

Copyright owned by IEEE.
This manuscript is accepted for proceedings of IEEE Workshop on Biomedical Visual Search and Deep Learning,

Washington D.C., November, 2015 and is expected to become available on IEEEXplore

Learning structure in gene expression data using deep
architectures, with an application to gene clustering

Aman Gupta, Haohan Wang
Language Technologies Institute

School of Computer Science, Carnegie Mellon University
Pittsburgh, USA

amang@cs.cmu.edu, haohanw@cs.cmu.edu

Madhavi Ganapathiraju
Department of Biomedical Informatics

University of Pittsburgh
Pittsburgh, USA

madhavi@pitt.edu

Abstract — Genes play a central role in all biological
processes. DNA microarray technology has made it possible to
study the expression behavior of thousands of genes in one go.
Often, gene expression data is used to generate features for
supervised and unsupervised learning tasks. At the same time,
advances in the field of deep learning have made available a
plethora of architectures. In this paper, we use deep architectures
pre-trained in an unsupervised manner using denoising
autoencoders as a preprocessing step for a popular unsupervised
learning task. Denoising autoencoders (DA) can be used to learn
a compact representation of input, and have been used to
generate features for further supervised learning tasks. We
propose that our deep architectures can be treated as empirical
versions of Deep Belief Networks (DBNs). We use our deep
architectures to regenerate gene expression time series data for
two different data sets. We test our hypothesis on two popular
datasets for the unsupervised learning task of clustering and find
promising improvements in performance.

Keywords—gene expression; autoencoders; deep learning; gene
clustering

 INTRODUCTION

Genes and proteins play a crucial role in the physiology of
all cellular organisms. Thus, studying the behavior of genes
and their products under the influence of stimuli is an
important goal in biology. Genes influence each other via their
products like messenger RNA (mRNA) and proteins.
Measuring the amount of mRNA of genes in a system is a
useful way to quantitatively study the interdependence in a set
of genes. Fortunately, DNA microarray technology has
changed the field of genomics by providing a cost-effective
and fast mechanism to measure the mRNA expression levels of
thousands of genes in a single experiment. This gene
expression data has proved useful for a number of supervised
and unsupervised machine learning tasks. For example, gene
regulatory network inference is an open and challenging
problem that exploits gene expression data. Several methods
have been proposed to infer gene regulatory network inference
[1][2][3]. Another example is the clustering of gene expression
data to group similar genes together for better understanding of
interactions [4].

Gene expression data is consumed in the form of either
time-series expression of a number of genes, gene expression
profiles of different patients/organisms or the steady-state

expression values of genes under varying degrees of
perturbation. In the case of steady-state data, each perturbation
experiment and resulting gene expression vector is equivalent
to the gene expression profile of an individual organism. In this
paper, we propose using multiple samples to capture interesting
characteristics of the underlying distribution of gene expression
vectors. For example, the interaction between gene A and B
might be exhibited via high correlation in gene expression
values. To facilitate the task of learning interesting properties
of the input distribution, we turn to deep learning, a field that
has taken big strides over the last few years. Recent advances
have made it possible to use deep architectures to facilitate
supervised and unsupervised learning tasks. We explore using
deep architectures, trained using denoising autoencoders, for
the task of learning a low-dimensional representation of gene
expression profiles. Generative models like Deep Belief
Networks (DBNs) are well suited for this task [5][6], but are
difficult to train owing to difficulties in computing partition
functions. We propose stacking together layers of a special
variant of autoencoders, referred to as denoising autoencoders
(DAs) [7], to initialize a deep neural network. Denoising
autoencoders have proved useful for extracting features from
data by making the learned representation resistant to partial
corruption of the input. In the process of training, the denoising
autoencoder learns to “guess” missing or corrupted values. The
stacked version of this architecture is also referred to as stacked
denoising autoencoder (SDA) [8].

Once the network has been trained, we treat the low-
dimensional representation of latent input examples as a
collection. Since denoising autoencoders have proved
successful in learning features for tasks like image
classification [8], we claim that learned deep architectures
could generalize interesting characteristics of the underlying
input distributions. To test the hypothesis that the network has
learnt interesting characteristics of this distribution, we use the
collection of low-dimensional representations as an empirical
distribution and regenerate gene expression profiles. Since
gene clustering has important applications, we then test the
above-mentioned hypothesis by comparing raw input data and
regenerated data on the task of clustering. The performances of
both data on the task of clustering are compared with the help
of gold standard cluster labels for the genes under
consideration.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031906doi: bioRxiv preprint

https://doi.org/10.1101/031906

Copyright owned by IEEE.
This manuscript is accepted for proceedings of IEEE Workshop on Biomedical Visual Search and Deep Learning,

Washington D.C., November, 2015 and is expected to become available on IEEEXplore

BACKGROUND

Related work and motivation

Microarray data denoising and enhancement has received

considerable attention from the research community over the
past several years. An example is the usage of wavelet
transforms to enhance microarray images [11]. Missing value
imputation is another area of interest. Successful attempts
include using a Bayesian method for imputation of missing
values [9] and using a least squares based method [10].

Another initial work is [15], they applied the standard PCA
on gene expression data and studied the effectiveness of
principal components in capturing cluster structure. Their
results showed that knowledge captured by principal
components does not necessarily improve cluster quality. In a
recent work [20], denoising autoencoder is applied to
effectively summarize key features in breast cancer data.

In this work, we do not aim at removing noise from
microarray data. Rather, our objective is to learn interesting
patterns in the input distribution of gene expression profiles.
We aim to learn these interesting characteristics and generalize
them across all training samples. We also aim at demonstrating
the efficacy of using this enhanced data for a popular
unsupervised learning task involving clustering genes into
groups. For the task of enhancing gene expression data, we use
deep networks trained via denoising autoencoders.

We now describe the generic autoencoder device so as to
acquaint the reader about the specific properties of the deep
network.

The Autoencoder

Autoencoders are a class of neural networks that attempt to
learn a compact representation of data. Assume that an input
gene expression profile is represented by � � ��, ���, drawn
from a distribution 	 of expression profiles. The autoencoder
network first maps the
 – dimensional input � to a
representation � � ��, ���� via the following method:

 � �
��� � �� �1�

Here, f is a non-linear function like the sigmoid or tanh
(hyperbolic tan). � is a
� �
 dimensional matrix and � is a
bias term. Once this mapping has been performed, the
embedding is mapped back into an output z of d-dimensions,
the same shape as that of x. The mapping is done in the
following manner:

 � � ����� � ��� �2�
Here, � is again a non-linearity like sigmoid or tanh. �� is

a
 �
� dimensional matrix. More often than not, both sets of
weights are constrained such that �� � �. � is a
reconstruction of the input �, by first transforming to � and
then expanding/contracting back. The network is then trained
to minimize the average reconstruction error. The parameters
of this model are W, b and b'; and if one doesn’t use tied
weights, also W'.

Note that it is not necessary that
� � �. In general,
however, the hidden layer does not have higher dimensions
because of the problem of overfitting, unless regularization is
used. If
� �
, then the network can learn the identity
mapping and the latent representation generated will not be
very interesting. When the hidden layer is more compact than
the input layer and the function
 is linear, the hidden
representation is equivalent to performing Principal
Components Analysis (PCA) on the input [13]. Things start
becoming interesting when � is non-linear. In that case, the
network has a chance to minimize the reconstruction error by
opting to go into a non-linear space. Thus, the hidden
representation becomes different from PCA and can be viewed
as a low-dimensional coding of the input representation learned
via non-linear transformations.

The reconstruction of input can be cast as an optimization
problem. Among several popular loss functions, squared error
is popular:

 ���, �� � ||� � �||� �3�

 Another popular loss function is the cross-entropy of the
reconstruction:

 ���, �� � � !� log %� � �1 � !�� log�1 � %��
�

� � �

 �4�

Standard optimization algorithms like stochastic gradient
descent (SGD) can be used to optimize the loss function.

Autoencoders have been successfully used as initialization
blocks of deep networks [12] and for dimensionality reduction
[14].

METHODS

In this section, we propose using stacked denoising
autoencoders to initialize deep architectures. First, we present
the denoising autoencoder and its unique characteristics
including types of training noises. Then we formalize the deep
architecture used to learn low-dimensional encodings of the
input training examples. Subsequently, we describe generation
of samples from the architecture akin to generating samples
from architectures like deep belief networks. We describe the
deep architecture used to learn low-dimensional codes of gene
expression profiles. Finally, we assess the quality of these
samples on the task of clustering on gold standard labels.

A. Using the Denoising Autoencoder (DA) for gene
expression data

Autoencoders are trained to reconstruct input data using an
intermediate representation. Our objective is to extract
multimodal relationships and complex patterns in the
distribution of gene expression profiles without requiring
explicit knowledge about the domain.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031906doi: bioRxiv preprint

https://doi.org/10.1101/031906

Copyright owned by IEEE.
This manuscript is accepted for proceedings of IEEE Workshop on Biomedical Visual Search and Deep Learning,

Washington D.C., November, 2015 and is expected to become available on IEEEXplore

One strategy to force the network not to learn an identity

mapping is to constrain the hidden layer such that d’ < d. This
requires the network to learn a lossy compression of the input.
Another novel strategy to modify plain vanilla autoencoders is
to train the network to reconstruct partially corrupted input. In
this process, the network is forced to “guess”
missing/corrupted values. Autoencoders using this strategy are
referred to as Denoising Autoencoders [7]. Specifically, input �
is first corrupted (using a suitable corruption scheme) to
generate �'. An intermediate representation � can be generated
using the deterministic mapping � � ����' � ��, where
� and � are parameters of the mapping. As described in the
previous section, we can then reconstruct � � ���� � ���.
Unlike the strategy used in the previous section, the
reconstruction � uses �' instead of �. The training criterion used
is still the same:

����, �� � �1
(!� log %� � �1 � !�� log�1 � %��

�

� � �	�
�

�5�

�� is the function that minimizes the empirical risk over *

samples drawn from the distribution 	. The network is still
guided towards the clean signal �. But to for every step taken
towards lowering the cost of reconstruction, the network must
learn weights that help it fill-in missing or corrupted values in
the modified input.

The use of denoising autoencoders has met with
considerable success, since the intermediate representation
corresponds to useful and interesting features. Gene expression
profiles are generally available as expression values for a set of
genes. Learning the regulatory relationships between genes is

an important goal in systems biology, and expression profiles
have been extensively used for various inference algorithms.
However, analysis of domains like image data via deep
learning uses the spatial linkages of pixels. Generally, gene
expression data does not have such relationships. But we argue
that since the interdependencies between genes can be inferred
from expression values, gene expression profiles lend
themselves perfectly towards the task of estimating statistical
relationships in the empirical distribution 	.

Types of noise

Most methods used to enhance or denoise gene expression
data make some assumptions or use domain knowledge to
achieve satisfactory results. In this work, we make no such
assumptions and do not utilize any biological knowledge. We
consider some generic methods of corrupting input for training.
Among these, additive Gaussian noise ��' | � ~ Ν ��, -�� and
masking noise are popular. Masking noise involves setting a
fixed fraction of the bits of the vector � to zero. In this work,
we focus on using masking noise to corrupt the input. The
fraction of noise is controlled by the hyper-parameter ..

The Denoising Autoencoder vs PCA

As discussed in the previous section, denoising
autoencoders using non-linear transformation functions are
fundamentally different from performing Principal
Components Analysis on the input samples. PCA captures the
directions of maximum variance in the data in the linear space.
[15] demonstrates that performing PCA on gene expression
data does not necessarily improve quality of clustering. We
claim that the non-linear capabilities of DAs make them
capable of learning more complex relationships in the input
distribution. A demonstration of the same can be found in [14]
for the task of image reconstruction.

Fig. 1. Depiction of a stacked denoising autoencoder. For an n-encoder, there are 2n-1 hidden layers. Individual layers can be
pre-trained greedily before a final global fine-tuning is applied to the entire network.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031906doi: bioRxiv preprint

https://doi.org/10.1101/031906

Copyright owned by IEEE.
This manuscript is accepted for proceedings of IEEE Workshop on Biomedical Visual Search and Deep Learning,

Washington D.C., November, 2015 and is expected to become available on IEEEXplore

A deep architecture using multiple denoising autoencoders
parallels

Denoising autoencoders can be stacked together to form
stacked denoising autoencoders. Once the ith layer has been
trained, its output is used to train the (i+1)th layer. Subsequently
the entire deep network can be fine-tuned using a global loss
function. This technique of greedy layer-wise tuning followed
by global fine-tuning has yielded good results than using
random weights as a starting point for global optimization [16].

Fig. 1 represents a stacked denoising autoencoder. For an
n-deep SDA, there are (2n-1) hidden layers. The network can
be visualized as an encoding of input, followed by decoding.
The middle layer has the lowest dimensions and is known as
the bottleneck layer.

Drawing parallels to generative models

All transformations in an autoencoder-based network are
deterministic in nature, and thus autoencoders are not
generative models. However, they are similar to generative
models like the Deep Belief Networks (DBNs). Thus, we can
treat the higher-level representation of the training examples
used to train the network as a generative empirical distribution.
By successively decoding this representation using the
decoding layers, we can generate samples from this empirical
distribution. The regeneration of examples can help us compare
the performance of the network to the performance of raw
input data on supervised and unsupervised learning tasks. Our
hope is that adding noise to the network forces it to learning
specific properties of the input distribution. These properties
are crucial to the performance of supervised and unsupervised
learning tasks.

Once the network has learnt interesting characteristics of
the empirical distribution, our hope is that it has learnt to
generalize these properties across input examples. An example
of such a phenomenon can be found in [8], where a deep
network created using stacked autoencoders learns properties
of a distribution of images of digits. The network is able to fix
digits like 6 and 7 of the input distribution, strongly suggesting
that training using denoising autoencoders helped it generalize
specific properties of the input digit image distribution. We
argue that a similar phenomenon should be observed for gene
expression profiles.

Evaluating performance of deep networks using clustering

To measure the efficacy of the deep network in learning

properties of the input distribution, we adopt the approach used
by [15] and turn to the task of gene clustering. The task of gene
clustering has important applications, like the following:

• It is likely for genes involved in the same cellular
processes to be co-expressed. Since clustering favors
grouping co-expressed genes in the same cluster, it
becomes easier to study clusters of genes for their roles in
processes.

• Genes in the same cluster are likely to be similar in co-
expression.

• Genes clustered together are likely to be involved in a
regulator pathway. This is because co-expression is a
precursor to direct regulatory relationships.

We first cluster raw input using a fixed set of clustering

algorithms. We then cluster samples regenerated from the deep
network. Using pre-assigned cluster labels for all genes, the
clustering performance of both sets of data is compared. We
then report the performance of both sets of data on various
network configurations. We present the details of the exact
algorithm and clustering performance measure in the next
section.

EXPERIMENTS

In this section, we describe our experimental setup and the
details of datasets used. We also present a detailed explanation
of the criteria used for assessing the performance of the deep
architecture.

Datasets

TABLE I. PARAMETER SETTING FOR YEAST-DATA EXPERIMENTS

Parameter settings

Parameter Values used

Batch Size 4,8,12

Number of training epochs 2000,5000

Number of hidden nodes 4,5,6,7,8,9,10,11,12,13,14,15,16,17

Corruption level 0,0.05,0.1,0.15,0.2

Learning rate 0.05,0.1

To test our model on real-world data, we used two datasets

used by [15]. These datasets consist of time-series gene
expression for two different sets of genes for yeast. They also
include partition-clustering based labels for genes; each label
instance corresponding to the cluster that gene belongs to.

Salient features of both datasets are described below:

• Yeast cell cycle dataset 1

o A dataset capturing gene expression for the
yeast cell cycle.

o Consists of 17 time ticks for a set of 384
genes made available in [15].

o External cluster labels partition the 384
genes into 5 clusters.

• Yeast cell cycle dataset 2

o Consists of 17 time ticks for a set of 237

genes made available in [15].
o External cluster labels partition the 237

genes into 4 clusters.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031906doi: bioRxiv preprint

https://doi.org/10.1101/031906

Copyright owned by IEEE.
This manuscript is accepted for proceedings of IEEE Workshop on Biomedical Visual Search and Deep Learning,

Washington D.C., November, 2015 and is expected to become available on IEEEXplore

Evaluation criteria

To compare results of clustering against certain gold-
standard labels, we need a measure of comparing two separate
sets of cluster labels. Specifically, we need to qualitatively
compare two separate instances of partition-based clustering on
the same data set. We use the approach used in [15] and use the
Adjusted Rand Index [18][19]. The adjusted rand index takes
two sets of clusters, and checks whether every pair of items are
in the same cluster in both the sets of clusters or not. This
allows for it to compare two sets with different cardinalities as
well. The expected value of the adjusted rand index between
random sets of clusters is 0. It can take a maximum score of 1.
The reader is advised to peruse [18][19] for more details on the
adjusted rand index.

A high adjusted rand index score means that the clustering
result is in good agreement with the gold standard labeling.
We compare the adjusted rand index scores of different
datasets and report them in the following section.

Clustering algorithms

We consider only partition-based clustering algorithms for
evaluation purposes. Specifically, we use the k-means and the

spectral clustering algorithm. Both algorithms require the
number of clusters as input. Both algorithms were used via the
SciPy library in Python.

Hyperparameter tuning

Our experiments had a lot of parameters that required
tuning. We considered different factors like batch size,
number of training epochs, number of nodes in the hidden
layer, corruption level and learning rate for SGD. Choosing
the right set of parameters for a neural network is a difficult
problem. A general rule of thumb is to not let the size of the
hidden layer go below a certain threshold. This can be argued
by considering the lossy compression that is achieved with a
small hidden layer. Another rule of thumb used is to let the
size of the hidden layer be equal to he number of principal
components that capture the majority of the variance in the
data. The most popular method to choose hidden layer is k-
fold cross validation for a set of candidate hidden layer sizes.
Care must be taken, however, to avoid overfitting to training
data.

We noticed that the training error started settling after
1500 epochs, and chose a compatible number of training
epochs. We kept the learning rate to be low in order to observe
the convergence of the learning algorithm. We also kept the
batch size to be a low number in order to take many gradient
steps within a single epoch. Because denoising autoencoders
are generally used for dimensionality reduction, we did not let
the size of the hidden layer to be more than input layer size.
For corruption level, we chose a range of values from no
corruption to 20% corruption in the data. Since the datasets
under consideration were not very large, we considered all
possible combinations of the parameter values mentioned in

table 1, and report the best results. We observed that most of
the fluctuations in our results originated from changing the
hidden layer size and corruption level.

Implementation

Code for all experiments was written in the Python library
Theano [17]. All experiments were run on a machine with 2
Ghz of processing power and 16 GB of RAM. Since we were
able to empirically observe improvements in performance with
only one layer and training time for three layers was
significantly higher, we used only one hidden layer.

Fig. 2. Performance comparison of raw data of yeast dataset 1 and samples regenerated from the trained network on the task of
clustering.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031906doi: bioRxiv preprint

https://doi.org/10.1101/031906

Copyright owned by IEEE.
This manuscript is accepted for proceedings of IEEE Workshop on Biomedical Visual Search and Deep Learning,

Washington D.C., November, 2015 and is expected to become available on IEEEXplore

Our argument is that using more layers, while taking
phenomena like overfitting into account, will only improve
performance further, but a significant cost of computation
power and time. For all optimizations, we used symbolic
differentiation of Theano for gradient calculations and used
Stochastic Gradient Descent (SGD) to optimize the cross-
entropy objective function.

RESULTS

In this section, we discuss the results of experiments on
both Yeast datasets together. We consider various aspects of
the denoising autoencoder and their effects on clustering
performance. We also consider the performance of PCA
versus our methods.

Fig. 4. Performance comparison of raw data of yeast dataset 1 and principal components of data. The results compare
performance of raw data versus the first k components, or a random number of components from all principal components.

Fig. 3. Performance comparison of raw data of yeast dataset 2 and samples regenerated from the trained network on the task of
clustering.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031906doi: bioRxiv preprint

https://doi.org/10.1101/031906

Copyright owned by IEEE.
This manuscript is accepted for proceedings of IEEE Workshop on Biomedical Visual Search and Deep Learning,

Washington D.C., November, 2015 and is expected to become available on IEEEXplore

Raw data vs regenerated data

The results of experiments on both the yeast datasets are
presented in figs. 2 and 3. In both cases, it is clear that
regenerated data outperforms raw data. This can possibly be
explained by the unique training procedure of the architecture,
which involves corrupting data partially in order to force the
network to learn important relationships in the underlying
distribution.

PCA vs regenerated data vs raw data

The results of clustering with principal components are
presented in figure 4. We chose to compare the first k
components, and also the performance of randomly chosen
components, with the performance over raw input data. The
performance with principal components is quite poor compared
to both raw and regenerated data. We conclude that principal
components do not necessarily capture relationships among the
components of the input, and are not suitable to learn the
intricacies of the underlying distribution.

Effect of percentage of training noise

In both fig. 2 and fig. 3, it is clear that clustering
performance improves when at least 5 % noise is used. The
performance on using 0% noise, when the input is not
corrupted at all during training, is much less clear – it improves
in fig. 3 and does worse than raw data in fig. 2. However,
performance with any degree of noise is better than the
baseline performance of raw data, provided that enough
number of hidden nodes have been used. The distinction
between performances of different noise levels is not very
clear.

Effect of number of nodes in hidden layer

The results of fig.2 make it clear that clustering
performance improves as the number of nodes in the bottleneck
layer is improved. A possible reason for this to happen could
be the network’s ability to retain more information when the
number of nodes in the low-dimensional code is increased. A
similar trend is also observed for the second dataset in fig. 3,
although the trend is not as strongly evident.

CONCLUSIONS AND FUTURE WORK

Our experiments demonstrate the empirical effectiveness of
using deep networks as a pre-processing step for clustering of
gene expression data. Deep networks are initialized using
denoising autoencoders to learn interesting properties of gene
expression profiles. Clustering of genes using gene expression
data is an important task for research related to interactions and
regulation among genes. Thus, we empirically demonstrate the
advantage of using gene expression samples regenerated from
the low-dimensional codes for the task of clustering. We argue
that this process works because denoising autoencoders do not
merely perform the task of retaining information about the
distribution, but also generalize important and interesting
properties of the input distribution across all input samples.
This is made possible by the unique training strategy of
denoising autoencoders.

In our experiments, we demonstrate the efficacy of using
regenerated samples for the task of clustering genes into
groups. Our empirical results indicate that in general, even a

shallow network can outperform both raw data and PCA on the
task of partition-based clustering. This was observed
consistently across both datasets under consideration. In the
case of the first dataset, we observe that adding noise during
training significantly boosts system performance. On the other
hand, adding training noise to the second dataset does improve
system performance. However, the distinction between the
performances of different noise levels is much less clear. Since
we constrain the size of the hidden layer to be small, even
training without noise may occasionally help the network learn
interesting properties of the distribution. On the whole,
regenerated samples outscored raw data on the task of
partition-based clustering significantly.

In this work, we have demonstrated only one application of
regenerating samples from deep networks. We also use a fairly
simple architecture. In future work, we aim at using more
datasets and deeper architectures, pre-trained greedily followed
by global optimization. We also aim at using the low-
dimensional coding learned by the deep network as features for
supervised learning tasks like protein-protein interaction
prediction.

ACKNOWLEDGMENT

AG is grateful to Volkan Cirik for valuable discussions on
the capabilities of autoencoders. This work has been funded by
the Biobehavioral Research Awards for Innovative New
Scientists (BRAINS) grant R01MH094564 awarded to MKG
by the National Institute of Mental Health of National Institutes
of Health (NIHM/HIM) of USA.

REFERENCES
[1] Friedman, Nir. "Inferring cellular networks using probabilistic graphical

models."Science 303.5659 (2004): 799-805.

[2] Gardner, T. S., Di Bernardo, D., Lorenz, D., & Collins, J. J. (2003).
Inferring genetic networks and identifying compound mode of action via
expression profiling. Science, 301(5629), 102-105.

[3] Julius, Agung, Michael Zavlanos, Stephen Boyd, and George J. Pappas.

"Genetic network identification using convex programming."

Systems Biology, IET 3, no. 3 (2009): 155-166.

[4] Jiang, Daxin, Chun Tang, and Aidong Zhang. "Cluster analysis for gene
expression data: A survey." Knowledge and Data Engineering, IEEE
Transactions on 16, no. 11 (2004): 1370-1386.

[5] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast
learning algorithm for deep belief nets." Neural computation 18, no. 7
(2006): 1527-1554.

[6] Wang, Haohan, and Bhiksha Raj. "A Survey: Time Travel in Deep
Learning Space: An Introduction to Deep Learning Models and How
Deep Learning Models Evolved from the Initial Ideas." arXiv preprint
arXiv:1510.04781 (2015).

[7] Vincent, Pascal, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. "Extracting and composing robust features with denoising
autoencoders." In Proceedings of the 25th international conference on
Machine learning, pp. 1096-1103. ACM, 2008.

[8] Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-Antoine Manzagol. "Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising
criterion." The Journal of Machine Learning Research 11 (2010): 3371-
3408.

[9] Oba, Shigeyuki, Masa-aki Sato, Ichiro Takemasa, Morito Monden, Ken-
ichi Matsubara, and Shin Ishii. "A Bayesian missing value estimation
method for gene expression profile data." Bioinformatics 19, no. 16
(2003): 2088-2096.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031906doi: bioRxiv preprint

https://doi.org/10.1101/031906

Copyright owned by IEEE.
This manuscript is accepted for proceedings of IEEE Workshop on Biomedical Visual Search and Deep Learning,

Washington D.C., November, 2015 and is expected to become available on IEEEXplore

[10] Kim, Hyunsoo, Gene H. Golub, and Haesun Park. "Missing value
estimation for DNA microarray gene expression data: local least squares
imputation." Bioinformatics 21, no. 2 (2005): 187-198.

[11] Wang, X. H., Robert SH Istepanian, and Yong Hua Song. "Microarray
image enhancement by denoising using stationary wavelet
transform."NanoBioscience, IEEE Transactions on 2, no. 4 (2003): 184-
189.

[12] Bengio, Yoshua, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.
"Greedy layer-wise training of deep networks." Advances in neural
information processing systems 19 (2007): 153.

[13] Baldi, Pierre, and Kurt Hornik. "Neural networks and principal
component analysis: Learning from examples without local
minima." Neural networks 2, no. 1 (1989): 53-58.

[14] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the
dimensionality of data with neural networks." Science 313, no. 5786
(2006): 504-507.

[15] Yeung, Ka Yee, and Walter L. Ruzzo. "Principal component analysis for
clustering gene expression data." Bioinformatics 17, no. 9 (2001): 763-
774.

[16] Larochelle, Hugo, Dumitru Erhan, Aaron Courville, James Bergstra, and
Yoshua Bengio. "An empirical evaluation of deep architectures on
problems with many factors of variation." In Proceedings of the 24th
international conference on Machine learning, pp. 473-480. ACM,
2007.

[17] Bergstra, James, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. "Theano: A CPU and GPU math compiler
in Python." In Proc. 9th Python in Science Conf, pp. 1-7. 2010.

[18] Hubert, Lawrence, and Phipps Arabie. "Comparing partitions." Journal
of classification 2, no. 1 (1985): 193-218.

[19] Rand, William M. "Objective criteria for the evaluation of clustering
methods."Journal of the American Statistical association 66, no. 336
(1971): 846-850.

[20] Tan, J., et al. "Unsupervised feature construction and knowledge
extraction from genome-wide assays of breast cancer with denoising
autoencoders."Pacific Symposium on Biocomputing. Pacific Symposium
on Biocomputing. Vol. 20. 2015.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031906doi: bioRxiv preprint

https://doi.org/10.1101/031906

