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Abstract — Genes play a central role in all biological 
processes. DNA microarray technology has made it possible to 
study the expression behavior of thousands of genes in one go. 
Often, gene expression data is used to generate features for 
supervised and unsupervised learning tasks. At the same time, 
advances in the field of deep learning have made available a 
plethora of architectures. In this paper, we use deep architectures 
pre-trained in an unsupervised manner using denoising 
autoencoders as a preprocessing step for a popular unsupervised 
learning task. Denoising autoencoders (DA) can be used to learn 
a compact representation of input, and have been used to 
generate features for further supervised learning tasks. We 
propose that our deep architectures can be treated as empirical 
versions of Deep Belief Networks (DBNs). We use our deep 
architectures to regenerate gene expression time series data for 
two different data sets. We test our hypothesis on two popular 
datasets for the unsupervised learning task of clustering and find 
promising improvements in performance.  

Keywords—gene expression; autoencoders; deep learning; gene 
clustering 

 INTRODUCTION  

Genes and proteins play a crucial role in the physiology of 
all cellular organisms. Thus, studying the behavior of genes 
and their products under the influence of stimuli is an 
important goal in biology. Genes influence each other via their 
products like messenger RNA (mRNA) and proteins. 
Measuring the amount of mRNA of genes in a system is a 
useful way to quantitatively study the interdependence in a set 
of genes. Fortunately, DNA microarray technology has 
changed the field of genomics by providing a cost-effective 
and fast mechanism to measure the mRNA expression levels of 
thousands of genes in a single experiment.  This gene 
expression data has proved useful for a number of supervised 
and unsupervised machine learning tasks. For example, gene 
regulatory network inference is an open and challenging 
problem that exploits gene expression data. Several methods 
have been proposed to infer gene regulatory network inference 
[1][2][3]. Another example is the clustering of gene expression 
data to group similar genes together for better understanding of 
interactions [4]. 

Gene expression data is consumed in the form of either 
time-series expression of a number of genes, gene expression 
profiles of different patients/organisms or the steady-state 

expression values of genes under varying degrees of 
perturbation. In the case of steady-state data, each perturbation 
experiment and resulting gene expression vector is equivalent 
to the gene expression profile of an individual organism. In this 
paper, we propose using multiple samples to capture interesting 
characteristics of the underlying distribution of gene expression 
vectors. For example, the interaction between gene A and B 
might be exhibited via high correlation in gene expression 
values. To facilitate the task of learning interesting properties 
of the input distribution, we turn to deep learning, a field that 
has taken big strides over the last few years. Recent advances 
have made it possible to use deep architectures to facilitate 
supervised and unsupervised learning tasks. We explore using 
deep architectures, trained using denoising autoencoders, for 
the task of learning a low-dimensional representation of gene 
expression profiles. Generative models like Deep Belief 
Networks (DBNs) are well suited for this task [5][6], but are 
difficult to train owing to difficulties in computing partition 
functions. We propose stacking together layers of a special 
variant of autoencoders, referred to as denoising autoencoders 
(DAs) [7], to initialize a deep neural network. Denoising 
autoencoders have proved useful for extracting features from 
data by making the learned representation resistant to partial 
corruption of the input. In the process of training, the denoising 
autoencoder learns to “guess” missing or corrupted values. The 
stacked version of this architecture is also referred to as stacked 
denoising autoencoder (SDA) [8].  

Once the network has been trained, we treat the low-
dimensional representation of latent input examples as a 
collection. Since denoising autoencoders have proved 
successful in learning features for tasks like image 
classification [8], we claim that learned deep architectures 
could generalize interesting characteristics of the underlying 
input distributions. To test the hypothesis that the network has 
learnt interesting characteristics of this distribution, we use the 
collection of low-dimensional representations as an empirical 
distribution and regenerate gene expression profiles. Since 
gene clustering has important applications, we then test the 
above-mentioned hypothesis by comparing raw input data and 
regenerated data on the task of clustering. The performances of 
both data on the task of clustering are compared with the help 
of gold standard cluster labels for the genes under 
consideration.  
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BACKGROUND 

Related work and motivation 

 
Microarray data denoising and enhancement has received 

considerable attention from the research community over the 
past several years. An example is the usage of wavelet 
transforms to enhance microarray images [11]. Missing value 
imputation is another area of interest. Successful attempts 
include using a Bayesian method for imputation of missing 
values [9] and using a least squares based method [10].  

Another initial work is [15], they applied the standard PCA 
on gene expression data and studied the effectiveness of 
principal components in capturing cluster structure.  Their 
results showed that knowledge captured by principal 
components does not necessarily improve cluster quality. In a 
recent work [20], denoising autoencoder is applied to 
effectively summarize key features in breast cancer data.  

In this work, we do not aim at removing noise from 
microarray data. Rather, our objective is to learn interesting 
patterns in the input distribution of gene expression profiles. 
We aim to learn these interesting characteristics and generalize 
them across all training samples. We also aim at demonstrating 
the efficacy of using this enhanced data for a popular 
unsupervised learning task involving clustering genes into 
groups. For the task of enhancing gene expression data, we use 
deep networks trained via denoising autoencoders. 

We now describe the generic autoencoder device so as to 
acquaint the reader about the specific properties of the deep 
network. 

The Autoencoder 

Autoencoders are a class of neural networks that attempt to 
learn a compact representation of data. Assume that an input 
gene expression profile is represented by � � ��, ���, drawn 
from a distribution 	 of expression profiles. The autoencoder 
network first maps the 
 – dimensional input � to a 
representation � � ��, ���� via the following method:  

 
                                     � � 
��� � ��                                       �1� 

Here, f is a non-linear function like the sigmoid or tanh 
(hyperbolic tan). � is a 
� � 
  dimensional matrix and �  is a 
bias term. Once this mapping has been performed, the 
embedding is mapped back into an output z of d-dimensions, 
the same shape as that of x. The mapping is done in the 
following manner:  

                                   � � ����� � ���                                       �2� 
Here, � is again a non-linearity like sigmoid or tanh. �� is 

a 
 � 
� dimensional matrix. More often than not, both sets of 
weights are constrained such that �� �  �. � is a 
reconstruction of the input �, by first transforming to � and 
then expanding/contracting back. The network is then trained 
to minimize the average reconstruction error. The parameters 
of this model are W, b and b'; and if one doesn’t use tied 
weights, also W'. 

Note that it is not necessary that 
� �  �. In general, 
however, the hidden layer does not have higher dimensions 
because of the problem of overfitting, unless regularization is 
used. If  
� �  
, then the network can learn the identity 
mapping and the latent representation generated will not be 
very interesting. When the hidden layer is more compact than 
the input layer and the function 
 is linear, the hidden 
representation is equivalent to performing Principal 
Components Analysis (PCA) on the input [13]. Things start 
becoming interesting when � is non-linear. In that case, the 
network has a chance to minimize the reconstruction error by 
opting to go into a non-linear space. Thus, the hidden 
representation becomes different from PCA and can be viewed 
as a low-dimensional coding of the input representation learned 
via non-linear transformations. 

The reconstruction of input can be cast as an optimization 
problem. Among several popular loss functions, squared error 
is popular: 

                                         ���, �� � ||� � �||�                              �3� 
 

 Another popular loss function is the cross-entropy of the 
reconstruction: 

  ���, �� � �  !� log %� � �1 � !�� log�1 � %��
�

� � �

            �4� 

 

Standard optimization algorithms like stochastic gradient 
descent (SGD) can be used to optimize the loss function. 

Autoencoders have been successfully used as initialization 
blocks of deep networks [12] and for dimensionality reduction 
[14]. 

METHODS 

In this section, we propose using stacked denoising 
autoencoders to initialize deep architectures. First, we present 
the denoising autoencoder and its unique characteristics 
including types of training noises. Then we formalize the deep 
architecture used to learn low-dimensional encodings of the 
input training examples. Subsequently, we describe generation 
of samples from the architecture akin to generating samples 
from architectures like deep belief networks. We describe the 
deep architecture used to learn low-dimensional codes of gene 
expression profiles. Finally, we assess the quality of these 
samples on the task of clustering on gold standard labels. 

A. Using the Denoising Autoencoder (DA) for gene 
expression data 

Autoencoders are trained to reconstruct input data using an 
intermediate representation. Our objective is to extract 
multimodal relationships and complex patterns in the 
distribution of gene expression profiles without requiring 
explicit knowledge about the domain. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031906doi: bioRxiv preprint 

https://doi.org/10.1101/031906


 

Copyright owned by IEEE.  
This manuscript is accepted for proceedings of IEEE Workshop on Biomedical Visual Search and Deep Learning, 

Washington D.C., November, 2015 and is expected to become available on IEEEXplore  

 
One strategy to force the network not to learn an identity 

mapping is to constrain the hidden layer such that d’ < d. This 
requires the network to learn a lossy compression of the input. 
Another novel strategy to modify plain vanilla autoencoders is 
to train the network to reconstruct partially corrupted input. In 
this process, the network is forced to “guess” 
missing/corrupted values. Autoencoders using this strategy are 
referred to as Denoising Autoencoders [7]. Specifically, input � 
is first corrupted (using a suitable corruption scheme) to 
generate �'. An intermediate representation � can be generated 
using the deterministic mapping � � ����' � ��, where 
� and � are parameters of the mapping. As described in the 
previous section, we can then reconstruct � � ���� � ���. 
Unlike the strategy used in the previous section, the 
reconstruction � uses �' instead of �. The training criterion used 
is still the same: 

����, �� � �1
(   !� log %� � �1 � !�� log�1 � %��

�

� � �	� 
�

�5� 

 
�� is the function that minimizes the empirical risk over * 

samples drawn from the distribution 	. The network is still 
guided towards the clean signal �. But to for every step taken 
towards lowering the cost of reconstruction, the network must 
learn weights that help it fill-in missing or corrupted values in 
the modified input.  

The use of denoising autoencoders has met with 
considerable success, since the intermediate representation 
corresponds to useful and interesting features. Gene expression 
profiles are generally available as expression values for a set of 
genes. Learning the regulatory relationships between genes is 

an important goal in systems biology, and expression profiles 
have been extensively used for various inference algorithms. 
However, analysis of domains like image data via deep 
learning uses the spatial linkages of pixels. Generally, gene 
expression data does not have such relationships. But we argue 
that since the interdependencies between genes can be inferred 
from expression values, gene expression profiles lend 
themselves perfectly towards the task of estimating statistical 
relationships in the empirical distribution 	.  

Types of noise 

Most methods used to enhance or denoise gene expression 
data make some assumptions or use domain knowledge to 
achieve satisfactory results. In this work, we make no such 
assumptions and do not utilize any biological knowledge. We 
consider some generic methods of corrupting input for training. 
Among these, additive Gaussian noise ��' | � ~ Ν ��, -�� and 
masking noise are popular. Masking noise involves setting a 
fixed fraction of the bits of the vector � to zero. In this work, 
we focus on using masking noise to corrupt the input. The 
fraction of noise is controlled by the hyper-parameter .. 

The Denoising Autoencoder vs PCA 

As discussed in the previous section, denoising 
autoencoders using non-linear transformation functions are 
fundamentally different from performing Principal 
Components Analysis on the input samples. PCA captures the 
directions of maximum variance in the data in the linear space. 
[15] demonstrates that performing PCA on gene expression 
data does not necessarily improve quality of clustering. We 
claim that the non-linear capabilities of DAs make them 
capable of learning more complex relationships in the input 
distribution. A demonstration of the same can be found in [14] 
for the task of image reconstruction.  

Fig. 1. Depiction of a stacked denoising autoencoder. For an n-encoder, there are 2n-1 hidden layers. Individual layers can be 
pre-trained greedily before a final global fine-tuning is applied to the entire network. 
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A deep architecture using multiple denoising autoencoders 
parallels 

Denoising autoencoders can be stacked together to form 
stacked denoising autoencoders. Once the ith layer has been 
trained, its output is used to train the (i+1)th layer. Subsequently 
the entire deep network can be fine-tuned using a global loss 
function. This technique of greedy layer-wise tuning followed 
by global fine-tuning has yielded good results than using 
random weights as a starting point for global optimization [16]. 

Fig. 1 represents a stacked denoising autoencoder. For an 
n-deep SDA, there are (2n-1) hidden layers. The network can 
be visualized as an encoding of input, followed by decoding. 
The middle layer has the lowest dimensions and is known as 
the bottleneck layer. 

Drawing parallels to generative models 

All transformations in an autoencoder-based network are 
deterministic in nature, and thus autoencoders are not 
generative models. However, they are similar to generative 
models like the Deep Belief Networks (DBNs). Thus, we can 
treat the higher-level representation of the training examples 
used to train the network as a generative empirical distribution. 
By successively decoding this representation using the 
decoding layers, we can generate samples from this empirical 
distribution. The regeneration of examples can help us compare 
the performance of the network to the performance of raw 
input data on supervised and unsupervised learning tasks. Our 
hope is that adding noise to the network forces it to learning 
specific properties of the input distribution. These properties 
are crucial to the performance of supervised and unsupervised 
learning tasks.  

Once the network has learnt interesting characteristics of 
the empirical distribution, our hope is that it has learnt to 
generalize these properties across input examples. An example 
of such a phenomenon can be found in [8], where a deep 
network created using stacked autoencoders learns properties 
of a distribution of images of digits. The network is able to fix 
digits like 6 and 7 of the input distribution, strongly suggesting 
that training using denoising autoencoders helped it generalize 
specific properties of the input digit image distribution. We 
argue that a similar phenomenon should be observed for gene 
expression profiles.  

Evaluating performance of deep networks using clustering 

 
To measure the efficacy of the deep network in learning 

properties of the input distribution, we adopt the approach used 
by [15] and turn to the task of gene clustering. The task of gene 
clustering has important applications, like the following: 

• It is likely for genes involved in the same cellular 
processes to be co-expressed. Since clustering favors 
grouping co-expressed genes in the same cluster, it 
becomes easier to study clusters of genes for their roles in 
processes. 

• Genes in the same cluster are likely to be similar in co-
expression.  

• Genes clustered together are likely to be involved in a 
regulator pathway. This is because co-expression is a 
precursor to direct regulatory relationships. 

 
We first cluster raw input using a fixed set of clustering 

algorithms. We then cluster samples regenerated from the deep 
network. Using pre-assigned cluster labels for all genes, the 
clustering performance of both sets of data is compared. We 
then report the performance of both sets of data on various 
network configurations. We present the details of the exact 
algorithm and clustering performance measure in the next 
section.  

EXPERIMENTS 

In this section, we describe our experimental setup and the 
details of datasets used. We also present a detailed explanation 
of the criteria used for assessing the performance of the deep 
architecture. 

Datasets 

TABLE I.  PARAMETER SETTING FOR YEAST-DATA EXPERIMENTS 

Parameter settings 

Parameter Values used 

Batch Size 4,8,12 

Number of training epochs 2000,5000 

Number of hidden nodes 4,5,6,7,8,9,10,11,12,13,14,15,16,17 

Corruption level 0,0.05,0.1,0.15,0.2 

Learning rate 0.05,0.1 

 
To test our model on real-world data, we used two datasets 

used by [15]. These datasets consist of time-series gene 
expression for two different sets of genes for yeast. They also 
include partition-clustering based labels for genes; each label 
instance corresponding to the cluster that gene belongs to.  

Salient features of both datasets are described below: 

• Yeast cell cycle dataset 1 
 

o A dataset capturing gene expression for the 
yeast cell cycle. 

o Consists of 17 time ticks for a set of 384 
genes made available in [15]. 

o External cluster labels partition the 384 
genes into 5 clusters. 

 
• Yeast cell cycle dataset 2 

 
o Consists of 17 time ticks for a set of 237 

genes made available in [15]. 
o External cluster labels partition the 237 

genes into 4 clusters. 
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031906doi: bioRxiv preprint 

https://doi.org/10.1101/031906


 

Copyright owned by IEEE.  
This manuscript is accepted for proceedings of IEEE Workshop on Biomedical Visual Search and Deep Learning, 

Washington D.C., November, 2015 and is expected to become available on IEEEXplore  

Evaluation criteria 

To compare results of clustering against certain gold-
standard labels, we need a measure of comparing two separate 
sets of cluster labels. Specifically, we need to qualitatively 
compare two separate instances of partition-based clustering on 
the same data set. We use the approach used in [15] and use the 
Adjusted Rand Index [18][19]. The adjusted rand index takes 
two sets of clusters, and checks whether every pair of items are 
in the same cluster in both the sets of clusters or not. This 
allows for it to compare two sets with different cardinalities as 
well. The expected value of the adjusted rand index between 
random sets of clusters is 0. It can take a maximum score of 1.  
The reader is advised to peruse [18][19] for more details on the 
adjusted rand index. 

A high adjusted rand index score means that the clustering 
result is in good agreement with the gold standard labeling. 
We compare the adjusted rand index scores of different 
datasets and report them in the following section. 

Clustering algorithms 

We consider only partition-based clustering algorithms for 
evaluation purposes. Specifically, we use the k-means and the 

spectral clustering algorithm.  Both algorithms require the 
number of clusters as input. Both algorithms were used via the 
SciPy library in Python. 

Hyperparameter tuning 

Our experiments had a lot of parameters that required 
tuning. We considered different factors like batch size, 
number of training epochs, number of nodes in the hidden 
layer, corruption level and learning rate for SGD. Choosing 
the right set of parameters for a neural network is a difficult 
problem. A general rule of thumb is to not let the size of the 
hidden layer go below a certain threshold. This can be argued 
by considering the lossy compression that is achieved with a 
small hidden layer. Another rule of thumb used is to let the 
size of the hidden layer be equal to he number of principal 
components that capture the majority of the variance in the 
data. The most popular method to choose hidden layer is k-
fold cross validation for a set of candidate hidden layer sizes. 
Care must be taken, however, to avoid overfitting to training 
data.  
 

We noticed that the training error started settling after 
1500 epochs, and chose a compatible number of training 
epochs. We kept the learning rate to be low in order to observe 
the convergence of the learning algorithm. We also kept the 
batch size to be a low number in order to take many gradient 
steps within a single epoch. Because denoising autoencoders 
are generally used for dimensionality reduction, we did not let 
the size of the hidden layer to be more than input layer size. 
For corruption level, we chose a range of values from no 
corruption to 20% corruption in the data. Since the datasets 
under consideration were not very large, we considered all 
possible combinations of the parameter values mentioned in 

table 1, and report the best results. We observed that most of 
the fluctuations in our results originated from changing the 
hidden layer size and corruption level. 

Implementation 

Code for all experiments was written in the Python library 
Theano [17]. All experiments were run on a machine with 2 
Ghz of processing power and 16 GB of RAM. Since we were 
able to empirically observe improvements in performance with 
only one layer and training time for three layers was 
significantly higher, we used only one hidden layer.  

Fig. 2. Performance comparison of raw data of yeast dataset 1 and samples regenerated from the trained network on the task of 
clustering. 
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Our argument is that using more layers, while taking 
phenomena like overfitting into account, will only improve 
performance further, but a significant cost of computation 
power and time. For all optimizations, we used symbolic 
differentiation of Theano for gradient calculations and used 
Stochastic Gradient Descent (SGD) to optimize the cross-
entropy objective function. 

RESULTS 

In this section, we discuss the results of experiments on 
both Yeast datasets together. We consider various aspects of 
the denoising autoencoder and their effects on clustering 
performance. We also consider the performance of PCA 
versus our methods. 

Fig. 4. Performance comparison of raw data of yeast dataset 1 and principal components of data. The results compare 
performance of raw data versus the first k components, or a random number of components from all principal components. 

 

Fig. 3. Performance comparison of raw data of yeast dataset 2 and samples regenerated from the trained network on the task of 
clustering. 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031906doi: bioRxiv preprint 

https://doi.org/10.1101/031906


 

Copyright owned by IEEE.  
This manuscript is accepted for proceedings of IEEE Workshop on Biomedical Visual Search and Deep Learning, 

Washington D.C., November, 2015 and is expected to become available on IEEEXplore  

Raw data vs regenerated data 

The results of experiments on both the yeast datasets are 
presented in figs. 2 and 3. In both cases, it is clear that 
regenerated data outperforms raw data. This can possibly be 
explained by the unique training procedure of the architecture, 
which involves corrupting data partially in order to force the 
network to learn important relationships in the underlying 
distribution. 

PCA vs regenerated data vs raw data 

The results of clustering with principal components are 
presented in figure 4. We chose to compare the first k 
components, and also the performance of randomly chosen 
components, with the performance over raw input data. The 
performance with principal components is quite poor compared 
to both raw and regenerated data. We conclude that principal 
components do not necessarily capture relationships among the 
components of the input, and are not suitable to learn the 
intricacies of the underlying distribution. 

Effect of percentage of training noise 

In both fig. 2 and fig. 3, it is clear that clustering 
performance improves when at least 5 % noise is used. The 
performance on using 0% noise, when the input is not 
corrupted at all during training, is much less clear – it improves 
in fig. 3 and does worse than raw data in fig. 2. However, 
performance with any degree of noise is better than the 
baseline performance of raw data, provided that enough 
number of hidden nodes have been used. The distinction 
between performances of different noise levels is not very 
clear.  

Effect of number of nodes in hidden layer 

The results of fig.2 make it clear that clustering 
performance improves as the number of nodes in the bottleneck 
layer is improved. A possible reason for this to happen could 
be the network’s ability to retain more information when the 
number of nodes in the low-dimensional code is increased. A 
similar trend is also observed for the second dataset in fig. 3, 
although the trend is not as strongly evident. 

CONCLUSIONS AND FUTURE WORK 

Our experiments demonstrate the empirical effectiveness of 
using deep networks as a pre-processing step for clustering of 
gene expression data. Deep networks are initialized using 
denoising autoencoders to learn interesting properties of gene 
expression profiles. Clustering of genes using gene expression 
data is an important task for research related to interactions and 
regulation among genes. Thus, we empirically demonstrate the 
advantage of using gene expression samples regenerated from 
the low-dimensional codes for the task of clustering. We argue 
that this process works because denoising autoencoders do not 
merely perform the task of retaining information about the 
distribution, but also generalize important and interesting 
properties of the input distribution across all input samples. 
This is made possible by the unique training strategy of 
denoising autoencoders. 

In our experiments, we demonstrate the efficacy of using 
regenerated samples for the task of clustering genes into 
groups. Our empirical results indicate that in general, even a 

shallow network can outperform both raw data and PCA on the 
task of partition-based clustering. This was observed 
consistently across both datasets under consideration. In the 
case of the first dataset, we observe that adding noise during 
training significantly boosts system performance. On the other 
hand, adding training noise to the second dataset does improve 
system performance. However, the distinction between the 
performances of different noise levels is much less clear. Since 
we constrain the size of the hidden layer to be small, even 
training without noise may occasionally help the network learn 
interesting properties of the distribution. On the whole, 
regenerated samples outscored raw data on the task of 
partition-based clustering significantly. 

In this work, we have demonstrated only one application of 
regenerating samples from deep networks. We also use a fairly 
simple architecture. In future work, we aim at using more 
datasets and deeper architectures, pre-trained greedily followed 
by global optimization. We also aim at using the low-
dimensional coding learned by the deep network as features for 
supervised learning tasks like protein-protein interaction 
prediction.  
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