
  

  

Abstract— For quantitative cancer models to be meaningful 
and interpretable the number of unknown parameters must be 
kept minimal. Experimental data can be utilized to calibrate 
model dynamics rates or rate constants. Proper integration of 
experimental data, however, depends on the chosen theoretical 
framework. Using live imaging of cell proliferation as an 
example, we show how to derive cell cycle distributions in 
agent-based models and averaged proliferation rates in 
differential equation models. We focus on a tumor hierarchy of 
cancer stem and progenitor non-stem cancer cells.  

I. PROLIFERATION RATE IN CANCER MODELS  

Simulation of tumor growth includes the crucial process 
of cell proliferation. Simulations with faster proliferation 
rates yield faster growing tumors. It is imperative that 
proliferation is properly calibrated, especially for quantitative 
models in which timing is crucial, such as fixation of 
mutations in a population, fractionated radiotherapy, or 
survival rates.  

II. EXPERIMENTAL PROLIFERATION RATE 

A cell’s potential doubling time may be derived from in 
vitro experiments, including live cell imaging. The fate of 
individual cells is followed, and the time interval between 
successive mitosis events scored. For the U87-MG human 
glioblastoma cell line, such analysis of 19 mitotic events 
yielded an average doubling time of 26±4 hours [1] (Fig. 1).  

 
III. CALIBRATING AGENT-BASED MODELS 

In stochastic agent-based models with individual cell 
resolution, each cell acts independently and thus needs to be 
assigned their individual doubling time. On the population 
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level, the average cell cycle time should mimic Tpot, but 
biological deviation must be reproduced. The probability of 
individual proliferation events must be scaled according to 
the simulation time, which must be less or equal to the unit of 
the most frequent events. In macroscopic or population-level 
simulations, this may be the unit of Tpot (hours or days); in 
microscopic simulations this might be cell migration 
(minutes) or diffusion of chemicals (seconds). 

Let us consider non-spatial tumor growth with a 
simulation time step of Δt=1 hour. Then, each in silico U87-
MG cell should divide on average every 26 simulation time 
steps. Applying a uniform distribution to the average cell 
cycle time observed experimentally (i.e., each in silico cell 
has a 1/26 probability to divide in each time step) gives the 
correct average proliferation rate but a more than four times 
larger standard deviation. With a uniform distribution, 3.8% 
of in silico cells may divide already at the first time step. 
Similarly, some cells may stochastically not divide for more 
than 100 time steps (Fig. 2A). A uniform distribution applied 
to the cumulative probability derived from the experimental 
data (c.f. Fig. 1C) yields the correct average proliferation rate 
and standard deviation (Fig. 2B). Many agent-based models 
are calibrated from average data reported in the literature. 
Caution is warranted to use averages without high-resolution 
information about the actual distribution of events, especially 
when simulating rare stochastic events [2]. 
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Figure 1.  Experimentally measured doubling time of the U87-MG cell 
line (n=19). A: discrete recording of occurences of different cell cycle 

times. B: Average cell cycle time of of 26±4 hours. C: Cumultative density 
function for the distribution of cell cycle times. Dotted lines show 

probabilities of two cell cycle times (30% → 22.5hrs; 80% → 30.5hrs) 

 

 
Figure 2.  Simulated cell doubling times of in silico U87-MG cells. A: 
Uniform distribution applied to average cell cycle doubling time (left 

panel), and individual cell cycle time for 100 independent in silico cells. B: 
Uniform distribution applied to cumulative probability (left panel; c.f. Fig. 

1B,C), and individual cell cycle times for 22 independent in silico cells. 
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IV. CALIBRATING DIFFERENTIAL EQUATION MODELS 

A differential equation of tumor growth includes a growth 
term – often either exponential or sigmoidal growth [3]-[5] – 
with a growth rate per unit time parameter, for demonstration 
purposes arbitrarily denoted λ. For exponential growth, the 
growth rate λ=ln 2/Tpot, where Tpot is the potential doubling 
time [6].  

For illustration purpose we discuss the multicompartment 
ordinary differential equation (ODE) model of cancer stem 
cell-driven solid tumor growth by Weekes et al. [7], which is 
build after an agent-based model [8]. In brief, the population 
of cancer stem cells, C(t), gives rise to m generations of non-
stem progenitor cells Ni, 1≤i≤m. A cell in the ith compartment 
leaves this compartment upon proliferation, and two new 
cells enter the i+1st compartment. Cells in the mth 
compartment die upon proliferation attempt.  

Cancer stem cells divide symmetrically with probability 
p1, asymmetrically with probability p2, and may commit both 
daughter cells into differentiation with probability p3 = 1-p1-
p2. Both stem and non-stem cancer cells may die 
spontaneously, denoted by parameters a and b, respectively. 
The proliferation rate λ is identical and constant for cells in 
all compartments, which gives the equation system (other 
parameters and model details in [7]) 

𝑑𝐶
𝑑𝑡

= 𝑝! − 𝑝! 𝜆𝐶 − 𝑎𝐶 

𝑑𝑁!
𝑑𝑡

= 𝑝! + 2𝑝! 𝜆𝐶 − 𝜆𝑁! − 𝑏𝑁! 

⋮ 

𝑑𝑁!
𝑑𝑡

= 2𝜆𝑁!!! − 𝜆𝑁! − 𝑏𝑁! 

⋮ 

𝑑𝑁!
𝑑𝑡

= 2𝜆𝑁!!! − 𝜆𝑁! − 𝑏𝑁!. 

The dynamics of this multicompartment model mimics 
the population dynamics of a non-spatial agent-based model 
of cancer stem cell driven solid tumor growth. Under the 
specific assumptions detailed in [7], all non-stem cancer cells 
can be combined into a single compartment H  

!"
!"
= !!!

!"
!
!!! = 𝜆 − 𝑏 − 2𝜆𝜃!!! !!!

!!!!
𝐻 + 𝑝! + 2𝑝! 𝜆𝐶, 

which, together with the equation for the cancer stem cell 
population, we call the derived two-compartment model. The 
derived two-compartment model is in good agreement with 
the dynamics of the multicompartment model (Fig. 3A).  

Assuming an infinite number of compartments m→∞ and 
other specific conditions detailed in [7], this model reduces to 
the linear two-compartment ODE model as developed by 
Hillen et al. [9] and others with the simplified general form 

𝑑𝐶
𝑑𝑡

= 𝑝!𝜆𝐶 

𝑑𝐻
𝑑𝑡

= 𝜆 − 𝑏 𝐻 + 1 − 𝑝! 𝜆𝐶, 

which because of its intuitive deviation we call the naïve two-
compartment model.  

As in the agent-based model, the cells in all 
compartments are assigned the same growth rate λ. As 
expected from model development assumptions, the naïve 
two-compartment model performs satisfactory for large 
generational hierarchy depths m, but poorly for smaller m 
(Fig. 3A). To account for the transitions between 
compartments and cells leaving the terminal compartment, 
the proliferation rate in the naïve two-compartment model 
needs to be scaled with 

𝜆 = 𝜆 1 − 2𝜃!!! !!!
!!!!

,  with  𝜃 = !!
!!!!

 as discussed in 
detail in [7]. The scaled naïve two-compartment model with 
explicit consideration of the generational hierarchy depth m 
and terminal cell death b in the non-stem population growth 
rate enables adequate approximation of the 
multicompartmental model long-term behavior (Fig. 3B). 

 

V. DISCUSSION  
It becomes increasingly important for quantitative cancer 
modeling to calibrate model parameters; however, the 
integration of experimental data into model parameterization 
is not straightforward. Models must not only reproduce 
average behavior but also biological standard deviation to 
become meaningful. To this extend, the actual distribution of 
biological rates must be quantified and reported, which is 
rarely an observable in qualitative experimental setups. 
Whilst mathematical modeling could help simulate tumor 
growth on basic assumptions, the outcomes often depend 
heavily on chosen model parameters. Herein we have shown 
that the proliferation rate, which is the first term in most 
quantitative models, may not be as intuitive to integrate into 
a theoretical model. Upmost care must be taken when 
designing models as well as calibrating and validating them 
with experimental data. Understanding the limitations in 
data and modeling results is paramount in proper utilization 
of quantitative models in cancer research. 

 
Figure 3.  Time-dependent number of non-stem cancer cells (H) per 
cancer stem cell (C). A: The naïve two-compartment model assuming 

infinite number of generations, m→∞, performs poorly for low (left panel, 
m=10) but increasingly better for large m (right panel, m=40). The derived 

two-compartment model approaches the multi-compartment long-term 
outcome. B: Generation-adjusted non-stem cell compartment growth rate 

for different generations (m=3,5,7), copared to a multi-compartmental 
model with 5 compartments. Details and paramters in [7]. 
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