2000), by using a standard 393 

phenol/chloroform/isoamyl alcohol protocol (Roberts and Crawford, 2000).  394 

 395 

The gene encoding the RNA polymerase beta-subunit (rpoB) provides a robust, advantageous 396 

alternative to the SSU rRNA locus for phylogenetic analyses of the genera Streptomyces (Kim et 397 

al., 2004). We previously assessed genetic diversity of our culture collection using partial rpoB 398 

sequences clustered at 0.01 patristic distances with RAMI (Pommier et al., 2009), and using this 399 

approach we identified 107 species-like phylogenetic clusters, or phylogroups (Andam et al., 400 

2016b). We selected six of these phylogroups for further analysis. These six phylogroups had the 401 

highest numerical abundance and widest geographical distribution in our isolate collection, 402 

representing 308 strains isolated across 13 sites (and representing 308 of the 755 strains isolated 403 

from these 13 sites). MLSA was performed on 17-47 isolates from each phylogroup. Phylogroup 404 

names are capitalized and based on a representative isolate; for example, phylogroup WA1063 is 405 

named for Streptomyces sp. wa1063. Isolates are identified with a lowercase letter code indicating 406 

site of origin followed by a strain number; for example, isolate wa1063 is strain 1063 isolated from 407 

Washington (WA) state.  408 

  409 

Multilocus sequence analysis (MLSA)  410 

We adapted the MLSA scheme developed for Streptomyces by Guo et al. (2008), which targets the 411 

five housekeeping loci atpD, gyrB, recA, rpoB, and trpB as described in Doroghazi and Buckley 412 

(2010) (Table S3). The V2 and V2 regions of SSU rRNA sequences were amplified using universal 413 

primers 8F and 1492R (Table S3). Reactions for Sanger sequencing were performed using forward 414 
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primers for all loci except rpoB, for which the reverse primer was used. Trace files were uniformly 415 

screened using CAP3 (Huang and Madan, 1999), and sequences were trimmed as to discard 416 

nucleobases with a Phred quality score below 23. Sequences were aligned using MUSCLE (Edgar, 417 

2004), trimmed to 431 bp, 415 bp, 446 bp, 557 bp, and 489 bp, for genes atpD, gyrB, recA, rpoB, 418 

trpB, respectively, and concatenated consistently with the genomic order in Streptomyces 419 

coelicolor A3(2). SSU rRNA sequences were trimmed to 357 bp, creating an alignment spanning 420 

the V1 and V2 regions. Gene sequences are available on GenBank with accession numbers 421 

KX110408-KA111380.   422 

  423 

Good’s coverage estimation and haplotype rarefaction was determined using mothur (Schloss et 424 

al., 2009). DNA polymorphism statistics including, number of segregating sites, nucleotide 425 

diversity, and Tajima’s D, were determined with DnaSP v5 (Librado and Rozas, 2009) and LDhat 426 

(McVean et al., 2002). Population scaled mutation rates (Watterson's theta; θw= 2Neµ), 427 

recombination or gene conversion rates (ρ=2Ner/2), and relative rates of recombination (ρ/θw) were 428 

estimated using LDhat (McVean et al., 2002) and are expressed per nucleotide site. The standard 429 

index of association (IA) was calculated from allelic data with LIAN v3.5 (Haubold and Hudson, 430 

2000) using the Monte-Carlo test and 100 iterations. The pairwise homoplasy index (PHI) statistic 431 

was determined using PhiPack (Bruen et al., 2006), and statistical significance was evaluated 432 

under a null hypothesis of no recombination. Sequence identity across phylogroups was calculated 433 

with mothur (Shloss et al., 2009)      434 

 435 

Phylogenetic reconstruction 436 

Maximum likelihood (ML) trees were constructed from the nucleotide sequences of individual and 437 
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concatenated MLSA loci using the generalized time reversible nucleotide substitution model 438 

(Tavaré, 1986) with gamma distributed rate heterogeneity among sites (GTRGAMMA) supported 439 

in RAxML v7.3.0 (Stamatakis, 2006). Bootstrap support was determined for the highest-scoring 440 

ML tree of 20 iterations, and the number of bootstrap replicates was determined using the extended 441 

majority rule (autoMRE) convergence criteria (Pattengale et al., 2010). Root placement is defined 442 

by Mycobacterium smegmatis. Significant phylogenetic incongruence between loci was 443 

determined using the Shimodaira-Hasegawa test (Shimodaira and Hasegawa, 1999) implemented 444 

in the R package phangorn (Schliep, 2011).        445 

 446 

Population structure 447 

Concatenated MLSA sequences were analyzed using Structure v2.3.3 (Pritchard et al., 2000) to 448 

examine population affiliation, subdivision, and admixture within and between phylogroups. 449 

Structure was run using an admixture model with a burn-in length of 1.0E6 and 3.0E6 replicates. 450 

The most probable number of sub-populations (k) was evaluated with 10 independent runs and 451 

chosen using the Evanno method (Evanno et al., 2005), with k = 1 through k = 6 within 452 

phylogroups and through k = 8 between phylogroups, implemented by Structure Harvester (Earl 453 

and vonHoldt, 2012). After choosing the most probable k-value, the program Clumpp was used to 454 

permute outputs of the independent runs (Jakobsson and Rosenberg, 2007).  455 

  456 

Patterns of dispersal and gene flow 457 

We used permutation tests to evaluate whether phylogroup distribution across sites could be 458 

explained by panmixia. We compared the observed distributions to those expected under a random 459 

distribution model using 1,000 permutations to assess significance. The null model for the 460 
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permutation test assigned strains to sites as a random draw without replacement from the OTU 461 

table while holding the number of strains sampled at each site to be invariant. In addition, 462 

correlations between geographic distance and allele composition between sites were assessed using 463 

Mantel and partial Mantel tests (Mantel, 1967; Smouse et al., 1986). These tests were performed 464 

with the R package ecodist (Goslee and Urban, 2007) using the Pearson correlation method and 465 

1,000 permutations. Bray-Curtis dissimilarity was calculated from allele composition across sites.         466 

  467 

Haplotype networks were created using a statistical parsimony procedure (Templeton et al., 1987; 468 

Templeton et al., 1995) implemented in TCS v1.18 (Clement et al., 2000). Nested clade 469 

information was used to infer processes that could explain the geographic and genetic distribution 470 

of sequences using the program GeoDis v2.2 (Posada et al., 2000). Both TCS v1.18 and GeoDis 471 

v2.2 were performed in ANeCA (Panchal, 2007). 472 
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Table and Figure Legends  

 
Table 1. A total of 755 Streptomyces strains were isolated from 13 sites, and 308 of these strains 
were found to represent the six targeted phylogroups. The numbers of isolates per site that 
belonged to each of our target phylogroups is indicated. Isolate names begin with a letter code 
referring to the sample site.  
 

Site Code Latitude Longitude Altitude Isolates/
Site 

Isolates from Streptomyces sp. phylogroup 
MAN
125 

MAN
196 

WA 
1063 

MS
200 

MS
152 F34 

Manley Hot 
Springs, AK man 63.87˚N -149.02˚W 452 m 95 51 26 1    

Denali     
Hwy, AK den 63.22˚N -147.68˚W 894 m 40 40      

Bothell, WA wa 47.73˚N -122.24˚W 132 m 105 21 5 21    
Astoria, OR or 46.18˚N -123.85˚W 40 m 79  8 7    
Kennebunk, 

ME me 43.4˚N -70.54˚W 28 m 85  13     

Sun Prairie, 
WI sun 43.17˚N -89.24˚W 289 m 65 3   3   

Brookfield, 
WI b 43.06˚N -88.13˚W 277 m 22   5    

Palo Alto, 
CA st 37.43˚N -122.17˚W 24 m 34     2 1 

Greensboro, 
NC gb 36.09˚N -79.89˚W 276 m 9  1   2  

Troy, NC uw 35.71˚N -79.88˚W 194 m 19  4  7   
Starkville, 

MS ms 33.46˚N -88.8˚W 119 m 90    11 8 2 

Austin, TX t 30.2˚N -97.77˚W 199 m 42      6 
Fort Pierce, 

FL f 27.54˚N -80.35˚W 0 m 70    7 5 48 

Total     755 115 57 34 28 17 57 
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Table 2. MLSA was performed on a total of 17-47 strains from each phylogroup. Summary 
statistics for concatenated MLSA nucleotide sequences were determined as described in methods. 
Phylogroup average latitude (Ave Lat) was determined using the total number of isolates per 
phylogroup provided in Table 1. The standard index of association is zero for a population in 
linkage equilibrium. 
 

Phylo-
group Ave Lat n Haplo-

types 
Min 
ANI S π Tajima’s 

D θW ρ ρ/θW IA ΦW 

MAN125 60.15˚N 45 25 99.5 23 0.0026 0.53 0.0023 0.0094 4.18 0.09 2.95E-01 
MAN196 52.84˚N 47 26 98.5 65 0.0075 0.67 0.0063 0.00043 0.068 0.49 4.24E-02* 
WA1063 47.20˚N 19 13 98.1 63 0.0052 -1.35 0.0077 0 0 0.43 4.33E-03 
MS200 33.58˚N 27 21 98.4 93 0.0088 -0.58 0.0103 0.0017 0.17 0.39 1.33E-03** 
MS152 32.50˚N 17 15 97.6 96 0.0107 -0.51 0.012 0.0013 0.11 0.35 1.078E-01** 

F34 28.20˚N 36 22 97.7 93 0.0109 0.52 0.0096 0.0011 0.11 0.46 1.79E-01** 
 

 

 

 

 

 

 

 

 

Ave Lat: average latitude of phylogroup members 
n: number of isolates subsampled for MLSA  
Min ANI: minimum percent pairwise average nucleotide identity (ANI) within phylogroup members  
S: segregating sites  
π: per site nucleotide diversity  
θW: per site Watterson's theta (2Neµ)  
ρ: per site rate of recombination/gene conversion (2Ner/2)  
ρ/θW: relative rate of recombination to mutation  
IA: standard index of association  
ΦW: pairwise homoplasy index (Phi) statistic with p-value < 0.05*, 0.01** under the null hypothesis 
of no recombination 
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Figure 1. Tree was constructed from concatenated MLSA loci nucleotide sequences using 
maximum likelihood with a GTRGAMMA evolution model. Scale bar represents nucleotide 
substitutions per site. The root was defined by Mycobacterium smegmatis. Nodes with bootstrap 
confidences > 80 are indicated with gray circles, and precise bootstrap values are found in Figure 
S4A. The colored bars in the outer ring indicate genetic contributions from different ancestral 
populations as inferred by Structure analysis. The shading of the inner ring indicates the latitude 
from which each strain was isolated according to the scale provided. The isolation site for each 
strain can be determined by isolate names as indicated in Table 1.  
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Figure 2. Circles depict sample sites and are labeled according to site code (Table 1). The relative 
abundance of each phylogroup at each site is indicated by color according to the legend, with raw 
counts provided in Table 1. Solid colored lines represent identical alleles shared by phylogroup 
members subsampled for MLSA across sites. Dashed multicolored lines depict identical atpD 
alleles shared by strains in phylogroups WA1063 and MS152 (Figure S4B).     
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Figure 3. Haplotype networks for phylogroups MAN125 (3A), MAN196 (3B), MS152 (3C), 
WA1063 (3D). Circles represent MLSA haplotypes whose radius is proportional to the number of 
isolates having that haplotype, and colors correspond to strain ancestry and subpopulation 
affiliation as determined by Structure analysis and defined in Figure 1. Haplotypes are labeled with 
a letter code referring to sample site location as indicated in Table 1 (all haplotypes for MAN125, 
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MAN196, MS152, and WA1063 are found exclusively at a single site). Black circles represent un-
sampled, inferred haplotypes with each circle designating a single nucleotide polymorphism. The 
length of edges between nodes is uninformative. Dashed rectangles encompass clades that have 
significant phylogeographic inferences from nested clade analysis, as described in methods. 
Roman numerals correspond to the following inferences: I. Allopatric fragmentation; II. Long 
distance colonization and/or past fragmentation; III. Restricted gene flow with isolation by 
distance; IV. Restricted gene flow but with some long-distance gene flow over intermediate ranges 
not occupied by the species; or past gene flow followed by extinction of intermediate populations; 
V. Contiguous range expansion.      
 

 

 

Figure 4. Average latitude was determined using a weighted average based on the total number of 
isolates per site as indicated in Table 1. Nucleotide diversity was calculated using concatenated 
MLSA loci and is expressed per site. 
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