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Abstract

Next-generation sequencing of DNA provides an unprecedented opportunity to discover rare

genetic variants associated with complex diseases and traits. However, when testing the as-

sociation between rare variants and traits of interest, the current practice of first calling

underlying genotypes and then treating the called values as known is prone to false posi-

tive findings, especially when genotyping errors are systematically different between cases and

controls. This happens whenever cases and controls are sequenced at different depths or on

different platforms. In this article, we provide a likelihood-based approach to testing rare

variant associations that directly models sequencing reads without calling genotypes. We con-

sider the (weighted) burden test statistic, which is the (weighted) sum of the score statistic for

assessing effects of individual variants on the trait of interest. Because variant locations are

unknown, we develop a simple, computationally efficient screening algorithm to estimate the

loci that are variants. Because our burden statistic may not have mean zero after screening,

we develop a novel bootstrap procedure for assessing the significance of the burden statistic.

We demonstrate through extensive simulation studies that the proposed tests are robust to a

wide range of differential sequencing qualities between cases and controls, and are at least as

powerful as the standard genotype calling approach when the latter controls type I error. An

application to the UK10K data reveals novel rare variants in gene BTBD18 associated with

childhood onset obesity. The relevant software is freely available.
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Introduction

Recent technological advances in next-generation sequencing (NGS) have made it possible to

conduct association studies on rare variants, which hold great potential to explain the missing

heritability of complex traits and diseases (Manolio et al. 2009). However, it is prohibitively

expensive to conduct high-depth, whole-genome sequencing (WGS) for large-scale association

studies (Sims et al. 2014). Therefore, many WGS studies have reduced the overall average

depth to as low as 4–10× (The 1000 Genomes Project Consortium 2012; The UK10K Consor-

tium 2015; Morrison et al. 2013; Bizon et al. 2014). Other studies have adopted whole-exome

sequencing (WES), in which only the protein coding regions were sequenced but at high depth

(e.g., ≥30×) (The 1000 Genomes Project Consortium 2012; Tennessen et al. 2012; Epi4K

Consortium, Epilepsy Phenome/Genome Project et al. 2013; The UK10K Consortium 2015);

nevertheless, even though the average depth may be high, the large variability in capture

efficiency may cause some genes or some regions within a gene to have much lower depth than

the average (Do et al. 2012).

The case-control design remains the most commonly used approach to studying rare variant

associations. Due to the high cost of sequencing, many studies have focused sequencing effort

on cases. Some studies sequenced cases at higher depth than controls by design, when the

cases are unique and there is interest in identifying novel mutations. An example is the

UK10K Project (The UK10K Consortium 2015), which sequenced cases at ∼60× and controls

at ∼6×. Some studies even sampled only cases for sequencing and intended to compare them

with publicly available NGS data on general populations such as the 1000 Genomes (The 1000

Genomes Project Consortium 2012). In this case, the controls typically have systematically

different sequencing qualities (e.g., depth and base-calling error rate) from the cases. Even

when their average depths are similar, the actual depth could vary in individual regions across

platforms, resulting in regions with differential depths in cases and controls by chance. This

can easily occur when using different exome capture kits for cases and controls; if one kit can

3

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/032037doi: bioRxiv preprint 

https://doi.org/10.1101/032037
http://creativecommons.org/licenses/by/4.0/


capture a certain exonic region better than the other, then there will be a systematic difference

in read depth between cases and controls in this region.

The prevailing practice of analyzing NGS data for association with rare single-nucleotide

variants (SNVs) is to first call underlying genotypes (e.g., using SAMtools (Li et al. 2009)

or GATK (DePristo et al. 2011)), and then treat the called values as known in gene- or

region-based tests such as the burden test (Morgenthaler and Thilly 2007; Li and Leal 2008).

Genotype calling is difficult when read depth is low because minor allele reads are indistin-

guishable from sequencing errors. Genotype calling is especially challenging for rare SNVs,

first because their locations cannot be easily inferred (Johnston et al. 2015), and second be-

cause little information can be borrowed from other variants through linkage disequilibrium

(LD) (The 1000 Genomes Project Consortium 2012). In case-control studies with differential

sequencing qualities, the genotype calling process can introduce confounding that causes in-

flated type I error in downstream association tests (Mayer-Jochimsen et al. 2013). Recall that

confounding occurs when a variable is correlated with both the case-control status and the

genotype. When read depths are different in cases and controls, the dependence of genotyping

quality on the depth establishes the depth as a confounder. Likewise, the base-calling error

rate has the same confounding effect as the depth. Even when read depths and error rates are

comparable between cases and controls, differences in genotype calling algorithms or quality

control (QC) filters (e.g., phred score cutoffs) can lead to differential genotyping errors that

could also act as a confounder. For these reasons, publicly available NGS data have gener-

ally been under-utilized as controls for association studies. To reduce genotyping errors, one

typically applies QC procedures to filter out SNVs at which many samples are covered by

low depth of reads or called with low quality scores (Tennessen et al. 2012). The use of any

reasonable QC procedure will remove a large number of variants, especially rare ones, and

results in loss of important information.

To avoid the confounding effect induced by calling genotypes, Derkach et al. (2014) pro-

posed to replace the genotypes in the standard score statistic by their expected values given
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observed read data, and developed a robust variance for the score statistic to account for dif-

ferential variances of the expected values in high- and low-depth samples. However, they still

used called genotypes to determine SNV locations, which tends to yield more false positive

SNVs among the low-depth group (e.g., controls) than the high-depth group and again cause

confounding. To ensure accuracy of the called SNV locations, they resorted to stringent QC

procedures, which would result in substantial information loss.

In this article, we provide a likelihood-based approach to testing rare variant associations

that directly models sequencing reads without calling genotypes. We consider the (weighted)

burden test statistic, which is the (weighted) sum of the score statistic for assessing effects of

individual variants on the trait of interest. Our read-centric approach enables us to explicitly

account for sequencing differences (i.e., read depth and error rate) between cases and controls.

Full implementation of a read-centric approach requires solutions to a number of problems.

Because SNV locations are unknown, we first develop a simple, computationally efficient

screening algorithm to estimate their locations using read data alone. Because an imbalance

in putative SNVs can arise due to differences in read depths and error rates between cases

and controls, the burden statistic may not have mean zero even in the absence of association.

Thus, we develop a novel bootstrap procedure for assessing the significance of the burden

statistic. Specifically, we propose to generate a dataset with the same coverage patterns as

the original data, but where the loci are all monomorphic. By comparing the false-positive

SNVs found in the monomorphic dataset to the SNVs detected in the original data, we show

how to estimate the number of true SNVs and the allele frequencies of the true SNVs in the

original data. With this information, we can generate a bootstrap replicate dataset in which

the allele frequencies at true SNVs match those in the original data, but are identical in cases

and controls. We then compare the burden statistic from the original data to those from

the bootstrap replicates to assess significance. The complete flowchart is depicted in Figure

1. Our procedure can encompass all informative loci including singletons and doubletons if

desired; additionally, we can down-weight or mask loci that are unlikely to be deleterious.
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We showed through extensive simulation studies that our bootstrap tests are robust to a

wide range of differential sequencing qualities between cases and controls, and are at least

as powerful as the standard genotype calling approach when the latter controls type I error.

We further applied the new methodology to a case-control data from the UK10K Project

comparing children with severe early onset obesity to population-based controls. We identified

a gene, BTBD18, that passes the exome-wide significance threshold and that is also a plausible

candidate for childhood onset obesity.

Methods

We first consider a single (bi-allelic) SNV. Let G be the genotype (coded as the number of

minor alleles) at the variant site and let D be the disease status. We denote the genotype

distribution under Hardy-Weinberg equilibrium (HWE) by Pπ(G), where π is the minor allele

frequency (MAF). Note that the HWE assumption has a minimal effect for rare variants,

as homozygotes of minor alleles are not expected. Instead of observing G, we observe the

total number of reads mapped to the SNV and the number of reads carrying the minor allele,

denoted by T and R, respectively. Similar to SAMtools, GATK, and seqEM (Martin et al.

2010), we assume that R given T and G follows a binomial distribution

Pε(R|T,G) =


Binomial(T, ε) if G = 0

Binomial(T, 0.5) if G = 1

Binomial(T, 1− ε) if G = 2,

(1)

where ε is the probability that a read allele is different from the true allele and is referred to as

the error rate. The “errors” here comprise both base-calling and alignment errors. We treat

ε as a free parameter that is locus-specific and will be estimated from the read data (Martin

et al. 2010).

Test statistic

To account for case-control sampling, we use the retrospective likelihood
∏n

i=1 Pr(Ri|Ti, Di)
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based on n subjects, which takes the form

LCC(π1, π0, ε1, ε0) =
∏
i∈D1

∑
g=0,1,2

Pε1(Ri|Ti, g)Pπ1(g)
∏
i∈D0

∑
g=0,1,2

Pε0(Ri|Ti, g)Pπ0(g), (2)

where D1 and D0 denote the sets of cases and controls, respectively, πd denotes the allele

frequency for D = d, and (π1, ε1) and (π0, ε0) are separate parameters for cases and controls.

Note that in writing (2) we assume that the depth T is independent of the genotype G.

Also note that this formulation obviates the need to model other covariates (e.g., age and

environmental exposures) as long as they are not confounders. The null hypothesis of the

association test is H0 : π1 = π0. We re-parameterize (π1, π0) in terms of (α, β) such that

π0 = eα/(1 + eα) and π1 = eα+β/(1 + eα+β); then the null hypothesis is H0 : β = 0. The score

statistic for β obtained from (2) is

S =
n∑
i=1

(Di −
n1

n
)G̃i, (3)

where

G̃i =

∑
g=0,1,2 gPε̃Di

(Ri|Ti, g)Pπ̃0(g)∑
g=0,1,2 Pε̃Di

(Ri|Ti, g)Pπ̃0(g)
,

n1 is the number of cases, and (π̃0, ε̃1, ε̃0) are restricted maximum likelihood estimates (MLEs)

under the null; these restricted MLEs can be obtained via the expectation-maximization (EM)

algorithm described in Supplemental Methods. G̃i can be interpreted as the posterior dosage

of the minor allele; as the read depth increases, G̃i converges to the underlying genotype Gi

and S reduces to the standard score statistic
∑n

i=1(Di − n1/n)Gi. Finally, we construct the

burden statistic W as a (weighted) sum of the score statistics at a set of SNVs in the gene

of interest. The variance estimator V for W is calculated as the empirical variance of the

efficient score functions (Lin 2006). When true SNVs are used, the test statistic Z = W/
√
V

is asymptotically normal with mean 0 and variance 1.

The score statistic of the Derkach test (Derkach et al. 2014) has the same form as (3), as it

also uses the posterior dosage G̃i. The only difference is that the Derkach test substitutes the

genotype likelihood Pε̃Di
(Ri|Ti, g) that is provided in the output of standard genotype calling
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packages (Li et al. 2009; DePristo et al. 2011), which calculate error rates based on phred

scores.

Screening out uninformative loci

In reality, the locations of rare SNVs are not available without calling genotypes. In order to

include the maximum set of variants in the burden test without calling genotypes, we develop a

screening algorithm to screen every locus (i.e., base pair) in the genome and filter out only loci

that are “uninformative” in the sense that they yield S = 0 and thus do not contribute to the

test statistic. Specifically, we consider the likelihood LS(π, ε) =
∏n′

i=1

∑
g=0,1,2 Pε(Ri|Ti, g)Pπ(g)

which is based on a homogenous group (i.e., cases or controls only) of n′ subjects. Let π̃

be the MLE based on LS(π, ε) under the constraint that π ∈ [0, 1] and note that π̃ = 0

indicates no mutation in this group at this locus. Fortunately, we can easily determine whether

π̃ = 0 without iteratively solving for π̃. By definition, π̃ also maximizes the profile likelihood

pl(π) = maxε logLS(π, ε). Because we have shown in Supplemental Methods that pl(π) is a

concave function of π, a negative derivative of pl(π) at π = 0 leads to π̃ = 0. At π = 0, the ε

maximizing logLS(π, ε) can be easily determined because, in the absence of any minor alleles,

all reads carrying the minor allele must be errors. Therefore, we check the sign of pl(0) for

cases and controls separately and screen out the loci at which both signs are negative. If π̃ = 0

in both cases and controls, then π̃0 = 0 in the combined sample, where π̃0 was defined in the

text following expression (3). From π̃0 = 0, we have G̃i = 0 for all individuals and thus S = 0.

This screening algorithm only involves evaluating simple (derivative) functions twice at each

locus without any iteration, and is thus computationally extremely efficient.

Bootstrap

Although most monomorphic loci are “uninformative” and will be screened out, there are

exceptions. It is possible that a truly monomorphic locus has π̃ > 0 in one disease group or

both, if by chance some individuals have more errors than expected. If a truly monomorphic

locus has π̃ > 0 in the control group but π̃ = 0 in the case group, the score statistic S of this
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locus will have a negative mean. Such loci will accumulate over the gene when controls have

systematically lower depth (or higher error rate) than cases, and then the expected value of

the burden statistic W will be substantially biased below zero, even when allele frequencies

are identical among cases and controls at true SNVs. Consequently, screening for SNVs in

the presence of differential sequencing qualities between cases and controls will invalidate the

asymptotic version of our test.

We thus propose a bootstrap procedure for assessing the significance of the observed test

statistic Z. The idea is to generate bootstrap datasets that mimic the original data in terms

of read depth and error rate, have the same number of truly monomorphic loci and true SNVs,

but have no difference in allele frequencies among cases and controls. To this end, we condition

on the observed depth T and generate the minor-allele read count R using the estimated error

rates ε̃1 and ε̃0 once the underlying genotype G is simulated. However, it is nontrivial to

simulate G, because we do not know how many loci in the gene are true SNVs and what are

allele frequencies at these SNVs. To obtain this information, we first form a “monomorphic”

dataset by generating R at every locus in the gene assuming that all Gs are zero; thus, each

read for the minor allele is an error that occurs with rate ε̃1 or ε̃0, depending on the disease

status. This dataset should provide a good approximation to the truly monomorphic loci

in the original data, as the proportion of true SNVs in the original data should be small.

Let Ms be the number of loci that are screened in from the original data and let Fs(π) be

the cumulative distribution function (CDF) of estimated MAFs at the Ms loci. Let Mm and

Fm(π) be their counterparts in the monomorphic dataset. The CDF of allele frequencies at

true SNVs, denoted by Fp(π), is related to Fs(π) and Fm(π) through the equation

Fs(π) = φFm(π) + (1− φ)Fp(π),

where φ is the proportion of monomorphic loci among loci that are screened in. This equation

expresses the fact that the distribution of observed (non-zero) allele frequencies Fs(π) in the

original data is a mixture of the distributions for allele frequencies of true SNVs Fp(π) and
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artifactual SNVs Fm(π) that actually correspond to monomorphic loci. We estimate φ by φ̂ =

Mm/Ms and Fp by F̂p(π) = (1− φ̂)−1
{
F̂s(π)− φ̂F̂m(π)

}
, where F̂s and F̂m are empirical CDF

estimators of Fs(π) and Fm(π) respectively. To ensure that F̂p(π) is monotonically increasing,

we refine F̂p(π) by fitting an isotonic regression to data points of (1− φ̂)−1
{
F̂s(π)− φ̂F̂m(π)

}
evaluated at the pooled (Ms +Mm) MAFs by the pooled-adjacent-violator algorithm (PAVA)

(Robertson et al. 1988). After the largest value of MAF, we set F̂p(π) = 1. Finally, starting

from the monomorphic dataset, we select M̂p = Ms −Mm loci to be SNVs, sample π from

F̂p, and re-generate G and R at these SNVs to form a final bootstrap dataset. Note that, for

a small π, we may need to resample G repeatedly until each truly polymorphic locus screens

in. The bootstrap statistic is then calculated based on all the loci that were screened in from

the final bootstrap dataset. The entire procedure is repeated to generate multiple bootstrap

replicates.

Although bootstrap tests are computationally intensive in general, we can save consider-

able time by adopting a sequential stopping rule (Besag and Clifford 1991). We stop after

generating Lmin bootstrap replicates, if these early replicates suggest a large p-value. When

Lmin = 5, the number of replicates at termination has a median of only 10 for a gene having

no SNVs that affect the trait. We also use a closed sampling scheme, in which we restrict

the total number of bootstrap replicates to be at most Kmax. If we stop when Lmin bootstrap

statistics exceed the observed Z and Kobs (≤ Kmax) replicates have been collected, we set the

p-value to Lmin/Kobs. If we stop when Kmax replicates are reached and only Lobs (< Lmin)

values exceed Z, we set the p-value to (Lobs + 1)/(Kmax + 1).

Adjusted empirical Bayes estimator for error rate

The MLEs of error rates may not recover the true distribution of error rates, which is essential

for generating valid bootstrap replicates. In particular, when the true error rates are very small

(e.g., ∼0.02%), the MLEs tend to be over-dispersed. Therefore, we propose to use the empirical

Bayes (EB) estimator in bootstrap instead of the MLE. We assume a prior beta distribution
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for error rates, i.e., εj ∼ Beta(a, b), where j = 1, . . . ,M , M is the total number of loci in

the gene, and a and b are hyperparameters that can be estimated by the method of moments

(see Supplemental Methods). We show in Supplemental Methods that the EB estimator for

εj is wj(
∑M

j′=1 tj′)
−1
∑M

j′=1 ε̃j′tj′ + (1− wj)ε̃j, where ε̃j is the MLE, wj = (a + b)/(a + b + tj),

and tj is the total number of reads at locus j across all individuals. Thus the EB estimator

imposes a shrinkage effect over the individual MLEs towards their (weighted) mean and alters

the ranks of the MLEs according to tj. Additionally, because the EB estimator is known to

over-shrink the distribution, we further adjust the EB estimates to be the quantiles of the

prior beta distribution (Louis and Shen 1999) with estimates a and b. As long as a and b are

consistently estimated, the true distribution can be accurately recovered.

Read-based QC procedure

We have observed that a small proportion of read data (R, T ) do not fit the binomial model (1).

This may be due to genotype mosaicism (i.e., the presence of two or more populations of cells

with different genotypes in one individual), experimental artifacts, sample contamination, or

copy number variants. To detect data that do not fit the binomial model, for each individual

at each locus that screens in, we calculated a likelihood-ratio-type statistic for the goodness

of fit to the binomial model

Q = 2 log

{
(R/T )R (1−R/T )T−R

/
max
g=0,1,2

[
eg(ε)

R {1− eg(ε)}T−R
]}

,

where eg(ε) = ε, 0.5, and 1−ε for g = 0, 1, and 2, respectively. Then, we mask an individual at

a variant (by setting T and R to zero) if Q is greater than 10 and remove a variant altogether

if more than 5 individuals are masked at that locus. We can also identify individuals with

problematic data by checking for the presence of an excessive number of Qs greater than 10.

Results

Simulation studies
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We carried out extensive simulation studies to evaluate the performance of our proposed meth-

ods in realistic settings. We used the coalescent simulator cosi (Schaffner et al. 2005) to gener-

ate a base population of 100,000 European haplotypes with length 10 kb. We assumed that the

10 kb region corresponds to a gene with 3 exons that are separated by 2 introns, with introns

being 3 times the length of exons. This setup gave us a total of 2,730 loci in exons, among

which there are 44 SNVs with MAFs ≤ 0.05 in the base population. To generate individual

genotypes, we sampled from the 100,000 haplotypes allowing recombination in introns (but not

in exons). To generate disease outcomes, we considered a risk model that assumed equal at-

tributable risk (AR) for each SNV: log{P (D = 1)/P (D = 0)} = α+
∑m

j=1 Gj log(1+AR/2πj),

where m is the total number of SNVs, Gj and πj are the genotype and MAF of the jth SNV,

and α was set to −3 to achieve a disease rate of ∼ 5%. This risk model implies that a more

rare SNV has a stronger effect than a less rare SNV. The process was repeated until 500 cases

and 500 controls were collected.

The sequencing reads T and R were generated to mimic real NGS data. We considered

average read depths of 6×, 10×, and 30×, and average error rates of 0.02% and 0.016% (as

observed in the UK10K cases and controls, respectively). While these very low error rates are

characteristic of the newest Illumina platforms, we also considered average error rates of 1%

and 0.5% that exist in historical NGS data (Nielsen et al. 2011). We sampled the locus-specific

error rate ε from a beta distribution that yields the pre-specified average rate. We sampled

the individual depth T by a two-step strategy which first simulates the locus-specific mean

depth c from a beta distribution (re-scaled to achieve the pre-specified average depth) and

then simulates individual T ’s from a negative-binomial distribution with mean c. The first

step permits the accessibility of sequencing to depend on local nucleotides, and the second

step allows for dispersion in the individual count data. For specific parameter values in these

distributions, refer to Supplemental Methods. Note that at each locus we sampled ε and c

independently for cases and controls, even when the average values are the same between the

two groups. Finally, we sampled R given (T,G, ε) according to (1).
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We considered eight methods. First, we assumed that the 44 SNV locations were known

and applied the asymptotic version of our method, the method using called genotypes that

extends the multi-sample, single-locus genotyper seqEM (Martin et al. 2010) to allow for

different error rates in cases and controls, the Derkach method using genotype dosages, and

the method using true genotypes as a gold standard; we refer to them as New, CG, Dose,

and True. Note that, to ensure fair comparisons, we used the error rates from our method

in the implementation of the Derkach test, whose score statistic is then the same as our S in

(3). Thus, although Derkach et al. used a slightly different variance estimator for the score

statistic, New and Dose are asymptotically equivalent. Next, we considered the more realistic

case that the SNV locations are unknown. We applied our method including the screening

and bootstrap procedures and refer to it as New-SB. While this method aims to maximize the

set of true SNVs, it may also include a sizable number of monomorphic loci that can adversely

affect the power of association testing. We thus explored a modification of New-SB, which

adds a thresholding step that excludes loci with estimated MAFs < (2n)−1 and is referred

to as New-STB. The threshold of (2n)−1 corresponds to the MAF of a singleton variant and

can effectively remove the majority of monomorphic loci that accidentally pass the screening

algorithm, although at a cost of potentially losing some true singletons. In addition, we applied

the method of called genotypes and the Derkach method based on loci that were screened in

and refer to them as CG-S and Dose-S.

We focused on the weighted burden test of SNVs with MAFs ≤ 5%, in which each SNV is

inversely weighted by
√
πj(1− πj) (Madsen and Browning 2009; Lin and Tang 2011); results

of the unweighted test are provided in Supplemental Materials. We first evaluated type I error

of the burden test using the aforementioned methods and summarized the results in Table

1. All of the new methods (New, New-SB, New-STB) have correct type I error, regardless

of how different the sequencing depths and error rates are between cases and controls. The

genotype calling methods (CG, CG-S) generally have inflated type I error when the average

depths are different between cases and controls. Their type I error tends to be inflated even
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when the average depths are the same but there are random differences in individual regions

between cases and controls; the inflation can be seen more clearly in Supplemental Table S1

which pertains to the unweighted test. Only when cases and controls have exactly the same

sequencing feature at every locus, which can be achieved by sequencing cases and controls

together, should the genotype calling methods have correct type I error (results not shown).

The Derkach approach worked well when the SNV locations are known, but its type I error rate

can be as much as 88 times the nominal level when the locations are unknown. In Table 2, we

give additional results on the behavior of our test statistics under the null hypothesis. We see

that the test statistic in the presence of screening is negatively biased from zero when controls

have lower average depth than cases, which confirms the need for our bootstrap test. We also

see in Table 2 that, when the average error rate is high, the screening procedure screened in

a large number of monomorphic loci, and that the thresholding procedure effectively removed

many such loci. Finally, we see that the bootstrap procedure accurately estimated the number

of truly polymorphic loci. Supplemental Figure S1 shows that the MLEs of error rates are

more dispersed than the true error rates (especially contain too many zeros when the average

is 0.02%), the EB estimator imposed a strong shrinkage effect, and that our adjusted EB

estimator accurately recovered the true distribution. Supplemental Figure S2 shows that,

when the average error rate is 1%, the monomorphic loci that were screened in are typically

associated with small π̃’s, the majority of which are smaller than the threshold of (2n)−1.

Figure 2 contrasts the power of different methods. The thresholding strategy implemented

in New-STB significantly improved the power of New-SB at error rate of ∼1% and performed

as well as New-SB at ∼0.02%. In the presence of differential depths between cases and controls,

the power of CG-S and Dose-S can even decrease as the effect size starts to increase from zero

and both are substantially lower than the power of New-SB and New-STB at median and

high effect sizes. In the presence of equal average depths, the power of CG-S and Dose-S are

comparable to that of New-SB and New-STB at error rate of ∼0.02% and noticeably lower at

∼1% (even at high depth of ∼30×). Power curves pertaining to unweighted burden tests are
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displayed in Supplemental Figure S3, which shows similar patterns to Figure 2 but generally

lower power due to the weighted nature of our simulation setup.

UK10K data

The UK10K project was funded by the Wellcome Trust Sanger Institute in 2010 to help

investigators better understand the link between low-frequency and rare genetic changes and

complex human diseases by applying NGS on 10,000 people in the United Kingdom (UK). We

focused on the samples collected by the Severe Childhood Onset Obesity Project (SCOOP),

all of whom have severe, early onset obesity (i.e., body mass index Standard Deviation Scores

(Must and Anderson 2006) > 3 and obesity onset before the age of 10 years). For controls, we

utilized the population-based cohort collected in the TwinsUK study (randomly excluding one

twin from each twinship) from the Department of Twin Research and Genetic Epidemiology

at King’s College London. Both cases and controls are UK-based populations and part of the

UK10K project. While the cases were whole-exome sequenced at average depth of 60×, the

controls were whole-genome sequenced at average depth of 6×.

We used SAMtools to generate the pileup files from the BAM files and extracted read count

data, filtering out reads that are PCR duplicates, that have mapping score < 30, that have

improperly mapped mates, or that have phred base-quality scores < 30. We restricted our

analysis to the consensus coding sequence gene sets (Pruitt et al. 2009) and further masked

repeat regions, regions covered by monomorphic read alleles, and regions not covered by any

reads, resulting in a total of ∼14 million loci genome wide. We recorded read count data for

these loci such that, for example, a locus covered by 10 reads of allele A and 1 read of C was

coded as A10C1. Read count datasets in this format are much more manageable than the

BAM files; our formatted, zipped files required only 126 GB of disk space, compared to ∼14

TB for the BAM files. We obtained data in this format for 784 cases and 1,669 controls. We

found that 87 cases had excessive read data that do not fit the binomial model (i.e., Q > 10)

and we excluded these subjects (plus 1 additional case which is possibly in the same batch
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as the 87 cases) from further analysis; see Supplemental Methods for more details. Thus the

analysis described here was based on 696 cases and 1,669 controls.

We considered two versions for the weighted burden test, one including all variants and one

including only variants that are annotated as “probably damaging” or “possibly damaging” by

PolyPhen (Adzhubei et al. 2013). We applied our methods, New-SB and New-STB, to scan all

genes for association with severe childhood onset obesity. We set Kmax = 10, 000, 000, which

is sufficient for detecting p-values that pass the exome-wide threshold, which is on the order of

10−6. The analysis of damaging variants took a total of 1,713 hours on an IBM HS22 machine

or equivalently 8.6 hours on 200 such machines in a computing cluster. We also applied the

genotype calling method (CG-S) and the Derkach method (Dose-S) as described in Simulation

Studies. Further, we analyzed the genotypes in the VCF files downloaded from the UK10K

website. These genotypes were called by SAMtools, filtered by GATK VQSR, and imputed by

Beagle (Browning and Browning 2009), by the UK10K investigators with cases and controls

being processed separately. We refer to this approach as CG-VCF.

We screened in a total of 474,508 loci, among which 465,967 (98.2%) loci passed our read-

based QC procedure. The 465,967 loci span over 16,318 genes; 431,311 passed the threshold of

(2n)−1, and 288,535 were estimated to be polymorphic. Considering damaging variants only,

238,753 loci were screened in and passed QC; 219,540 passed the threshold, and 143,822 were

estimated to be polymorphic. Note that the CG-VCF analysis was based on the same set of

465,967 loci, although some of them had been called monomorphic and were thus not included

in the VCF files. As a result, the CG-VCF analysis included 167,980 loci, of which 79,271

were predicted as damaging.

The quantile-quantile plots are displayed in Figure 3. The observed p-values for New-STB

and New-SB agree very well with the global null hypothesis of no association (genomic control

λ = 1), except at the extreme right tails. By contrast, the observed p-values for Dose-S, CG-S,

and CG-VCF show very early departures from the global null distribution, reflecting severe

inflation of type I error. Figure 4 shows that the test statistics are negatively biased from
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zero, which explained the poor performance of Dose-S.

Among all p-values generated by our methods, the smallest one, 2.0× 10−7, was obtained

for gene BTBD18 by New-STB using damaging variants only, and this p-value passed the

exome-wide significance threshold of 3.1 × 10−6 (0.05/16,318) after Bonferroni correction.

Looking into the raw read data on this gene, we found that among cases the WES resulted

in extremely low depth (∼0.34×). (This kind of regions is not uncommon; indeed, 1.9% of

all loci that were screened in have depth ≤1× in cases.) We found that at each of four loci

(57512143, 57512745, 57513287, and 57513568 when mapped to the hg19 reference genome),

there is a case individual covered by two reads and both are minor allele reads. These four

suggestive minor allele homozygotes made large contributions to the score statistic and drove

the gene-level association signal. As gene BTBD18 has also been found to over-express in

obese children elsewhere (NCBI GEO Profile ID: 64932244), it makes a plausible candidate

for childhood onset obesity. Table 3 lists BTBD18 and other top ten genes ranked by New-

STB using damaging variants. Note that the standard genotype calling approach (CG-VCF)

would have precluded BTBD18 from association analysis due to the low depth data in cases.

Using all SNVs, BTBD18 was also ranked highest by New-STB (results not shown), with the

same four loci driving the association signal, but the p-value did not pass the exome-wide

significance threshold because of the inclusion of other neutral variants.

Discussion

We have developed a robust and efficient approach to association testing of rare variants that

is based on analyzing raw sequencing reads directly, without calling genotypes. It has been

implemented in the publicly available software program TASER (Test of Association using

SEquencing Reads). The robustness and efficiency of our methods make them ideal for the

initial scan of association signals, where the precise genotypes are not of direct interest. Follow-

up studies can be conducted to sequence the identified candidate genes at high depth, in which

case the genotypes can be reliably identified and carefully examined for their functions.
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Our read-based procedure allows use of far more loci than methods based on calling geno-

types, because we do not filter out variants with low depth. For example, in analysis of the

UK10K data, we only filtered out 1.8% of loci that were screened in; our final analysis in-

cluded data from 465,967 loci. By contrast, the UK10K Statistics Group had to pare down

to only 132,984 loci in order to achieve accurate type I error in the standard genotype call-

ing approach (A Hendricks, pers. comm.), even though their analysis included almost 2,000

additional control participants from the Avon Longitudinal Study of Parents and Children

(ALSPAC).

When developing our methods, we made some simplifying assumptions. First, we assumed

independence (i.e., no LD) across rare variants when generating bootstrap replicates. This is

reasonable because rare variants typically do not exhibit strong LD with each other (Pritchard

2001; Pritchard and Cox 2002). However, if strong LD occurs, it is possible to generate SNVs

that have the same amount of LD as the original data by sampling haplotypes instead of

single SNVs. The SNVs in the bootstrap sample can be placed in the same order (by allele

frequency) as the original data.

Second, we assumed that base-calling errors are independent across loci. In reality, the

base-calling errors might be correlated due to factors such as library preparation and sequence

context. However, this assumption only affects the efficiency of our method, not its validity.

We also assumed that the errors are symmetric, i.e., the probability of a read for the major

allele being mis-called as the minor allele is the same as the probability of the minor allele

being mis-called as the major allele. For analyzing rare variant data, this assumption has a

negligible effect as rare variant homozygotes are extremely rare. Further, our methods estimate

error rates directly from the read data, and thus ignored phred scores that characterize the

base-calling quality and alignment scores that calibrate alignment quality. In our analysis of

the UK10K data, we filtered out reads with alignment scores < 30 and phred scores < 30. We

have shown in other work (unpublished) that phred scores and low-score reads can provide

additional information. It would be possible to include a model of the variability in error rates
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that is explained by base-calling and alignment quality scores in our current approach.

We also assumed that all variants are biallelic. This assumption is reasonable because only

a small fraction of SNVs have been verified to carry three or more alleles (Hodgkinson and

Eyre-Walker 2010). In analyzing the UK10K data, we deleted in advance all calls for bases

that differed from the two most frequent bases at every locus.

Finally, we do not account for confounders such as principal components for ancestry. In

the UK10K data, all samples are UK-based Caucasians and are therefore not expected to have

strong population stratification. It is also possible to extend our methods to allow confounders,

by generating bootstrap replicates that have the same amount of confounding as the original

data. We plan to describe such approaches in a subsequent report.

We have focused on the burden test in this article. Because our score statistic may not

have mean zero after screening, it is nontrivial to construct the sequence kernel association

test (SKAT) (Wu et al. 2011). A valid SKAT statistic requires the score statistic be properly

centered; we are currently developing methods to center the score statistic within our bootstrap

approach.

There is resurgent interest in generating NGS data for case-parent trio studies. It may

occur that individuals within a family are sequenced with different depths and error rates. For

example, the affected child may be sequenced with a technology that produces higher depth

and fewer errors. The standard transmission disequilibrium test (TDT) (Spielman et al. 1993)

and its extensions to rare variants (De et al. 2013) are very sensitive to genotyping errors and

tend to yield inflated type I error in the presence of sequencing differences within trios. We

are currently extending our read-based framework to trio studies.

In summary, we have developed a tool to perform association testing of rare variants that

allows the case and control samples to be sequenced using different platforms. We showed

that the proposed approach has correct type I error under various practical scenarios and is

more powerful than the genotype calling approach when the latter is valid. Using the UK10K

data, we demonstrated that the proposed approach has the potential to discover rare variants
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that are associated with complex human traits.

Data access

The URL for the software TASER is http://web1.sph.emory.edu/users/yhu30/software.html
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Figure legends

Figure 1. Flowchart of the proposed approach.

Figure 2. Power of the weighted burden test at the nominal significance level of 0.01. AR

is the attributable risk per SNV. True: method using true genotypes. New-SB: our method

including the screening and bootstrap procedures. New-STB: our method including the screen-

ing, thresholding, and bootstrap procedures. CG-S: method using called genotypes at loci that

were screened in by our screening algorithm. Does-S: method using genotype dosage at loci

that were screened in. Each power estimate is based on 1,000 replicates.

Figure 3. Quantile–quantile plots of −log10(p-values) for the weighted burden test using

damaging SNVs only (left side) and all SNVs (right side) in the analysis of the UK10K data.

The top three genes identified by New-STB using damaging variants only are marked as 1–

3. New-SB: our method including the screening and bootstrap procedures. New-STB: our

method including the screening, thresholding, and bootstrap procedures. Does-S: the Derkach

method using genotype dosage at loci that were screened in. CG-S: method using called geno-

types at loci that were screened in. CG-VCF: method using genotypes in the downloaded

VCF files

Figure 4. Distributions of the test statistic Z using damaging SNVs only (left side) and all

SNVs (right side) in the analysis of the UK10K data. The left and right histograms are based

on 15,659 and 16,318 genes, respectively.
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Table 1. Type I error of the weighted burden test at the nominal significance level of 0.01

Known SNVs Unknown SNVs
c1 c0 ε1 ε0 New CG Dose True New-SB New-STB CG-S Dose-S

6× 6× 0.02% 0.02% 0.010 0.011 0.009 0.009 0.011 0.011 0.011 0.009
30× 6× 0.02% 0.02% 0.010 0.055 0.009 0.009 0.010 0.010 0.033 0.161
30× 30× 0.02% 0.02% 0.009 0.010 0.009 0.010 0.010 0.010 0.010 0.010
30× 6× 0.02% 0.016% 0.011 0.061 0.010 0.011 0.009 0.009 0.029 0.143
10× 10× 1% 1% 0.008 0.010 0.008 0.009 0.011 0.008 0.012 0.011
30× 10× 1% 1% 0.008 0.037 0.008 0.010 0.011 0.008 0.358 0.878
30× 30× 1% 1% 0.010 0.011 0.011 0.010 0.011 0.009 0.012 0.012
30× 10× 1% 0.5% 0.011 0.024 0.011 0.010 0.011 0.008 0.379 0.702

c1 and c0 are average depths in cases and controls, respectively. ε1 and ε0 are average error rates in cases and
controls, respectively. New: asymptotic version of our method. CG: method using called genotypes. Dose: the
Derkach method using genotype dosage. True: method using true genotypes. New-SB: our method including the
screening and bootstrap procedures. New-STB: our method including the screening, thresholding, and bootstrap
procedures. CG-S: method using called genotypes at loci that were screened in by our screening algorithm.
Does-S: the Derkach method using genotype dosage at loci that were screened in. Each entry is based on 10,000
replicates.
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Table 2. Other simulation results for the weighted burden test under the null
hypothesis

New New-SB New-STB

c1 c0 ε1 ε0 Z Mp Z Ms M̂p Z Mst

6× 6× 0.02% 0.02% 0.025 19.9 0.017 47.6 19.7 0.020 46.0
30× 6× 0.02% 0.02% 0.177 21.3 -1.443 34.9 21.3 -1.533 34.0
30× 30× 0.02% 0.02% 0.010 22.6 0.008 25.5 22.4 0.009 25.1
30× 6× 0.02% 0.016% 0.201 21.3 -1.423 34.7 21.3 -1.511 33.9
10× 10× 1% 1% -0.013 20.5 -0.010 162.0 20.1 -0.008 62.9
30× 10× 1% 1% 0.027 21.4 -2.271 102.0 20.9 -1.150 38.6
30× 30× 1% 1% 0.004 22.4 0.001 55.4 22.1 0.001 28.0
30× 10× 1% 0.5% 0.018 21.6 -2.031 89.7 21.2 -0.849 36.0

c1 and c0 are average depths in cases and controls, respectively. ε1 and ε0 are average
error rates in cases and controls, respectively. Z is the test statistic. Mp is the number

of true SNVs. M̂p is the estimated number of SNVs. Ms is the number of loci that were
screened in. Mst is the number of loci that were screened in and passed the threshold.
New: asymptotic version of our method. New-SB: our method including the screening and
bootstrap procedures. New-STB: our method including the screening, thresholding, and
bootstrap procedures. Each entry is based on 10,000 replicates.
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Table 3. Top ten genes for childhood onset obesity identified by New-STB using damaging variants in the analysis
of the UK10K data

New-STB New-SB Dose-S CG-S CG-VCF

Gene Chr L Mst p-value Ms M̂p p-value p-value p-value M p-value

BTBD18 11 390 9 2.0×10−7 13 6.3 4.0×10−7 7.1×10−2 9.8×10−1 NA NA
OLFM1 9 638 30 1.3×10−5 31 22.4 3.3×10−5 1.2×10−13 4.4×10−8 5 4.6×10−2

UBR4 1 5303 107 3.4×10−5 118 72.0 1.7×10−4 4.7×10−16 1.3×10−10 37 9.4×10−2

HTR3C 3 541 9 1.9×10−4 9 3.6 1.9×10−4 2.2×10−2 1.1×10−2 9 3.6×10−3

GP6 19 547 24 2.4×10−4 25 16.3 2.4×10−4 1.5×10−2 5.9×10−4 12 1.0×10−4

PPARGC1B 5 1141 36 3.5×10−4 38 19.5 3.5×10−4 8.8×10−2 1.7×10−2 20 1.5×10−2

ISX 22 272 6 4.1×10−4 8 5.2 2.1×10−3 1.9×10−2 2.7×10−3 6 1.6×10−3

ZNF439 19 863 15 4.5×10−4 16 13.0 3.8×10−4 2.3×10−6 5.7×10−6 7 6.1×10−2

LMCD1 3 506 14 5.0×10−4 14 7.7 5.0×10−4 3.4×10−7 8.7×10−6 6 4.7×10−3

CLDN3 7 305 24 6.8×10−4 24 12.8 6.8×10−4 4.6×10−13 5.5×10−4 4 3.8×10−3

Chr is the chromosome number. L is the total number of loci (base pair) in the gene. Ms is the number of loci that were screened

in. Mst is the number of loci that were screened in and passed the threshold. M̂p is the estimated number of SNVs. New-SB: our
method including the screening and bootstrap procedures. New-STB: our method including the screening, thresholding, and bootstrap
procedures. CG-S: method using called genotypes at loci that were screened in. Does-S: the Derkach method using genotype dosage at
loci that were screened in. CG-VCF: method using genotypes in the downloaded VCF files. NA is not available.
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