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ABSTRACT 
The morphology and function of organs depend on coordinated changes in gene 
expression during development. These changes are controlled by transcription factors, 
signaling pathways and their regulatory interactions, which are represented by gene 
regulatory networks (GRNs). Therefore, the structure of an organ GRN restricts the 
morphological and functional variations that the organ can experience –its potential 
morphospace. Therefore, two important questions arise when studying any GRN: what 
is the predicted available morphospace and what are the regulatory linkages that 
contribute the most to control morphological variation within this space. Here, we 
explore these questions by analyzing a small “3-node” GRN model that captures the 
Hh-driven regulatory interactions controlling a simple visual structure: the ocellar region 
of Drosophila. Analysis of the model predicts that random variation of model 
parameters results in a specific non-random distribution of morphological variants. 
Study of a limited sample of Drosophilids and other dipterans finds a correspondence 
between the predicted phenotypic range and that found in nature. As an alternative to 
simulations, we apply Bayesian Networks methods in order to identify the set of 
parameters with the largest contribution to morphological variation. Our results predict 
the potential morphological space of the ocellar complex, and identify likely candidate 
processes to be responsible for ocellar morphological evolution using Bayesian 
networks. We further discuss the assumptions that the approach we have taken entails 
and their validity. 
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INTRODUCTION 
The evolution of animals has resulted in a staggering diversity of forms. But what are 
the limits to morphological variation? The answer to this question requires considering 
that the shape of body parts is controlled by complex genetic programs operating 
during embryonic development. These programs integrate the action of many genes 
across growing fields of cells forming extensive developmental gene regulatory 
networks (“GRN”) (Arnone and Davidson, 1997). Therefore, if form is determined to a 
large extent by gene networks, it follows that these networks should restrict the 
potential evolutionary routes to morphological variation (Oster et al., 1988; Kauffman, 
1993; Arthur, 2006; Davidson and Erwin, 2006; Felix, 2012; Jaeger and Monk, 2014), 
an idea first formulated by C. H. Waddington (Waddington, 1957). Determining the 
potential range of phenotypes allowed by a particular GRN, however, is not 
straightforward, because gene networks are complex and their analysis often entails 
the combined use of model organisms and mathematical simulations. Examples of this 
combined approach in animal development are studies analyzing the contribution of 
gene network organization (or topology) to morphological variation of teeth (Salazar-
Ciudad and Jernvall, 2010; Harjunmaa et al., 2014), the number and pattern of digits in 
the tetrapod limb (Lopez-Rios et al., 2014; Raspopovic et al., 2014), the patterning of 
the Drosophila eggshell epithelium (Faure et al., 2014) or the segmentation  of the 
early Drosophila embryo ((Jaeger et al., 2004); see also (Felix, 2012) for a recent 
review).  
 
Another experimental system well suited to study the relation between a developmental 
GRN and morphological variation is the ocellar region in dipterans. The ocellar region 
is part of the visual system of insects and is morphologically simple: it comprises three 
single-lens eyes (the ocelli) located at the vertices of a triangular cuticle patch on the 
insect dorsal head (Figure 1A). Therefore, main quantitative traits in this system are the 
sizes of the ocelli and their separating (“interocellar”) distance. Interestingly, the ocellar 
region shows morphological variation in different fly species (Figure 1C,D), which 
permits to explore not only the phenotypic variation induced experimentally in one 
model organism (D. melanogaster), but also the variation generated during evolution 
across species. Recently, our group generated a GRN model of the ocellar region 
patterning (Aguilar-Hidalgo et al., 2013). In this GRN, the evolutionary conserved 
Hedgehog (Hh) signaling pathway plays a pivotal role, controlling the specification of 
the two major fates (retina/ocellus and interocellar cuticle), as well as their size and 
spacing (Royet and Finkelstein, 1996; Royet and Finkelstein, 1997; Blanco et al., 2009; 
Brockmann et al., 2011; Aguilar-Hidalgo et al., 2013; Dominguez-Cejudo and Casares, 
2015) (Figure 1B). One of the most interesting predictions derived from this GRN 
model was that random variations in parameter sets resulted in a non-random specific 
morphological space. Therefore, one potential application of the GRN model analysis 
could be the identification of the parameters controlling the paths to morphological 
variation within this restricted space. However, the GRN model in Aguilar-Hidalgo 
(2013) was very complex (1 partial differential equation and 12 ordinary differential 
equations with 68 parameters, of which 32 were studied) which makes this sort of 
analysis cumbersome.  
 
Here, we used a reduced “three-node” GRN that still recapitulates the expression 
patterns of key genes in the ocellar region. Our results indicate that the topology of the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 17, 2016. ; https://doi.org/10.1101/031948doi: bioRxiv preprint 

https://doi.org/10.1101/031948
http://creativecommons.org/licenses/by-nc-nd/4.0/


! 3!

ocellar GRN defines a particular potential morphological space for the ocellar complex. 
In this GRN, quantitative changes in parameter values seem sufficient to explain the 
quantitative morphological variation found in nature without the need of gene network 
rewiring. Our analysis further identifies likely candidate processes to be responsible for 
ocellar morphological evolution.  
 
 
 
MATERIALS AND METHODS 
Fly species and D. melanogaster strains 
Drosophila melanogaster (strain Oregon-R). D. gunungcola, D. lutescens, D. lulchrella, 
D. guttifera, D. prolongata, D. ustulata, D. deflecta, D. fuyamai, D. suzukii, D. 
biarmipes, D. pseudoobscura, D. bipectinata, D. ananassae, D. sechellia, D. 
mauritiana, D. yakuba, D. parabipectinata, D. kikkawai, D. teissieri, D. santomea, D. 
takahashii, D. eugracilis, D. simulans, D. orena, D. erecta, D. willistoni, Chymomyza 
pararufithorax were obtained as EtOH-preserved specimens from B. Prud’homme 
(IBDML, Marseille); D. virilis from J. Vieira (IBMC/I3S, Oporto); Megaselia abdita and 
Episyrphus balteatus (EtOH-preserved) from J. Jeager/K. Wotton (CRG, 
Barcelona/KLI, Vienna); Calliphora vicina from P. Simpson (U. Cambridge, 
Cambridge); Ceratitis capitata and Bactrocerus oleae (EtOH-preserved) from M. Averof 
(IGFL, Lyon). D. hydei (strain KS13) was established as a culture at the CABD 
(Seville). Megaselia scalaris specimens were captured at the CABD fish facility; Musca 
domestica and other dipteran specimens were captured from the wild. The 
phylogenetic range of this collection spans about 150 Million years (Myrs), with 
Phoridae (M.abdita and M.scalaris) having the oldest origin. The divergence time of 
Syrphidae has been set about 95 Myrs ago. The remaining species belong to 
Schizophora, with an estimated origin 75 Myrs ago (for an updated and detailed 
Dipteran phylogeny, please check (Wiegmann et al., 2011). 
In addition, the following D. melanogaster strains were used: en-Z (en[xho25]; Flybase: 
FBti0002246); a hh-GAL4, UAS-GFP::Hh strain was used to monitor the Hh expression 
domain in the ocellar complex (Callejo et al., 2008). 
 
Head cuticle preparation and measurements 
Dorsal head cuticle pieces were dissected from adult or late female pharate heads in 
PBS, and mounted in Hoyers’ solution:acetic acid (1:1), as described in (Casares and 
Mann, 2000). Images were obtained in a Leica DM500B microscope with a Leica 
DFC490 digital camera. Measurements were carried out using the line measurement 
tool of ImageJ (Rasband, 1997-2014). 
 
Immunostaining and imaging 
Immunofluorescence in eye imaginal discs and embryos was carried out according to 
standard protocols. Antibodies used were: mouse anti-Eya (10H6; from Developmental 
Studies Hybridoma Bank, University of Iowa (http://dshb.biology.uiowa.edu/) 1/200; 
rabbit anti-β-galactosidase antibody (Cappel), 1/1000; mouse anti-Ptc (gift from I. 
Guerrero, CBM-SO, Madrid), 1/100; rabbit anti-GFP (A11122, Molecular Probes), 
1/1000. Alexa-conjugated anti-Rabbit-488 and anti-mouse-555 secondary antibodies 
were used at a 1/1000 dilution. Image acquisition was carried out in a Leica SP2 AOBS 
confocal microscope. Images were processed with Adobe Photoshop CS5. 
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Model simulation  
To simulate the 3node-GRN ocellar region model we first assume that the Hh profile is 
in steady state. We can assume this as we want to compare signaling patterns with 
sizes of differentiated tissues in adult flies, thus the development of the ocellar region is 
in steady state. Additionally, we do not consider tissue growth, but instead the Hh 
profile grows in a fixed-size grid. We solved the reaction-diffusion equation for Hh 
(equation S1) in steady state analytically, the solution of which is a spatial dependent 
function Hh(x) (equation 1). This function serves as input to the three ordinary 
differential equations that show the spatial pattern for PtcHh, CiA and En (see 
equations 2-4 in Fig. 2D). Due to the high coupling between the three equations, which 
makes the analytical study of these equations difficult, we solved this system 
numerically following a finite differences scheme. We impose homogeneous initial 
conditions for the three variables and run the simulation with a stop criterion satisfying 
stationary profiles to the three variables. Specifically, we use as stop criterion that the 
Norm-2 of difference between the profile of each variable and the previous one in the 
finite differences scheme is less than 0.01. The model was implemented using Matlab 
software.  
  
Parameters sensitivity analysis and phenotypic phase space  
To perform the parameters sensitivity analysis we run simulations in the model fixing all 
the parameters to a control value but one, which is randomized over two orders of 
magnitude around its control value. This process is repeated for each parameter. The 
resulting CiA pattern of the simulations (A) is compared to the pattern obtained by the 
control set of parameters (B). We measure the Euclidean distance (λ) between the two 
normalized patterns to obtain a goodness value for the randomized simulation (eq. 6).   

                                                                          (6)  

where ai and bi are the components of vectors A and B, respectively.   
 
The distance distributions are shown in Fig. S1 (considered as complementary 
distance, 1-λ) for all the parameters. From this analysis we can extract important 
information about which parameters are more sensitive or more insensitive to 
variations away from the control parameter values. A complementary distance value of 
0.8 was selected as a “goodness” threshold, as every pattern checked for a parameter 
set with a complementary distance value equal or higher to this value fits the target 
ocellar pattern. Following this “goodness” threshold, every parameter whose distance 
distribution falls below 0.8 is considered “sensitive”. We find that all the parameters in 
the simplified model can be considered as sensitive.  
 
To evaluate whether the simplified model shows a restricted phenotype space of the 
ocellar region, we performed simulations (N=9000) with randomized parameters, 
modifying random seeds, within three goodness intervals 1-λ≥0.8 (‘good’), 0.8>1-λ≥0.6 
(‘medium’) and 0.6>1-λ≥0.4 (‘bad’), (3000 simulations each) (Fig. 3A). Effective Hh 
diffusion coefficient D was varied in the following ranges: good=[0.068,0.109], 
medium=[0.068,0.010] and bad=[0.068,0.010] in µm2s-1. The effective turnover of Hh, 
βHh, was varied in the following ranges: good=[2.1,2.5], medium=[1.5,2.1] and 

 
λ = AB
 

= bi − ai( )2
i
∑
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bad=[1.0,1.5] in 10-4s-1. Figure S2 shows two morphospace samples of the 3node-GRN 
(A) and including parameters D and βHh (B). Both samples contain 9000 points each 
with the same random seed. 
 
Phenotypic Classification using Bayesian Networks (BNs) 
In this work, the same dataset of parameters is used to attempt the prediction of three 
types of phenotype class: OC size (OC), IOC size (IOC) and Near/Far (NF). Thus, 
three different classification problems are attempted with the same machine learning 
method. For each parameter set (instance) we calculated λCiA, λEn and (λCiA

2+λEn
2)1/2 for 

the class OC, IOC and NF respectively. In OC, values with λCiA<0 (λCiA > 0) received 
class value 0 (1). In IOC, values with λEn<0.15 (λEn ≥ 0.15) received class value 0 (1). 
And in NF, values with (λCiA

2+λEn
2)1/2 < 0.3 ((λCiA

2+λEn
2)1/2 ≥ 0.3) received class value 0 

(1). Learning takes place in the following way: 
1. The instances in the dataset are divided in ten subsets. Each subset must have 

a collection of instances that is representative of the whole dataset. 
2. Subset 1 is chosen as a Test subset, while the remaining subsets are used to 

train the learning method. 
3. The machine learning method takes the training subset and infers the 

relationship between parameters needed to determine the phenotype class for 
every instance. 

4. This learning process is then validated using the test subset, comparing the 
actual phenotype classes with the ones predicted by the machine learning 
method. The success rate (percentage of classes correctly predicted) is called 
predictive accuracy. 

5. Steps 2-4 are repeated using each one of the 10 subsets as test subsets, while 
the other 9 subsets are used as training subsets in each case. This system of 
swapping subsets as tests is called 10-fold cross validation. It is used to 
increase the chances of having a representative test sample. 

6. The 10 test predictive accuracies obtained from this repetition are averaged, 
giving a final predictive accuracy for this method, using this dataset. 

 
A BN learns from the data provided by arranging the parameters in an ascending 
network, where the relative probability between parameters is established. Thus, the 
heuristics of BN returns a network of relative probabilities between parameters. 
Parameters are related to one another by probability distributions, according to the 
frequency (combined or not), with which a certain parameter has a certain value. For 
example, in order to establish the statistical relationship between a parent parameter 
and a child parameter, the question being asked is: provided that this child parameter 
(for this particular instance) has a certain value X, what range of values are expected 
on this parent parameter, and what probabilities are assigned to those ranges. These 
probabilities are expressed with the basic formula of Bayes’ Theorem: 
Knowing: 

• The frequency P(Y) with which a parent parameter has a value Y. 
• The frequency P(X) with which a child parameter has a value X. 
• The relative frequency P(X|Y) with which, having Y in the parent parameter, we 

have X in the child parameter. 
We can obtain the relative frequency P(Y|X) with which, having X in the child 
parameter, we have Y in the parent parameter, according to: 
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As we climb up the network of parameters, these ranges and probabilities are refined 
in accordance to an optimal classification, thus maximizing the predictive accuracy. 
The final inference is made from the topmost parameter or parameters, to the class. 
This is when the network class is decided. The connections in these networks are 
averaged in one final network that represents the overall connections of the 
parameters of a certain dataset, needed to correctly classify instances. Since, in this 
work, the aim is to classify three different phenotypic classes using the same set of 
parameters, it follows that three networks (one per classification problem) were 
obtained from the BN method. 
 
A BN, as represented in this work (see Figure 4B), is read from the bottom up. At the 
top of the network lies the phenotype class. Parameters on higher levels of the network 
are considered as parents of the parameters immediately below. Parameters are 
related to one another by probability distributions, according to the frequency 
(combined or not), with which a certain parameter has a certain value (or lies within a 
certain interval). As we climb up the network of parameters, the intervals and 
probabilities are refined in accordance to an optimal classification, thus maximizing the 
predictive accuracy. The final inference is made from the topmost parameter or 
parameters, to the class. This is when the class is decided. Classification with 
Bayesian Networks was performed using WEKA 3.7.11 (Hall, 2009).  
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RESULTS 
 
A simplified GRN model recapitulates the ocellar pattern and predicts a specific 
morphological space for the ocellar region.  
The ocellar region (Figure 1A) arises from the fusion along the dorsal midline of the left 
and right cephalic primordia (often called “eye-antennal imaginal discs”; Figure 1B). In 
each primordium, a single Hedgehog (Hh)-producing domain provides cells with 
positional information, by generating a signaling gradient. Signaling activity can be 
visualized using the expression levels of patched (Ptc) as its readout (Figure 2A,D). 
This is so because Ptc, in addition to being the Hh receptor, is a positive target of the 
pathway –i.e. the levels of Ptc increase as the signal intensity increases (Chen and 
Struhl, 1996). Activation of the Hh pathway leads to the stabilization of the activator 
form of cubitus interruptus (CiA), the Gli-type transcription factor that mediates the 
nuclear transduction of the pathway (Alexandre et al., 1996). The Hh signaling gradient 
is then translated into two cell fates. At its highest levels, and basically coinciding with 
the Hh-producing cells, the pathway activates the expression of the transcriptional 
repressor engrailed (En). This leads to a pathway shut off, as En represses the 
transcription of ci and ptc. This signaling-Off region gives rise to the interocellar cuticle 
(IOC). Maintenance of En expression in the IOC region requires Delta (Dl)/Notch 
signaling (Aguilar-Hidalgo et al., 2013). Flanking the Hh-producing/En-expressing 
domain, graded Hh signaling results in the stabilization of CiA which, in turn, activates 
the expression of genes that specify the ocellar retinas, including eyes absent (eya) 
(Blanco et al., 2009) on both sides of the Hh-producing domain (Figure 2B). During 
metamorphosis, as the two cephalic primordia fuse, the two anterior Eya domains 
merge into the anterior (or medial), unpaired, ocellus (aOC), while the two posterior 
domains remain separate and form the two posterior (or lateral) ocelli (pOC). As 
mentioned above, the region in between the two Eya patches expresses the 
transcription factor engrailed (en) and form the intervening interocellar cuticle (IOC) in 
the adult (see Figure 1B). Therefore, the early patterning of the ocellar region entails 
the generation of basically two cell fates (OC and IOC), the control of their respective 
size, and their spacing into an “OC-IOC-OC” pattern.  
 
As mentioned, the evolutionary conserved Hedgehog (Hh) signaling pathway plays a 
pivotal role in these processes of fate assignment and size control. Although the 
pattern is bidimensional, it can be simplified as a monodimensional process along the 
anteroposterior axis (Aguilar-Hidalgo et al., 2013), and described by two variables, the 
lengths of the OC and the IOC distance (schematized in Figure 2D). A previous model 
of the detailed GRN, including 13 molecules (such as CiA) or molecular complexes 
(such as Ptc:Hh) as network’s nodes, predicted that the phenotypic space available to 
the GRN (i.e. the sets of OC and IOC lengths) was limited. This being so, the analysis 
of the model could identify the parameter, or subset of parameters with the largest 
impact on size variation. However the size and complexity of the model makes this 
analysis difficult. To make this analysis more tractable, we resorted to a simplified GRN 
model that retains critical genetic/molecular interactions and which we showed 
previously that recapitulates the ocellar pattern (Aguilar Hidalgo et al., 2015)(see 
Figure 2C). Pattern in this GRN is dependent on the specific topology of a core 
regulatory network motif containing an activator–repressor regulatory mechanism 
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describing the dynamics of 3 variables with 16 parameters, what we call the “3-node 
GRN” (Aguilar Hidalgo et al., 2015). We solved the model to find the steady state 
pattern –i.e. that is the final, stable pattern that is reflected in the adult ocellar complex. 
As the equations of the “3-node GRN” contain nonlinear terms, we chose to solve 
these numerically. Hh (equation 1) then serves as source for PtcHh complex 
production (Ptc being Hh receptor, equation 2), which activates the production of CiA 
(equation 3). CiA favors the maintenance of PtcHh and can activate expression of En 
(equation 4) and Eya, the two readouts of the model. En is a low-sensitivity Hh target 
and a repressor of the pathway components CiA and PtcHh (and therefore, of Eya). 
Above a certain concentration threshold ζEn, En is self-maintained (genetically, this 
step requires the Dl/Notch pathway (Aguilar-Hidalgo et al., 2013), equations 4 and 5) 
and becomes independent on the Hh signaling. Due to En being a low sensitivity 
target, En is only self-maintained in the zone of maximal Hh concentration that closely 
corresponds to the Hh-producing domain. The En-expressing domain gives rise to the 
IOC region. In regions adjacent to the Hh-producing domain, where the Hh 
concentrations are not enough as to activate En, CiA is stabilized and Eya expression 
is induced, generating the OC domains. Because Eya expression is induced by CiA, in 
the model CiA is used as a marker of OC identity. Therefore, the variables that define 
the morphology of the ocellar complex are lengths of the En and CiA domains, which 
represent the IOC and OC regions, respectively.  
 
In order to find the parameters for which small variations caused significant deviations 
from “control” OC and IOC lengths (see methods), that represents D. melanogaster, we 
first performed an individual sensitivity analysis for each of the 16 3node-GRN 
parameters. To find a metric for this deviation we calculated the distance between the 
control pattern and the patterns generated by varying each of the parameters. We 
established three thresholds for the complementary of this distance (1-λ): 1-λ≥0.8 
(‘good’), 0.8>1-λ≥0.6 (‘medium’) and 0.6>1-λ≥0.4 (‘bad’), with 1-λ≥0.8 giving the 
patterns closest to the control. This analysis showed that every parameter in the 3-
node GRN is sensitive to small variations, as their distributions mostly fall below the 
0.8-threshold (Figure S1). Then, we performed simulations using randomized values 
(from the ‘good’, ‘medium’ and ‘bad’ intervals) for every parameter simultaneously to 
generate a point (a “phenotype”) in the phase space. Therefore, this phase-space is a 
'phenotype space' or 'morphospace'. The axes of this phenotype space represent the 
deviations of the lengths of the CiA and En expression domains (λCiA, λEn) from the 
control (at (0,0)). For example, (-0.20, 0.25) would be an ocellar complex with smaller 
OC (λCiA= -0.20) and larger IOC (λEn= +0.25) than the control. We found that: (1) The 
simulations with randomized parameter sets show a non-random distribution, yielding a 
sort of “butterfly wing” pattern in the phenotype space (Figure 3A); In addition, (2) the 
model may yield very similar phenotypes even when the randomized parameters come 
from different goodness intervals (i.e. the results, expressed as a point (λCiA, λEn) in the 
morphospace, lie close to one another)  (Figure 3A). (3) However, we also find that the 
“goodness” of parameters biases the distribution of solutions in the morphospace. 
Thus, parameter values chosen from the “good” interval mostly result in larger OC than 
the control (i.e. positive λCiA), while “medium” and “bad” parameter values avoid larger 
OC AND smaller IOC values. In addition, globally considered, parameter variation in 
the 3node-GRN tends to yield ocellar regions with larger IOC (i.e λEn>0) (Figure 3A). 
Although our study focuses on the intracellular GRN driving the ocellar pattern, we 
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analyzed to what extent the variation of parameters affecting the gradient of Hh 
affected the shape of the morphospace. Specifically, we varied the effective Hh 
diffusion coefficient D and the effective turnover of Hh, βHh, as these parameters 
together define the gradient’s length scale λ=(D/βHh)1/2 (see Eq. 1). We found that the 
extended morphospace that resulted distributed “medium” and “bad” parameter 
spreads slightly further away from control values. However, globally, the extended 
morphospace is very similar to the 3-node GRN’s with a fixed Hh gradient (Figure S2). 
Therefore, the intracellular GRN determines, to a great extent, the ocellar complex 
phenotype space. In what follows we continue our analysis of the intracellular 3-node 
GRN without considering variations in the extracellular Hh gradient. 
 
Quantitative phenotypic variation of the ocellar region in different fly species. 
The study of the phenotype space allowed by the 3-node GRN predicted that 
simultaneous variation of all parameters (by assigning each parameter a random value 
within a certain interval; see Methods) should result in non-random phenotypes –i.e. 
the phenotypic space available for morphological variation is limited. To test whether 
this prediction agrees with the phenotypic variation observed in actual fly species, we 
measured the length of the anterior and posterior OC and the IOC distance in a sample 
of 41 fly species (Figure 3B). To account for body size differences, these 
measurements were normalized using the inter-anterior occipital bristle distance, as a 
proxy of head width. Only females were measured. The species set surveyed is not 
comprehensive across Schizophoran flies and is strongly biased towards Drosophilidae 
species close to Drosophila melanogaster, for which we had the easiest access to (see 
Materials and Methods). When plotted, the distribution of (λOC, λIOC), which represents 
the variation in the respective OC and IOC lengths (only pOC were used) relative to D. 
melanogaster, showed a pattern resembling the “butterfly wing” pattern predicted by 
the model (Figure 3B).  
 
In general, we find that species belonging to groups far away from Drosophilidae show 
the most divergent morphologies. Such is the case of Megaselia abdita (Phoridae, no. 
32 in Figure 3B), Episyrphus balteatus (Syrphidae, no. 40 in Figure 3B), or Musca 
domestica (Muscidae, no. 33 in Figure 3B). This qualitative similarity in distributions is 
best observed when the predicted and measured phenotypic spaces are overlapped 
(Figure 3C). Although the similarity noticed is purely qualitative and based on a limited 
sample of species, and therefore still has to be regarded as preliminary, we find it lends 
support to the idea that, in nature, the phenotypic variability available to the ocellar 
region is also restricted and follows similar patterns as those predicted by the model.  
 
Machine learning method finds parameter relations defining ocellar and 
interocellar sizes  
For each parameter set, the 3-node GRN yields a value for the OC and IOC lengths –
i.e. defines a point in the 'phenotypic space'. But does every parameter contribute 
equally to localize a point in this space or, instead, one parameter (or a subset of 
parameters) has a major contribution to determining the localization of this point -that is 
to morphological variation? If the latter were the case, the identification of this set of 
control parameters may point to genetic/molecular links of particular relevance in 
controlling the OC and IOC lengths.  
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In order to establish a relationship between the parameters in the 3-node GRN and the 
morphological variation of the ocellar region we can envision a number of potential 
approaches. A developmental genetics approach, without prior knowledge, would entail 
the systematic perturbation of the genetic links implicit in the 16 parameters of the 
model, alone and in combination. A quantitative genetics approach (QTL) would be 
capable of identifying important elements of the network, but it would be limited to 
cross-hybridizing species showing significant differences in ocellar morphology. In 
addition, a QTL approach could be capable of identifying causes for existent variation, 
not for all potential variation. From a numerical perspective, the full parameter space is 
vast. An alternative to dynamical model simulation analysis could be the use of 
classification methods to infer morphological variation directly from the randomized 
parameter vectors. One such method is Bayesian Networks (BNs) (Pazzani, 1996; 
Friedman et al., 1998; Keogh and Pazzani, 1999). A Bayesian Network (BN) is an 
acyclic, directed graph connecting a series of variables linked by their conditional 
probabilities (non-linked variables are independent from each other). These BNs can 
be used to compute the probability of a given output. In our case, the variables are the 
13 parameters of the 3-node GRN, and the output is whether a “phenotype” (a point in 
the (λCiA, λEn) plane) falls within a given region of this space. As we climb up the 
network of parameters, the conditional probabilities maximize the predictive accuracy 
(for a more detailed description of the BN learning method and classification, please 
see Methods).  Specifically, we used this method to try to identify relevant parameters 
for morphological variation. 
 
We subdivided the phenotypic space into three different morphological classes: (1) OC 
smaller or larger than the control (Left: λCiA<0 or Right: λCiA>0, respectively); (2) small or 
large IOC (Up: λEn<0.15 or Down: λEn≥0.15, respectively). And (3) “Near/Far” (N/F), 
which distinguishes between positions in the phenotypic space that are more or less 
similar (“near” or “far”, respectively) to the control. In this case we impose the same 
sign to the size variation of the OC and IOC -that is, large OC with large IOC, and small 
OC with small IOC. Specifically, a point is “near” the control (i.e. it is “similar”) if it is 
located inside a circumference with radius 0.3. If the point is located outside the 
circumference, it is classified as “far” from the control (see Figure 4A). Note that we 
consider only points with λEn≥0 due to the low number of points with λEn<0 (i.e. the 
model does not yield many cases of ocelli smaller than the “control”). We applied BN 
analysis to identify parameters which, when co-varied, localize points to one of these 
zones. For each class, the BN heuristics returned a network of relative probabilities 
between parameters, with very good classification results (90.35% for N/F, 96.23% for 
OC, and 94.58% for IOC). The analysis of the three networks, that establish a 
hierarchy of relations between parameters (in Figure 4B the networks includes the set 
of 8 parameters with the highest classification value), resulted in a number of 
observations. First, the three BNs show the same nodes in a similar hierarchy, despite 
the fact that they inform about different phenotype classes. This implies that the same 
genetic interactions (represented by parameters in the model) control the variation of 
different phenotypic classes. Second, the three top-most parameters in each BN 
suffice for a good classification. These three parameters include, with decreasing 
relevance, the one determining the transcriptional efficiency by which CiA activates Ptc 
expression (αCiA-PtcHh), the intensity of repression of CiA by En (αEn-CiA), and αEn-En, that 
controls en autoregulation.  
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To validate the BN results, we compared the morphospace generated when the three 
predicted control parameters (αCiA-PtcHh, αEn-CiA and αEn-En) were randomly co-varied with 
the morphospace resulting from the overlap of the three simulations generated when 
each of the parameters were varied individually. While the morphospace resulting from 
parameter co-variation recapitulated most of the butterfly wing pattern (Figure 4C1), 
the ones resulting from varying the parameters individually matched the butterfly wing 
pattern much more poorly (Figure 4C2). Still, covariation of the three top-ranked 
parameters missed the “right forewing” (i.e. λCiA>0, λEn>0). We sought among the five 
remaining parameters in the BNs the parameter or parameters, that when co-varied, 
showed the missing “wing”. We found that βEn, which correspond to the degradation 
rate of En, when co-varied with the three top parameters in the BNs yielded the 
"butterfly wing" pattern (Figure 4C3). Again, this pattern was just sketched when the 
four parameters were independently randomized and their patterns overlapped (Figure 
4C4). This analysis indicates that the control of morphological variations in the ocellar 
region requires the cooperation of four major parameters. In addition, we noted that, of 
the 16 parameters, those corresponding to non-linear terms in the model, such as Hill 
coefficients, have the least relevance in the classification in the three BNs (OC, IOC 
and N/F) (not included in the BNs in Figure 4). Finally, although similar, the exact 
topology of the three networks varies, with the BN for OC size being the most 
connected.  
 
DISCUSSION 
In this paper we have studied the ocellar GRN, as an example of gene network 
regulated by the Hh morphogen, to predict the range of available phenotypic space for 
morphological variation and tried to predict parameters within this network with a major 
effect in controlling that morphological variation. We have found that a simple 3-node 
GRN that recapitulates the pattern of the ocellar region predicts restrictions to 
variations in the size of the ocelli (OC) and the distance in between the ocelli (IOC). 
When measured, the distribution of OC and IOC lengths from a sample of dipteran 
species seemed to follow, qualitatively, the same distribution in the phenotypic space 
that the one predicted by the model. We take this result as lending support to the 
notion that the GRN structure indeed restricts the evolvability not only of the model’s 
output, but also of its real surrogate, as these restrictions would be reflected by the 
actual phenotypes found in nature. However, as we noted, this conclusion is tentative. 
First, because the sample of species is not sufficiently large and comprehensive across 
the higher dipterans. Second, because the morphologies in extant species may as well 
be the result of natural selection –i.e. the pattern of morphologies observed having 
been shaped by functional constraints, such as ocellar regions having an IOC length 
above a certain limit, to allow the aOC and pOC to scan separate regions of vision 
(however, for this particular example, we note that the model also predicts that too 
short IOC distances are unlikely). We believe that most likely the actual phenotypes 
have resulted from the action of natural selection of the advantageous phenotypes 
from the morphospace allowed by the GRN’s structure.  
 
To more precisely define the contribution of gene regulatory steps to shaping the 
ocellar morphospace we envision two approaches. A developmental genetics approach 
in which, by using a priori information of the most likely relevant parameters, the 
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morphological variation of allelic series in genes affecting those parameters is used to 
compare the predicted to the actual phenotypes measured in each allelic combination. 
A second approach would be a comparative one: to increase the size and breadth of 
the sample of dipteran species studied to examine how closely their ocellar 
morphologies map within the predicted “butterfly”-shaped morphospace, so that the 
closer the correlation, the more likely that the phenotypic range is determined by the 
GRN structure. 
 
Basic to our approach to studying the role that gene network structure has in 
controlling the evolvability of the ocellar region (as a model of a Hh-patterned organ) is 
the assumption that the GRN structure remains constant in the species we examine. 
This allows us to compare different morphologies generated by the same GRN 
structure through the sole quantitative variation of its parameters. Although this 
assumption may seem a strong one, we think it justified. The 3-node GRN comprises a 
set of Hh-related regulatory linkages that have been shown to be operating in other 
developmental contexts, including a Hh source and a steady state Hh gradient; the 
basic Hh signal transduction path hh!Ptc:Hh!CiA!Ptc:Hh; or the CiA!En–ΙCiA 
repression feedback. This likely also extends to the activation of retinal genes, such as 
eya, by the Hh signaling pathway –i.e. they can be considered conserved regulatory 
modules, or “kernels” (Davidson et al., 2003), and therefore they are likely to be 
invariant in the network. Even, if new nodes were to appear during evolution, it is 
conceivable that their effect could be incorporated as a quantitative variation of some 
of the parameters that define the network. For example, recent work (Dominguez-
Cejudo and Casares, 2015) has shown that the Six3-type transcription factor Optix is 
expressed in the aOC, and not in the pOC during development in D. melanogaster. 
During larval development the aOC primordium is smaller than the pOC primordium 
(DGM, FC, unpublished). One hypothesis is that Optix would modify some OC-
controlling parameters in the network leading to a smaller sized-aOC. If this were the 
case, Optix’s action could be modeled implicitly as the variation of one parameter 
(specifically affecting the aOC) without the need to add it explicitly to the network 
model. Therefore, the network would still be of use to explore the potential range of 
morphologies even if not containing explicitly all the playing genes and interactions, 
provided that these elements and interactions can be represented implicitly in the 
model equations, and that they do not alter the 3-node network’s structure. (Note that 
our 3-node model is symmetrical –i.e. does not consider potential regulatory 
differences between anterior- and posterior OC). We have circumscribed our analysis 
to dipterans as we can more confidently assume the conservation of the GRN 
structure. Whether this model is applicable to other insects depends on whether the 
ocellar GRN is conserved beyond dipterans in these groups. 
 
In principle, one of the advantages of the use of models is the possibility to extract 
information relevant to the behavior of the biological process modeled. If we accept the 
assumption that the GRN structure remains constant within higher Diptera (see above), 
an important point is to determine how parameter variation impacts morphological 
variation. The parameters in the model are surrogates of biochemical rate constants, 
including those for protein-protein interactions (i.e. activation of the Ptc receptor (as 
PtcHh) by its ligands), protein degradation and, most importantly, activating or 
repressing protein-DNA interactions between transcription factors and cis-regulatory 
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elements. As sequence variation is generated in a given population, a mixture of 
variants will be combined in each individual of this population. Therefore, it is of interest 
to analyze the combined effects of allelic variants (i.e. parameter variants), rather than 
of individual variants, on the final morphology of the system. Even in our relatively 
simple 3node-GRN, a comprehensive analysis of parameter co-variation entails long 
calculations. Although doable, we have opted to introduce an alternative approach: the 
use of Bayesian Networks to identify the most relevant parameters in defining a 
particular morphological class and their probabilistic relationship. This approach has 
been recently used to identify critical interleukins within the murine cytokine-hormonal 
network (Field et al., 2015). In our BN analysis, four parameters stand out as most 
relevant: αCiA-PtcHh, αEn-CiA, αEn-En and βEn. The first three are transcriptional regulatory 
steps. αCiA-PtcHh represents the activation rate of Ptc (which engages with Hh in an 
active PtcHh signaling complex) by the activator form of the Gli transcription factor ci: 
CiA. αEn-CiA reflects the repressing action of En on ci transcription (represented in the 
model as CiA repression), a regulatory step that controls the establishment of the IOC; 
and αEn-En, which maintains the IOC region in the CiA-repressed region. We propose 
that these parameters, jointly, may be responsible for most of the morphological 
variation seen in the ocellar region in different species.  
 
Another observation derived from the BN analysis is that variation in OC length is 
defined, at least probabilistically, by a more connected network than for the IOC length. 
This suggests to us that morphological variation of OC size is genetically more 
complex than that of the IOC. The “N/F” BN shows an intermediate complexity, as it 
reflects the phenotypic co-variation of OC and IOC. Finally, we noted that the eight 
parameters with significant contribution to defining morphological classes were linear 
terms in our model. The non-linear terms, that include, for example, the Hill constants 
have been shown to be required for the system’s stability (Aguilar Hidalgo et al., 2015). 
Therefore, from a modeling perspective, morphological variation is basically defined by 
the linear terms (transcriptional activations and repression and decay constants).  
 
This study, combining GRN modeling and machine learning with biological 
measurements, indicates that morphological variation in the ocellar region is limited by 
the specific topology of its GRN and identifies a very short list of biochemical 
parameters, mostly representing transcriptional regulatory steps, that jointly control 
such variation. These results reinforce the notion that, as a general principle, 
the potential for morphological variation of organs is limited by the specific regulatory 
interactions governing their development, and that morphological variation can be the 
results of combination of genetic variants that modify, simultaneously, several 
biochemical parameters within those interactions.  
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FIGURE LEGENDS 
 
Figure 1. Ocellar region structure. (A) Dorsal view of a Drosophila melanogaster 
female head. Anterior ocellus (“aOC”) and posterior ocelli (left and right “pOC”). Left 
and right interocellar distances (“rIOC” and “lIOC”) are marked in red. OC lengths are 
marked in blue. The distance between the anterior orbital bristles (“aOBd”, dashed 
green line) is used to normalize for head size. “IOC brisl.”: interocellar bristles. (B). 
Schematic representation of the dorsal fusion of the left and right head primordia. The 
aOC and the interocellar regions are formed by the fusion of the contralateral halves. 
The pOC remain separate. (C, D) Dorsal heads from D. ustalata and D. deflecta female 
adults, to scale. OC and IOC length differ. 
 
Figure 2. Patterning of the ocellar region primordium and the 3node-GRN. (A) 
Confocal image of an ocellar region primordium from a hh-GAL4, UAS-Hh::GFP D. 
melanogaster larva, stained for anti-GFP (Hh, green) and anti-Ptc (red). In this 
genotype Hh protein (Hh::GFP) is produced  from its normal domain of expression (see 
Materials and Methods). (B) A similar ocellar region primordium from a en-Z larvae, 
stained for anti-β-galactosidase (en-Z, green) and Eya (red). aOC, pOC and IOC mark 
the anterior ocellus, posterior ocellus and interocellar prospective regions, respectively. 
(C) The 3node-GRN. Links are marked in green (activating) or red (repressive). (D) 
Schematic representation of the larval ocellar region as a monodimensional row of 
cells. Hh-producing cells (white) generate a time-invariant Hh gradient (blue). Ptc acts 
as Hh-signaling readout. Although initially widespread, the final pattern of Ptc (red) is in 
two domains adjacent to those of En (green). In the Ptc-domains, the Hh pathway 
remains active (i.e. there is expression of CiA, red) and the expression of Eya, a retinal 
determination gene, is established (not shown). The two outputs of the model are the 
lengths of the OC (marked by CiA) and of the IOC (marked by En) regions. (E) List of 
equations formalizing the 3node-GRN. Hh concentration at the boundaries of the 
source of width ω, centered at position x=0, reads Hhb =αHh/2βHh(1-exp(ω/λ)). The 
model contains different parameter types: αx for the basal transcription rates, βx for the 
degradation rates, kx for the Hill equation transcriptional regulators and nx for the Hill 
coefficients. Subscript X-Y, with X and Y system variables, indicates a regulation from 
X to Y. For example, αEn-PtcHh is transcription rate parameter of the interaction from En 
to PtcHh. Parameter ζEn indicates the En concentration threshold upon which En is 
self-regulated (see equations 4 and 5). 

 
Figure 3. Predicted and measured phenotypic space. (A) Distribution of the 
phenotypic space defined by variations in simulated En profiles against variations in 
the simulated CiA profiles, to a profile marked as control. Different colors identify 
different parameter ranges for complementary distance in the parameter sensitivity 
analysis (see SFig1 for a full parameter sensitivity analysis): 1-λ=0.8 ('good', blue), 1-
λ=0.6 ('medium', red) and 1-λ=0.4 ('bad', yelow). (B) Distribution of IOC against OC 
sizes for a screening of 41 fly species. The ellipses defining each fly in the phenotypic 
space are centered in the average size value and their axes show the standard 
deviation from the mean. The colors of the ellipses show proportional opacity to the 
number of samples, varying from N=2 to N=14. The following species were not fully 
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classified: #1 Heleomyzidae sp., #2 Drosophila sp., #3 Apotropina sp. #4 Schyzophora, 
Brachycera, Acalyptratae, with complete subcosta, costal break, arista almost bare, #5 
Calyptratae, Muscoidea, Anthomyiidae. (C) Overlap between the phenotypic spaces for 
simulated and measured fly species.  
 
 
Figure 4. Bayesian Network (BN) analysis. (A) Classification of the phenotypic 
subspace (with λEn>0) according to the distance of the OC (λCiA) and IOC (λEn) lengths 
to the control. Horizontal line at λEn=0.15 delimits zones in the IOC size morphological 
subdivision. The phenotypes within the semicircle are considered similar (“near”) to the 
control value, while those outside the semi-circumference (centered at (λCiA=0, λEn=0) 
and radius of 0.3) are considered less so (“far”). (B) Bayesian networks for the three 
phenotypic classes: large/small OC (left), large/small IOC (middle) and ocellar regiones 
near/far from the control N/F (right). These networks show eight parameters with the 
greatest influence to define phenotypic space localizations. (C) Simulations of the 
3node-GRN randomizing the three top-most parameters predicted by the BN 
simultaneously (C1) and independently (C2), and including parameter βEn in a 
simultaneous (C3) and independent (C4) randomization.  
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