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Abstract  

Background 

Scaffolding is a crucial step in the genome assembly process. Current methods based 

on large fragment paired-end reads or long reads allow an increase in continuity but 

often lack consistency in repetitive regions, resulting in fragmented assemblies. Here, 

we describe a novel tool to link assemblies to a genome map to aid complex genome 

reconstruction by detecting assembly errors and allowing scaffold ordering and 

anchoring.  

Results 

We present MaGuS (map-guided scaffolding), a modular tool that uses a draft 

genome assembly, a genome map, and high-throughput paired-end sequencing data to 

estimate the quality and to enhance the continuity of an assembly. We generated 

several assemblies of the Arabidopsis genome using different scaffolding programs 

and applied MaGuS to select the best assembly using quality metrics. Then, we used 

MaGuS to perform map-guided scaffolding to increase continuity by creating new 

scaffold links in low-covered and highly repetitive regions where other commonly 

used scaffolding methods lack consistency. 

Conclusions 

MaGuS is a powerful reference-free evaluator of assembly quality and a map-guided 

scaffolder that is freely available at https://github.com/institut-de-genomique/MaGuS. 

Its use can be extended to other high-throughput sequencing data (e.g., long-read 

data) and also to other map data (e.g., genetic maps) to improve the quality and the 

continuity of large and complex genome assemblies. 
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Background  

Technical advances and cost reduction in genome sequencing have allowed the 

completion of numerous genome sequencing projects based on whole-genome 

shotgun fragments using high-throughput sequencing data and the assembly of these 

data. The genome assembly process usually involves four main steps: reads assembly 

into contiguous sequences (contigs), linking of contigs into larger gap-containing 

sequences (scaffolds), gap closing to fill gaps generated by the scaffolding, and 

anchoring onto a genetic map to build the final pseudo-molecules. During the second 

step, end sequences of large fragments (>1 kb) or long reads are aligned to the contigs 

and the alignment information is used to link contigs into scaffolds. Several 

commonly used scaffolding programs have been published in the last decade [1]. The 

efficiency of the scaffolding depends mainly on the diversity and fragment size of the 

input reads libraries and on the size and quality of the long reads. Typically, 1 to 20 

kb libraries are used consecutively during the scaffolding step, which allows repetitive 

regions of various sizes to be spanned [2]. However, during the alignment step, the 

presence of repeated sequences creates multiple assembly solutions, which generally 

causes ambiguities that scaffolder programs cannot untangle. This is often the case in 

large and complex genomes where repetitive elements are large and cover a large 

fraction of the genome [3]. To decrease the number of false links, scaffolder programs 

require a cutoff for the minimum number of read pairs (or long reads) that validate a 

contigs junction; as a consequence, low-covered contigs are overlooked for scaffold 

building. 
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Access to a genome map is a great advantage in obtaining a high-quality genome 

assembly [4]. Genome maps can also help in detecting assembly errors by revealing 

discrepancies between the map and the assembly [5] and can provide independent 

information for evaluating genome assembly quality. Currently, three different types 

of genome maps can be produced to drive or improve assemblies: physical maps, 

optical maps, and genetic maps.  

Historically, physical maps have been used for large genome sequencing projects to 

order clones and perform clone-by-clone sequencing, which reduces the complexity 

of the assembly by sequencing single or pooled clones [6, 7]. Although, this strategy 

is time consuming and expensive, it remains the best option for high quality genome 

sequencing of large and complex (polyploid) genomes such as the wheat genome [8]. 

Recently, the Whole Genome Profiling (WGP™) approach was developed by 

Keygene NV (Wageningen, The Netherlands) to create an accurate sequence-based 

physical map starting from a bacterial artificial chromosome (BAC) library [9]. In the 

WGP method, pooled BAC DNA is digested by a restriction enzyme and after 

amplification, Illumina technology is used to obtain sequence tags (typically 50 

nucleotide sequences flanking the restriction sites). WGP has been used successfully 

to build physical maps of several plant genomes such as those of wheat [10] and 

tobacco [11].  

Optical maps were used to assemble the Amborella [12] and goat genomes [13]. For 

Amborella, this allowed the reordering and super-scaffolding of the draft assemblies 

and increased their continuity (N50 increased from 4.9 to 9.3 Mb). More recently, the 

release of the Irys system from BioNano Genomics provided new opportunities to 

improve the quality and the continuity of genome assemblies [14].  
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Genetic maps allow the construction of pseudo-molecules by anchoring the assembly 

on linkage groups that correspond to the chromosomes [15]. Genetic map construction 

takes advantage of sequence-based genotyping (SBG) [16], genotyping-by-

sequencing, and RAD-seq libraries [17] to obtain ultra-dense genetic linkage maps 

[18]. However, missing data or genotyping errors cause map inaccuracies [19]. 

Moreover, the physical distance between markers can be very high in genomic 

regions where the recombination rate is low, which makes it difficult to anchor or 

orientate scaffolds located in those regions.  

Methods used to anchor whole-genome shotgun (WGS) assemblies on genomes have 

been investigated using several genetic maps to estimate assembly quality, as 

implemented in MetaMap [5]. The ability of these methods to produce pseudo-

molecules also was tested, as reported in Popseq [20] and Allmaps [21]. Allmaps 

infers the sizes of gaps using the relation between the local recombination rate and the 

physical distance between two adjacent genetic markers; however, the estimations can 

be inconsistent considering the inaccuracy of the recombination rate. 

Hybrid strategies, combining WGS and genome map data, are likely to help increase 

the quality of the assembled genome sequence. With this in mind, we developed 

MaGuS, a modular program that combines a genome map and WGS data. MaGuS can 

anchor a draft assembly onto a genome map for two applications: quality assessment 

of a draft assembly by calculating novel metrics, and improvement of the continuity 

of a draft assembly based on evidence provided by a genome map and high-

throughput screening (HTS) data. Here, we detail the MaGuS pipeline and provide an 

example of its applications using the Arabidopsis TAIR10 genome assembly. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 17, 2015. ; https://doi.org/10.1101/032045doi: bioRxiv preprint 

https://doi.org/10.1101/032045
http://creativecommons.org/licenses/by-nc/4.0/


Methods 

Arabidopsis thaliana genome assembly 

One 350-bp paired-end (PE) (ERX372154) and two 5.35-kb mate-pair (MP) 

(ERX372148, ERX372150) Illumina sequence libraries from A. thaliana were 

downloaded from the European Nucleotide Archive (ENA). A total of 95.3 Gb of data 

were obtained representing a coverage depth of 562X of PE and 170X of MP reads.  

Adapters and primers were removed from the reads, and low quality nucleotides were 

trimmed from both ends (quality values lower than 20). Reads were also trimmed 

from their second N to the end and reads longer than 30 nucleotides were kept. Reads 

that mapped onto run quality control sequences (i.e., the PhiX genome that is used in 

Illumina sequencing as quality control) were removed. To decrease the number of 

sequencing errors present in the paired-end (PE) reads, we applied Musket v1.1 [22] 

with a k-mer size of 26 ‘-k 26’. We ran Kmergenie v1.5692 [23] on the PE reads to 

find the best k-mer size for the contig construction step and obtained an optimal k-mer 

size of 91 bp. For the SOAPdenovo2 [24] assembly, a de Bruijn graph was 

constructed with parameters ‘-K 91 –R’. We selected contigs that were longer than 

500 bp. 

We used the PE and MP reads in five different scaffolding programs: SOAPdenovo2, 

SSPACE [25], SGA [26], BESST [27], and OPERA-LG [28]. For SOAPdenovo2, we 

ran the map command with parameter ‘-k 31’, the scaf command with parameter ‘–L 

500’, and set the minimum number of links in the configuration file as 

‘pair_num_cutoff=5’. For SSPACE, we manually set the bowtie k-mer size ‘-l 31’ 

and ran the program with parameter ‘-k 5’. For SGA and BESST, we first aligned the 

MP reads onto the contigs using BWA aln [29] with parameter ‘-l 31’. For SGA, the 

links file was created using the sga-bam2de command with parameters ‘-n 5 -m 500 --
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mina 31 –k 31’. The astat file was generated setting ‘–m 500’. The scaf file and the 

corresponding FASTA file were both created with parameters ‘–m 500’. For BESST, 

we chose the optimal k-mer size used for the contig assembly as ‘-K 91’ and ran the 

program with parameter ‘-e 5’. For each program, we selected the scaffolds that were 

over 2 kb in length. For OPERA-LG, we set the k-mer size for scaffolding with option 

‘kmer=91’. The minimum contig size required for the scaffolding step was fixed as 

500 bp with the parameter ‘contig_size_threshold=500’. Finally, the number of links 

to validate a connection between two contigs was assigned with the parameter 

‘cluster_threshold=5’. 

The source code of QUAST was modified to avoid, as much as possible, the detection 

of misassemblies (relocation, translocation, and inversion) that correspond to false 

positives. Because Nucmer generated numerous spurious alignments lower than 5 kb 

in highly repetitive regions, the minimum alignment length in both parts of a 

misassembly was fixed as 5 kb. Moreover, the gap or overlap size threshold length 

was increased to 5 kb to detect relocations. By default, QUAST reports misassemblies 

found within a scaffold only if at least 50% of the scaffold is aligned. We modified 

this parameter to report all misassemblies regardless of the aligned fraction of a 

scaffold.  

 

Map-guided scaffolding of genome using MaGuS 

First, the WGP tags were aligned to scaffolds using BWA aln [29] and tags with 

multiple locations were filtered out of the BAM file [30]. We used the resultant 

alignments to anchor the scaffolds on the genome map and created links between 

adjacent scaffolds (Figure 1a). However, scaffolds located within other scaffolds, 

according to the anchoring information, were not considered. More formally, let a tag 
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𝑡(𝑐, 𝑟) be defined by its BAC contig origin 𝑐 and its rank 𝑟. Let a scaffold 

s((𝑡1, 𝑝1), (𝑡2, 𝑝2), … , (𝑡𝑛, 𝑝𝑛)) be defined by the n-uplet of a (𝑡𝑗 , 𝑝𝑗) couple, where 

the tag 𝑡𝑗 aligns uniquely at position 𝑝𝑗 with 𝑝𝑗 ≤ 𝑝𝑗+1. We define an anchored 

scaffold 𝐴𝑖 (𝑡𝑎𝑖
(𝑐𝑎𝑖

, 𝑟𝑎𝑖
), 𝑡𝑏𝑖

(𝑐𝑏𝑖
, 𝑟𝑏𝑖

)) by the origin of the BAC contigs and the ranks 

of its leftmost and rightmost tags, 𝑡𝑎𝑖
and 𝑡𝑏𝑖

, with 𝑟𝑎 < 𝑟𝑏. We define a map-link 

between two adjacent scaffolds 𝑎𝑖and  𝑎𝑗 only if min( 𝑟𝑎𝑖
, 𝑟𝑏𝑖

) ≤ min( 𝑟𝑎𝑗
, 𝑟𝑏𝑗

) does 

not include scaffolds located within other scaffolds. 

The MP reads were aligned to the assembly using BWA mem [29] and pairs whose 

mates mapped to different scaffolds were selected. Multiple hits were recorded and 

mapping possibilities that confirmed a map-link were kept. We estimated the gap size 

between two adjacent scaffolds from the set of map-anchored scaffolds using the MP 

fragment size distribution. If the computed gap size was smaller than the maximum 

expected gap size derived from the MP library, the map-link and the orientation of the 

two scaffolds were validated. If multiple scaffold orientations were reported by the 

read mapping, the one supported by the highest number of read pairs was selected. 

More formally, Let a mapping possibility of a read pair 

((𝑠𝑐𝑎𝑓1, 𝑜𝑟𝑖𝑒𝑛𝑡1, 𝑝𝑜𝑠1), (𝑠𝑐𝑎𝑓2, 𝑜𝑟𝑖𝑒𝑛𝑡2, 𝑝𝑜𝑠2)) be defined by its scaffold name, 

orientation, and location of both reads with 𝑠𝑐𝑎𝑓1 ≠ 𝑠𝑐𝑎𝑓2. For each read pair, we 

calculate the gap size based on the orientation of the two linked scaffolds inferred by 

each supporting pair, where 𝑙𝑒𝑛1 and 𝑙𝑒𝑛2 are the lengths of 𝑠𝑐𝑎𝑓1  and 𝑠𝑐𝑎𝑓2  

 respectively, 𝑅 is the read length, and 𝜇 is the mean of the mate-pair (MP) library 

fragment size as: 

{

𝑔𝑎𝑝++ =  𝜇 − 𝑝𝑜𝑠1 − 𝑝𝑜𝑠2 − 2𝑅

         𝑔𝑎𝑝+− =  𝜇 − (𝑝𝑜𝑠1 + 𝑅) − (𝑙𝑒𝑛2 − 𝑝𝑜𝑠2)
𝑔𝑎𝑝−− =  𝜇 − (𝑙𝑒𝑛1 − 𝑝𝑜𝑠1) − (𝑙𝑒𝑛2 − 𝑝𝑜𝑠2)

𝑔𝑎𝑝−+ =  𝜇 − (𝑙𝑒𝑛1 − 𝑝𝑜𝑠1) − (𝑝𝑜𝑠2 + 𝑅)     
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We validate the link  if 0 ≤
1

𝑛
∑ 𝑔𝑎𝑝(𝑜𝑟𝑖𝑒𝑛𝑡1,𝑜𝑟𝑖𝑒𝑛𝑡2) ≤ 𝜇 + 3. sd, where 𝜇 and 𝑠𝑑 are 

the mean size and the standard deviation of the MP library fragment size respectively, 

and 𝑛 is the number of supporting pairs for the scaffolds link with the following 

orientation (𝑜𝑟𝑖𝑒𝑛𝑡1, 𝑜𝑟𝑖𝑒𝑛𝑡2). Finally, all validated links were formatted for the SGA 

program to perform the final scaffolding. 

 

Analysis of A. thaliana WGP data  

We used the WGP data produced from the A. thaliana col-0 BAC library by Keygene 

(Wageningen, The Netherlands) [9]. WGP tags were ordered by an automated 

procedure that performed the following steps. First, fingerprinted contig data were 

read with contig and position information per BAC. Then, BACs were sorted on their 

left and right positions in the contig and assigned a rank number (identical left and 

right positions lead to identical ranks). Next, tag information from the WGP tag file 

was read and occurrences of tags per BAC were listed. For a given contig, a tag 

position was calculated as the mean value of BAC rank numbers on which the tag 

occurred. If BAC ranks were too far apart, the tag was identified as an outlier and put 

aside. The remaining tags were ranked according to their mean BAC rank value, 

possibly with equal rank scores for equal average BAC rank values. 

 

Quality evaluation of genome assembly using MaGuS 

We generated new quality assembly metrics from the anchoring based on the 

commonly used N50 metric (used to evaluate assembly continuity) and the NA50 

introduced by the quality assessment tool QUAST (used to evaluate both continuity 

and quality of assembly using a genome reference [31]). For each scaffold, we 

defined collinear segments as the fraction of a given scaffold that was correctly 
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organized, i.e., segments anchored with tags that have the same order in the genome 

map and in the scaffolds (Figure 1b). For a given assembly, the lengths of all these 

segments were used to calculate the following metrics: An50 (50% of the anchored 

assembly contains collinear segments with length over An50 bp), AnA50 (50% of the 

total assembly contains collinear segments with length over AnA50 bp), and AnG50 

(50% of the estimated genome size contains collinear anchored segments with length 

over AnG50 bp). MaGuS also generates Anx, AnAx, and AnGx graphs (based on the 

Nx graph [2]) that is a plot of the metrics for x values ranging from 1% to 100%. 

 

Implementation of MaGuS  

MaGuS was implemented in a Perl program based on five modules: wgp2map, which 

performs the anchoring and creates a MaGuS-format map that contains the anchoring 

information; map2qc, which evaluates the quality of the assembly; map2link, which 

creates the map-links between scaffolds; pairs2links, which validates the map-links, 

orients the scaffolds, estimates the gap size, and creates a link.de file; and links2scaf, 

which runs the SGA scaffolding programs and creates the final assembly. 

Results and discussion 

Arabidopsis genome assembly and quality evaluation using MaGuS 

PE reads were assembled into contigs with SOAPdenovo2. Then we generated five 

assemblies using five scaffolding programs (BESST, SSPACE, SOAPdenovo2, SGA, 

and OPERA-LG) with PE and MP reads. The BESST assembly had the highest 

continuity (N50 = 1.3 Mb) followed by OPERA-LG (N50=1.27 Mb), SSPACE (0.98 

Mb), SOAPdenovo2 (N50=0.82 Mb), and SGA (N50=0.28 Mb). To evaluate the 

assembly quality, we aligned the scaffolds against the Arabidopsis TAIR10 reference 

genome with Nucmer [32] using the QUAST pipeline [31] (see Additional file 1 for 
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details). We found that although BESST and OPERA-LG created scaffolds that had 

longer alignments, they also contained relatively more misassemblies than 

SOAPdenovo2, SSPACE, and SGA. Based on the QUAST NA50 and NA75 metrics, 

we ranked the assemblies from the highest to lowest quality as BESST, OPERA-LG, 

SSPACE, SOAPdenovo2, and SGA.  

We used the WGP map to provide a reference-free approach that evaluates the quality 

of the five assemblies. We applied the wgp2map and map2qc modules of MaGuS to 

calculate the length of all collinear segments (Figure1b) and generated Anx values 

(Table 1, Figure 2a). Considering the MaGuS An50 and the An75 metrics, the ranking 

of the assemblies was the same as the ranking using the QUAST NA50 and NA75 

metrics. The NAx and Anx values were strongly correlated (R
2
 >0.96) for the five 

assemblies (Figure 2c), which allowed us to consider using the MaGuS Anx metrics 

to compare assembly quality.  

Selecting the appropriate bioinformatics tools to perform genome de novo assembly is 

difficult and often depends on the genome complexity and on the sequencing 

technology used. The absence of a reference sequence leads automatically to the 

selection of the assembly that has the highest continuity with no regards to the quality. 

In the present case, access to a genome map and its use with MaGuS allowed the 

BESST assembly to be selected as being the most continuous and also the most 

collinear to the WGP map.  

Arabidopsis genome map-guided scaffolding using MaGuS 

We used the five assemblies produced previously to perform map-guided scaffolding 

through the MaGuS pipeline (Figure 1c). For each assembly, we first created the map-

links (i.e., the links between two adjacent anchored scaffolds) and aligned the MP 

reads onto the scaffolds to validate the map-links by first determining the scaffolds 
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orientation (if the scaffold was anchored by only one tag) and then by estimating the 

new gaps size (see Methods). The validated map-links were used to build the final 

scaffolds (Table 2). Only a fraction of the map-links (21.2% to 49.9%) was validated 

by the MP reads. This limitation was clearly due to the MP library size, and a higher 

fraction of map-links would certainly be validated using larger MP libraries. Although 

only a fraction of the map-links were used for the scaffolding, the resulting assemblies 

showed increases in the N50 metrics ranging from 1.13 to 2.24 times higher and 

increases in N75 from 1.23 to 2.43 times higher (Table 2). To evaluate the accuracy of 

this scaffolding approach, we aligned the five assemblies generated by MaGuS onto 

the Arabidopsis TAIR10 reference genome using QUAST (see Additional file 1). 

MaGuS generated 86% to 97% correct links for the five assemblies and only a limited 

number of misassemblies (Table2). The quality of the scaffolds also was confirmed 

by elevated NA50 and NA75 values. The number of read pairs that validated a map-

link had a very wide distribution, from 1 to over 1 000 read pairs (Figure 2c), which 

showed that MaGuS enabled the scaffolding of both low covered and highly covered 

regions that corresponded to repetitive regions. 

 

Conclusions 

The method presented here and implemented in MaGuS enabled the evaluation of the 

quality and the scaffolding of a draft genome assembly using a physical map and HTS 

data. Its application to Arabidopsis with a WGP map provides a first example of its 

efficiency in reconstructing a eukaryotic genome. Evaluating the quality of a genome 

assembly is necessary in order to increase the accuracy of downstream analyses, such 

as genome annotation or comparative genomic analyses. De novo assembly projects 
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often lack a genome reference and different ways to assess the assembly quality have 

been investigated [2, 33] using either the HTS data used for the assembly or a genome 

map. The latter remains a very good independent source of information for this task. 

From this perspective, we developed the map2qc module of MaGuS to provide 

assembly quality metrics. Its application to five Arabidopsis genome assemblies 

showed that the new quality metrics based on the correctly anchored segments of the 

assembly gave the same assembly ranking as if a reference genome was available. 

Existing scaffolder tools encounter issues when dealing with repeat-rich regions. The 

use of a map overcomes this problem if a contig or scaffold can be anchored onto the 

map. For large genomes, the sequencing depth of an MP library may result in low 

covered regions. Users of scaffolding programs often set a minimum cut-off for read 

pairs required to validate a link between contigs, to avoid assembly errors. The use of 

a map to guide the assembly allows this cut-off to be lowered without loss of 

accuracy.  

 

Availability of supporting data 

Arabidopsis Illumina reads can be downloaded from the European Nucleotide 

Archive (ENA) with the following IDs: ERX372154, ERX372148, ERX372150. The 

WGP data and MaGuS can be accessed through GitHub at https://github.com/institut-

de-genomique/MaGuS. 
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Figure legends 

Figure 1 - MaGuS pipeline 

a Flowchart of the MaGuS pipeline. b Comparison of the QUAST and MaGuS metrics. c 

Application of MaGuS to WGP data. 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 17, 2015. ; https://doi.org/10.1101/032045doi: bioRxiv preprint 

https://doi.org/10.1101/032045
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2 - Comparison of MaGuS and QUAST quality metrics for the five 

assemblies 

a MaGuS Anx plot. b QUAST NAx plot. c Correlation between Anx and NAx values.  

 

Figure 3 - Distribution of the number of mate-pairs that validates map-links for 

the five assemblies 

Tables 

Table 1 - QUAST and MaGuS quality metrics for the five assemblies 

The R² values indicate the Pearson correlation coefficients between the QUAST NAx and 

MaGuS Anx values. 

Assembly 
metrics 

SOAP SSPACE SGA BESST OPERA_LG 

Assembly size 
(bp) 

115 319 220 116 017 208 114 956 386 114 996 281 116 406 702 

N50 (bp) 821 817 982 887 284 070 1 299 606 1 272 891 

L50 39 31 115 22 26 

N75 (bp) 306 051 340 070 118 727 643 037 566 836 

L75 96 81 270 54 60 

QUAST metrics 
     

Number of N's 
per 100 kbp 

3851.60 3000.11 4251.16 2845.19 3139.94 

Misassemblies 9 9 3 23 51 

Largest 
alignment (bp) 

3 482 036 4 678 885 1 680 656 6 501 653 5 259 610 

NA50 (bp) 757 250 926 429 276 557 1 210 586 945 419 

NA75 (bp) 268 694 291 099 100 235 516 026 351 844 

MaGuS metrics 
     An50 (bp) 31 217 32 028 23 164 35 466 33 908 

An75 (bp) 11 887 12 052 6 981 14 315 13 113 

R² 0.99 0.98 0.96 0.99 0.96 
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Table 2 - Assembly metrics after MaGuS scaffolding for the five assemblies 

 

SOAP SSPACE SGA BESST OPERA-LG 

Assembly size (bp) 
115 563 956 

116 414 
299 

115 703 449 115 174 685 116 556 828 

N50 (bp) 1 350 715 1 680 424 635 106 1 751 177 1 442 963 

N50 fold change 1.64 1.74 2.24 1.35 1.13 

L50 23 18 47 18 22 

N75 (bp) 509 384 646 442 288 240 787 050 695 198 

N75 fold change 1.66 1.9 2.43 1.22 1.23 

L75 58 48 110 42 51 

Number of N's per 100 
kbp 

4 055.34 3 331.14 4 869.38 2 995.68 3 264.70 

Largest alignment 5 012 555 7 708 756 3 361 051 6 902 343 5 597 743 

NA50 1 187 620 1 455 792 579 394 1 407 579 1 258 868 

NA50 fold change 1.57 1.57 2.1 1.16 1.18 

NA75 354 088 508 625 215 751 609 320 560 902 

NA75 fold change 1.32 1.75 2.15 1.18 1.59 

Total misassemblies 23 19 19 36 62 

Magus misassemblies 14 10 16 13 5 

Number of map-links 534 481 1 034 371 368 

Number of MP-
validated links 209 (39.14%) 

214 
(44.49%) 516 (49.9%) 93 (25.07%) 78 (21.2%) 

Number of correct 
MP-validated links 

195 (36.51%) 
204 

(42.41%) 
500 (48.53%) 80 (21.56%) 73 (19.83%) 

False positive rate 6.7 4.7 3.1 14 6.4 
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