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Abstract1

Blindness has evolved repeatedly in cave-dwelling organisms, and investigating the loss of sight in cave2

dwellers presents an opportunity to understand the operation of fundamental evolutionary processes,3

including drift, selection, mutation, and migration. The observation of blind organisms has prompted4

many hypotheses for their blindness, including both accumulation of neutral, loss-of-function mutations5

and adaptation to darkness. Here wemodel the evolution of blindness in caves. This model captures the6

interaction of three forces: (1) selection favoring alleles causing blindness, (2) immigration of sightedness7

alleles from a surface population, and (3) loss-of-function mutations creating blindness alleles. We8

investigated the dynamics of this model and determined selection-strength thresholds that result in9

blindness evolving in caves despite immigration of sightedness alleles from the surface. Our results10

indicate that strong selection is required for the evolution of blindness in cave-dwelling organisms, which11

is consistent with recent work suggesting a high metabolic cost of eye development.12
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Introduction13

Blindness has evolved repeatedly across taxa in caves, creating nearly a thousand cave-dwelling species14

and many more sub-populations (Culver et al., 2000; Dowling et al., 2002; Bradic et al., 2012; Coghill15

et al., 2014). Surprisingly, many populations of blind individuals experience some level of immigration,16

which would be expected to prevent the fixation of blindness in a newly established population (Avise and17

Selander, 1972; Bradic et al., 2012; Coghill et al., 2014). Thus, blind cave-dwelling populations of typically18

sighted species pose an interesting challenge to our understanding of evolutionary biology. Namely, how19

does significant population differentiation evolve despite homogenizing immigration?20

Several hypotheses have been put forward to explain the evolution of blindness in cave-dwelling species.21

Darwin suggested that eyes would be lost by “disuse” (Darwin, 1859). We now consider this hypothesis the22

“neutral-mutation hypothesis”— randommutations can accumulate in genes or regulatory regions related23

to sight when, as in caves, there is no purifying selection to eliminate them. However, the accumulation24

of mutations causing blindness due tomutation pressure would take a long time to result in fixation of25

blindness in populations on its own (Barr, 1968). Thus, genetic drift has been proposed to accelerate26

the evolution of blindness due to mutation pressure (Kimura and King, 1979; Borowsky, 2015; Wilkens,27

1988). This hypothesis of relaxed selection appears to be supported by the observation of a high number28

of substitutions in putative eye genes in the blind forms of cavefishes (Hinaux et al., 2013; Protas et al.,29

2006; Gross et al., 2009). However, repeatedly developing blindness in cave populations simply by drift in30

isolation seems unlikely.31

Relaxing selection that maintains the eye, however, also allows for other agents of selection to act on32

this trait (Lahti et al., 2009). The “adaptation hypothesis” suggests that there is a cost to an eye; thus,33

individuals without eyes have greater fitness when eyes are are not helpful, resulting in the eventual34

eliminationof seeing individuals. This costmayeither come from the energy required todevelopa complex35

structure or due to the vulnerability of the eye (Barr, 1968; Strickler et al., 2007; Jeffery, 2005; Protas36

et al., 2007; Niven, 2008; Niven and Laughlin, 2008; Moran et al., 2015). Alternatively, positive selection37

may act on genes related to the eye if these genes act pleiotropically on traits that are beneficial in the38

dark. For example, in the Mexican tetra (Astyanax mexicanus) increased expression of Hedgehog (Hh)39

affects feeding structures, allowing better foraging in low light conditions (Jeffery, 2001, 2005). Increased40
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Hh signaling also inhibits pax6 expression, which results in eye loss during development (Yamamoto41

et al., 2004; Jeffery, 2005). Alternatively, cryptic variation may bemaintained in normal conditions and42

expressed as blindness only in case of stress, such as entry into the cave (Rohner et al., 2013). When the43

cryptic variation is “unmasked”, it is then exposed to selection and could become fixed in the population.44

Given that there is often gene flow from surface populations into caves, it seems that blind phenotypes45

should be lost unless selection for blindness is large (Avise and Selander, 1972). Recent work suggests a46

very high cost to developing neural tissue, including eyes (Moran et al., 2015). This cost, combined with47

pleiotropic effects, could lead to blindness despite immigration. However, the level of selection required48

to induce blindness in cave populations has not been quantified.49

Here, wemodel the effects of migration, selection, and mutation to determine the conditions required for50

the evolution of blindness. This model allows us to explore migration-selection-mutation balance. Where51

previous theory have explored this balancemore generally (Haldane, 1930; Wright, 1931, 1969; Hedrick,52

2011; Nagylaki, 1992; YeamanandOtto, 2011; YeamanandWhitlock, 2011; Bulmer, 1972), we address cavefish53

evolution specifically. The amount of selection required to oppose the force of immigration is high, but54

consistent with previous work onmetabolic costs in novel environments and selection in other species.55

Interestingly, drift only impacts blindness in the cave population in a limited range of combinations of56

selection, dominance, andmigration.57

Model and Analysis58

Assumptions59

We consider two populations: surface-dwelling and cave-dwelling. We are interested in determining60

when the cave population will evolve blindness, i.e. becomemostly comprised of blind individuals, as61

has occurred in numerous natural systems. We first assume that the surface and cave populations do62

not experience drift (i.e. populations are of infinite size). Additionally, immigration from the surface63

population into the cave affects the allele frequency in the cave, but emigration from the cave to the64

surface does not affect the surface population, as we assume that the surface population is significantly65
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larger than the cave. Generations are discrete and non-overlapping, andmating is random. We track a66

single biallelic locus, where 𝐵 is the seeing allele and where 𝑏 is blindness allele. The frequency of 𝑏 is67

denoted by𝑄 ∈ [0, 1] on the surface and 𝑞 ∈ [0, 1] in the cave. On the surface, we assume that blindness68

is strongly selected against, and 𝑄 is dictated by mutation-selection balance.69

Calculating the frequency of the blindness allele70

Within the cave, the life cycle is as follows. (1) Embryos become juveniles and experience constant,71

directional selection with relative fitnesses of 𝑤u�u� = 1 + 𝑠, 𝑤u�u� = 1 + ℎ𝑠, and 𝑤u�u� = 1, where 𝑠 ≥ 072

and ℎ ∈ [0, 1]. (2) Juveniles migrate into and out of the cave such that a fraction 𝑚 of adults come from73

the surface and 1 − 𝑚 from the cave, where 0 ≤ 𝑚 ≤ 1. (3) Adults generate gametes with one-way74

mutation, where 0 ≤ 𝑢 ≤ 1 is the probability that a functional 𝐵 allele becomes a non-functional 𝑏 allele.75

(4) Gametes unite randomly to produce embryos. Given this life cycle, we calculate the allele frequency of76

the daughter generation (𝑞′) via standard equations:77

𝑞u� =
(1 + 𝑠)𝑞2 + (1 + ℎ𝑠)𝑞(1 − 𝑞)

(1 + 𝑠)𝑞2 + 2(1 + ℎ𝑠)𝑞(1 − 𝑞) + (1 − 𝑞)2 selection (1a)

𝑞u� = 𝑞u�(1 − 𝑚) + 𝑄𝑚 immigration (1b)

𝑞′ = 𝑞u� + (1 − 𝑞u�)𝑢 mutation (1c)

Analysis of the change in allele frequency. The change in allele frequency in one generation is Δ𝑞 =78

𝑞′ − 𝑞, and each parameters influences it differently. Selection andmutation are directional forces, and79

increasing 𝑠 or 𝑢 increases Δ𝑞 for 0 ≤ 𝑞 ≤ 1. (The derivatives are non-negative.) Increasing ℎ causes80

selection to be more effective at low 𝑞, as rare 𝑏 alleles are exposed to selection, but less effective at high81

𝑞, as rare 𝐵 alleles are sheltered from selection. Increasing ℎ increases Δ𝑞 if 0 < 𝑞 < (1 + √1 + 𝑠)
−1

and82

decreases it if (1 + √1 + 𝑠)
−1

< 𝑞 < 1. (The derivative is positive below this threshold and negative83

above it.) Migration harmonizes the allele frequency in the cave to the surface allele frequency. Thus84

increasing 𝑚 increases Δ𝑞 for low 𝑞 and decreases Δ𝑞 for high 𝑞. (The derivative is positive only when85

0 ≤ 𝑞 < 𝑞u�(ℎ, 𝑠, 𝑄) ≤ 𝑄, where 𝑞u� is a function describing a threshold.) However, increasing 𝑄 increases86

Δ𝑞 for 0 ≤ 𝑞 ≤ 1. (The derivative is non-negative.)87
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Identifying equilibrium allele frequencies88

Themodel we have developed is an example of migration-selection balance (Wright, 1969; Hedrick, 2011;89

Nagylaki, 1992), extended to also include mutation. An equilibrium exists for this model when Δ𝑞 = 0. For90

small 𝑠, there is only one equilibrium, and it is near 0. For large 𝑠, there is only one equilibrium, and it is near91

1. Three equilibria will only exist for moderate levels of selection (Figure 1). If 𝑠 = 𝑚 = 𝑢 = 0, all forces of92

evolution are eliminated and Δ𝑞 = 0 for 0 ≤ 𝑞 ≤ 1. A lower bound for any valid equilibrium is u�u�(1−u�)+u�
u�(1−u�)+u�93

(Lemma 1). An upper bound for any equilibrium is 1 − 𝑚(1 − 𝑢)(1 − 𝑄) (Lemma 2). Furthermore, it is94

important to note that95

𝑄 ≤
𝑚𝑄(1 − 𝑢) + 𝑢
𝑚(1 − 𝑢) + 𝑢 ⟹ 𝑄 ≤ ̂𝑞 (2)

indicating that the equilibrium frequency in the cave will be greater than or equal to the allele frequency96

on the surface.97

Assuming 𝑠 > 0, the solution to Δ𝑞 = 0 are the roots of the following cubic polynomial98

𝑔(𝑞) = 𝐴𝑞3 + 𝐵𝑞2 + 𝐶𝑞 + 𝐷 = 0 (3)

where99

𝐴 = −𝑠(1 − 2ℎ)

𝐵 = 𝑠 (1 − 𝑚(1 − 𝑢)(1 − 𝑄) − ℎ (3 + 𝑢 − 𝑚(1 − 𝑢)(1 − 2𝑄)))

𝐶 = −(𝑚(1 − 𝑢) + 𝑢) + 𝑠ℎ (1 + 𝑢 − 𝑚(1 − 𝑢)(1 − 2𝑄))

𝐷 = 𝑄𝑚(1 − 𝑢) + 𝑢

There are three possible roots of this equation, corresponding to three possible equilibria. Depending100

on the parameter values, Equation 3may have three real roots or one real root and two imaginary roots.101

While the values of the roots of this polynomial can be expressed analytically, these equations are too102

complex to be helpful for understanding the system. For simplicity, we will let ̂𝑞 represent any possible103

equilibrium, and ̂𝑞u� ≤ ̂𝑞u� ≤ ̂𝑞u�, stand for the roots of Equation 3.104

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2016. ; https://doi.org/10.1101/031872doi: bioRxiv preprint 

https://doi.org/10.1101/031872
http://creativecommons.org/licenses/by-nc-nd/4.0/


Protected polymorphism. Rather than tackling the equilibria directly, we first demonstrate that the105

cave has a protected polymorphism. A protected polymorphism exists if the allele frequency moves106

away from both fixation and extinction, i.e. Δ𝑞 > 0 when 𝑞 = 0 and Δ𝑞 < 0 when 𝑞 = 1. For 𝑞 = 0,107

Δ𝑞 = 𝑄𝑚(1 − 𝑢) + 𝑢 and 𝑞 = 0 will be an equilibrium only if 𝑄𝑚 = 0 and 𝑢 = 0; otherwise Δ𝑞 > 0 at108

𝑞 = 0. For 𝑞 = 1, Δ𝑞 = −𝑚(1 − 𝑄)(1 − 𝑢) and 𝑞 = 1 will be an equilibrium if 𝑚 = 0, 𝑄 = 1, or 𝑢 = 1;109

otherwise Δ𝑞 < 0. Thus a protected polymorphism always exists except at the edge cases 𝑄𝑚 = 𝑢 = 0,110

𝑚 = 0, 𝑢 = 1, and𝑄 = 1. In biological terms, the cave population will be polymorphic despite directional111

selection for 𝑏 if there is some immigration from the surface population and the surface population is112

polymorphic.113

Validity of equilibria. An equilibrium is only valid in ourmodel if it is real and between [0, 1]; otherwise,114

it is not biologically interpretable in this system. Because there is a protected polymorphism, there115

will be either 1 valid, stable equilibrium, or 3 valid equilibria in a stable-unstable-stable configuration,116

depending on the parameter values. While we have not exhaustively determined the parameter ranges117

under which there will be only one valid equilibrium, we have determined that if ℎ ≥ 1/3 or if ℎ < 1/3118

and 𝑠ℎ > u�(1−u�)+u�
1+u�−u�(1−u�)(1−2u�) , there will be only one valid equilibrium (Lemma 3).119

We can also estimate the amount of selection required such that 𝑞 is an equilibrium (𝑔(𝑞) = 0, Equation120

3):121

𝑠u�(𝑚, ℎ, 𝑢, 𝑄) =
𝑚(1 − 𝑢)(𝑞 − 𝑄) − (1 − 𝑞)𝑢

𝑞 (𝑞 − 𝑞 (𝑞 + 𝑚(1 − 𝑄)(1 − 𝑢)) − ℎ(1 − 𝑞) (𝑚(1 − 2𝑄)(1 − 𝑢) − (1 − 2𝑞) − 𝑢) + 𝑞)
(4)

This equation is not valid for all 𝑚 ∈ [0, 1]. If the migration rate is low, 𝑚 < (1−u�)u�
(u�−u�)(1−u�) , no level of122

selection will make 𝑞 an equilibrium, as all equilibria will be greater than 𝑞. Similarly, if the migration rate123

is high,124

𝑚 >
(1 − 𝑞) (ℎ(1 − 2𝑞 + 𝑢) + 𝑞)

(1 − 𝑢) (ℎ(1 − 𝑞)(1 − 2𝑄) + 𝑞(1 − 𝑄))

no level of selection will make 𝑞 an equilibrium, as all equilibria will be less than 𝑞.125
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Dynamics and the evolution of blindness. The dynamics of the evolution of the cave population126

depend on the parameter values and the starting allele frequency, 𝑞0. If there is one equilibrium, then the127

frequency of 𝑏will evolvemonotonically towards it, i.e. 𝑞u� → ̂𝑞 as 𝑡 → ∞. If there are three equilibria, then128

the frequency of 𝑏 will evolve monotonically to ̂𝑞u� if 𝑞0 < ̂𝑞u� and to ̂𝑞u� if 𝑞0 > ̂𝑞u�.129

When the cave population is founded, its initial allele frequencywill likelymatch the equilibrium frequency130

on the surface (𝑞0 = 𝑄). Because 𝑄 < ̂𝑞 (Equation 2), the allele frequency in the cave will increase due131

to selection until it reaches the lowest equilibrium, i.e. 𝑞∞ = inf{𝑞 ∶ 0 ≤ 𝑞 ≤ 1 and Δ𝑞 = 0}. Whether132

blindness evolves in the cave depends on whether 𝑞∞ ≥ 𝑞∗, where 𝑞∗ is a researcher-chosen threshold133

for determining that the cave population is a “blind” population. For example, 𝑞∗ = 0.5 would specify134

that the blindness allele is the majority allele, and 𝑞∗ = 0.99 would determine that the blindness allele is135

approximately fixed. We can also focus on phenotypes, and let 𝑎 = 𝑞2 + 2𝑞(1 − 𝑞)ℎ measure the average136

blind phenotype in the cave; then137

𝑎∞ ≥ 𝑎∗ ⟹ 𝑞∞ ≥
√𝑎∗(1 − 2ℎ) + ℎ2 − ℎ

1 − 2ℎ

We define 𝑠∗ as the minimum level of selection required for cave population to become blind, given the138

other parameters, i.e.139

𝑠∗ = inf{𝑠 ∶ 𝑠 > 0 and 𝑞∞ ≥ 𝑞∗ ≫ 𝑄}

For simplicity, we will only consider values of 𝑞∗ much higher than the surface allele frequency. If there140

is one equilibrium, 𝑠∗ = 𝑠u�∗(𝑚, ℎ, 𝑢, 𝑄); however, if there are three equilibria, 𝑞u� will evolve to the lower141

equilibrium and 𝑞∞ ≈ 𝑄 ≠ 𝑞∗ (typically). Thus selection needs to be strong enough such that there is142

only one equilibrium; therefore,143

𝑠∗ ≈ inf{𝑠 ∶ 𝑠 > 0 and 𝑠 ≥ 𝑠u�∗(𝑚, ℎ, 𝑢, 𝑄) and Δ(𝑠, 𝑚, ℎ, 𝑢, 𝑄) < 0}

where Δ(𝑠, 𝑚, ℎ, 𝑢, 𝑄) is the discriminant of Equation 3. Figure 2 plots analytical solutions for 𝑠∗ based on144
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different thresholds. When 𝑚 ≫ 𝑢, the ratio 𝑠∗/𝑚 is roughly constant such that if 𝑞∞ ≥ 𝑞∗ then145

𝑠∗

𝑚 ≥ max
⎧{{
⎨{{⎩

𝑞∗ − 𝑄
𝑞∗(1 − 𝑞∗) (𝑞∗ + ℎ(1 − 2𝑞∗))

,
1 − 6𝑄

ℎ +
2𝑄 − 2√𝑄2 + ℎ𝑄 (1 − 3ℎ(1 − 3𝑄) − 6𝑄)

ℎ2

⎫}}
⎬}}⎭

(5)

See Appendix for derivation.146

Recessive Blindness147

In order to study the equilibria in more detail we limit subsequent work to a model where blindness is148

recessive (ℎ = 0). As we have previously shown the effects of varying ℎ, its impact on subsequent results149

can be inferred generally. First, we will simplify our model by assuming that 𝑢 ≪ 1 such that 1 − 𝑢 ≈ 1150

and151

Δ𝑞 ∝ 𝑠𝑞2 [1 − 𝑞 − 𝑚(1 − 𝑄)] + [𝑄𝑚 + 𝑢 − 𝑞 (𝑚 + 𝑢)] (6)

Weak-selection approximation. If selection is weak, then an equilibrium exists near 𝑞 = 𝑄. We use a152

second-order Taylor series at 𝑞 = 0 to determine the upper bound on 𝑠 for the presence of three equilibria153

(i.e. when selection is so strong that an equilibrium near 𝑄 does not exist). The second-order series154

allows us to determine the lower two equilibrium points; although, this approximation is inaccurate as q155

increases. This approximation gives us156

Δ𝑞 ≈ 𝑠(1 − 𝑚)𝑞2 − (𝑚 + 𝑢)𝑞 + 𝑚𝑄 + 𝑢 (7)

after assuming that 1 − 𝑄 ≈ 1. This equation has two roots, which are the lowest two of three total157

equilibria,158

̂𝑞u�,1 =
𝑚 + 𝑢 − √(𝑚 + 𝑢)2 − 4𝑠(1 − 𝑚)(𝑚𝑄 + 𝑢)

2𝑠(1 − 𝑚)

̂𝑞u�,1 =
𝑚 + 𝑢 + √(𝑚 + 𝑢)2 − 4𝑠(1 − 𝑚)(𝑚𝑄 + 𝑢)

2𝑠(1 − 𝑚)
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These two roots exist only if159

0 < √(𝑚 + 𝑢)2 − 4𝑠(1 − 𝑚)(𝑚𝑄 + 𝑢) ⟹ 𝑠 <
(𝑚 + 𝑢)2

4(1 − 𝑚)(𝑚𝑄 + 𝑢) (8)

which provides us with an estimate of the upper bound on 𝑠 for the presence of three equilibria.160

The derivative of Equation 7 is dΔu�
du� (𝑞) = 2𝑠(1 − 𝑚)𝑞 − (𝑚 + 𝑢), and a equilibrium will be stable if161

−2 < dΔu�
du� ( ̂𝑞) < 0. From this, it can be easily shown that ̂𝑞u�,1 is stable and ̂𝑞u�,1 is unstable.162

Strong-selection approximation. In order to determine the lower bound on 𝑠 for the presence of three163

equilibria, we assume that selection is strong enough such that 𝑢/𝑠 ≈ 0 and 𝑄/𝑠 ≈ 0. Therefore,164

Δ𝑞 ∝ −𝑞 [𝑞2 − [1 − 𝑚(1 − 𝑄)] 𝑞 + 𝑚/𝑠] (9)

and the equilibria can be described as165

̂𝑞u�,2 = 0

̂𝑞u�,2 =
1
2

⎛⎜⎜⎜
⎝

1 − 𝑚(1 − 𝑄) − √[1 − 𝑚(1 − 𝑄)]2 −
4𝑚
𝑠

⎞⎟⎟⎟
⎠

̂𝑞u�,2 =
1
2

⎛⎜⎜⎜
⎝

1 − 𝑚(1 − 𝑄) + √[1 − 𝑚(1 − 𝑄)]2 −
4𝑚
𝑠

⎞⎟⎟⎟
⎠

The latter two equilibria will exist only if166

𝑠 >
4𝑚

[1 − 𝑚(1 − 𝑄)]2

which provides us an estimate of the lower bound for the presence of three equilibria.167

The derivative of Equation 9 is dΔu�
du� (𝑞) = −3𝑞2 + 2 [1 − 𝑚(1 − 𝑄)] 𝑞 − 𝑚/𝑠, and it can be easily shown168

that ̂𝑞u�,2 is unstable and ̂𝑞u�,2 is stable.169
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Validity of approximations. By substituting ̂𝑞u�,1 and ̂𝑞u�,1 back into Equation 6, we obtain Δ𝑞 =170

−𝑠 ̂𝑞2 ( ̂𝑞 − 𝑄𝑚). Thus, Δ𝑞 ≤ 0, which indicates that ̂𝑞u�,1 overestimates ̂𝑞u� and that ̂𝑞u�,1 underestimates ̂𝑞u�.171

By substituting ̂𝑞u�,2 and ̂𝑞u�,2 back into Equation 6, we find that Δ𝑞 = 𝑄𝑚 + 𝑢(1 − ̂𝑞). Thus Δ𝑞 ≥ 0, which172

indicates that ̂𝑞u�,2 overestimates ̂𝑞u� and that ̂𝑞u�,2 underestimates ̂𝑞u�. However, the error in our approxima-173

tions is slight (Figure 3).174

Dynamics. Based on these approximations, the dynamics of the recessive-blindness system can be175

summarized as follows. First, there are three possible equilibria: ̂𝑞u� ≈ ̂𝑞u�,1, ̂𝑞u� ∈ [ ̂𝑞u�,1, ̂𝑞u�,2], and ̂𝑞u� ≈ ̂𝑞u�,2.176

Second, there are four possible equilibria configurations: 1, 2a, 2b, and 2c.177

Case 1, (u�+u�)2

4(1−u�)(u�u�+u�) < 4u�
[1−u�(1−u�)]2 : only one equilibrium exists, and it is stable. The population will178

always evolve towards it.179

Case 2, 4u�
[1−u�(1−u�)]2 < (u�+u�)2

4(1−u�)(u�u�+u�) : depending on the strength of 𝑠, this case may have one of three180

possible configurations:181

Case 2a, 0 ≤ 𝑠 < 4u�
[1−u�(1−u�)]2 : Only one equilibrium exists, ̂𝑞u�, and it is stable. The population will always182

evolve towards it.183

Case 2b, 4u�
[1−u�(1−u�)]2 < 𝑠 < (u�+u�)2

4(1−u�)(u�u�+u�) : All three equilibria exist; ̂𝑞u� and ̂𝑞u� are stable, while ̂𝑞u� is184

unstable. If the population starts below ̂𝑞u�, it will evolve towards ̂𝑞u�. If it starts above ̂𝑞u�, it will evolve185

towards ̂𝑞u�.186

Case 2c, (u�+u�)2

4(1−u�)(u�u�+u�) < 𝑠: only one equilibrium, ̂𝑞u�, exists, and it is stable. The population will always187

evolve towards it.188

Furthermore if 𝑞0 = 𝑄, the selection-threshold for blindness to be established in the cave is189

𝑠∗ ≈ max
⎧{
⎨{⎩

𝑚(𝑞∗ − 𝑄) − 𝑢(1 − 𝑞∗)
𝑞∗2 (1 − 𝑞∗ − 𝑚(1 − 𝑄))

,
(𝑚 + 𝑢)2

4(1 − 𝑚)(𝑚𝑄 + 𝑢)
⎫}
⎬}⎭

(10)

where 𝑞∗ is the allele-frequency threshold.190
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Finite-population simulations191

Constant migration. To investigate the impact of drift on our recessive-blindness model, we simulated192

diploid populations of size𝑁 = 1000 bymodifying our life cycle (Equation 1) to include a finite population:193

194

𝑞u� =
(1 + 𝑠)𝑞2 + 𝑞(1 − 𝑞)
(1 + 𝑠)𝑞2 + (1 − 𝑞2)

selection (11a)

𝑞u� = 𝑞u�(1 − 𝑚) + 𝑄𝑚 immigration (11b)

𝑞u� ∼ Binomial(𝑞u�, 2𝑁)/2𝑁 drift (11c)

𝑞′ = 𝑞u� + (1 − 𝑞u�)𝑢 mutation (11d)

Here the adult population consists of 2𝑁 alleles sampled with-replacement from the post-immigration195

gene pool.196

For every simulation, 𝑢 = 10−6, 𝑄 = 0.01, and 𝑞0 = 𝑄. We varied 𝑠 from 10−6 to 102 and 𝑚 from 10−8
197

to 1. We simulated 100 replicates for each combination of parameters; simulations were conducted for198

10,000 or 5,000,000 generations. For each set of parameters, we recorded the average 𝑞′ frequency across199

these 100 populations at specific time points.200

Our simulation results for finite populations are qualitatively similar to our analytical results for infinite201

populations. For high migration rates, the average allele frequency is similar to the infinite model, except202

that drift allows some populations that have three equilibria to evolve blindness (Figure 4B). However, at203

lowmigration rates (𝑚 < 𝑢/𝑄 = 10−4), populationshave lowaverage frequencyof 𝑏at 10,000generations,204

unless 𝑠 > 1. As immigration decreased, these populations became dependent on de novomutations205

to produce 𝑏, which is a slow process. At 5 million generations, which is close to the estimated age of206

cavefish populations (Gross, 2012), the average allele frequency is a better match to the results from the207

the infinite-population model (Figure 4C); although, selection is ineffective for 𝑠 < 1/2𝑁 = 5 × 10−4.208

Episodic migration. Because cave and surface populations may be connected intermittently due to209

flooding, we simulated periods of immigration followed by periods of isolation following a first-order210
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Markov process. The probability of switching between from isolation to immigration or vice versa was 10%211

in each generation. Results for the intermittently connected simulations were nearly identical to previous212

simulations, with the exception that at high levels of migration and selection, drift was more effective in213

increasing average allele frequencies (Figure 4D).214

Discussion215

The evolution of blindness in caves has been hypothesized to result from relaxed selection andmutation216

pressure and/or positive selection for alleles that result in eye loss. However, the degree to which these217

factors interact and the theoretical level of selection required to induce blindness have not been quantified218

previously. Here we show that in case of low level immigration into a cave, blindness will eventually219

evolve, due to mutation and immigration of a few blindness alleles. This result fits the suggestion of some220

previous hypotheses: relaxed selection can result in blind populations. However, for blindness to occur in221

these conditions requires a significant amount of time. It is more likely that selection is much stronger222

than previously anticipated, allowing blindness to be produced in caves over a relatively short period of223

time. Furthermore, if levels of immigration are moderate to high, strong selection is necessary to produce224

blind populations regardless of time.225

Interestingly, although cave populations are likely small, drift is only essential to the evolution of blindness226

in the cave population in a limited range of combinations of selection andmigration for which we find227

three equilibria. When immigration is low, low levels of selection can lead to blindness (lower left of Figure228

4A); however, in finite populations stronger selection is required to overcome the effects of drift (lower left229

of Figure 4C).230

The amount of selection required for blindness to evolve depends on the migration rate and the level of231

dominance of the blindness allele (Figure 2). For example, if 𝑄 = 0.01 and ℎ = 0, the amount of selection232

needs to be about 25 times the migration rate for a blind allele to become the major allele. Conversely, if233

ℎ > 1/3, it only needs to be about 3 times. The situation is reversed when we look at fixation. If ℎ = 0,234

selection needs to be about 100 times themigration rate for the frequency of the blind allele to exceed235

99% in the cave. And if ℎ = 1, it needs to be 10,000 times greater than the migration rate. If we focus on236
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phenotypes instead, we see that dominant alleles need lower levels of positive-selection to impact the237

population (Figure 2).238

Themagnitude of selection coefficients required by our model to produce blindness given modest levels239

of immigration are comparable to observations in many species. Levels of selection sufficient to produce240

selective sweeps in wild populations range from 0.02–0.7 (Sáez et al., 2003; Schlenke and Begun, 2004;241

Wootton et al., 2002; Nair et al., 2003). Estimated selection coefficients for drug resistance in Plasmodium242

falciparumwere 0.1–0.7, leading to fixation in 20–80 generations (Wootton et al., 2002; Nair et al., 2003).243

For a major advantageous allele, the average value of 𝑠 has been estimated as 0.11 in plants and 0.13 in244

animals (Rieseberg and Burke, 2001; Morjan and Rieseberg, 2004). Recent work has suggested that eye245

development imposes a highmetabolic cost, particularly for juveniles (Moran et al., 2015). In a food-limited246

environment this cost could lead to strong selection, but the precise degree of this selection is unknown.247

The well-studied three-spine stickleback (Gasterosteus aculeatus) exhibits similar strong selection in a248

novel environment. In experiments isolating armored sticklebacks in freshwater pools, armor was lost249

within a few generations due to relaxed selection for defense and positive selection for the lower cost of250

development in unarmored fish (Barrett et al., 2008). Estimates of selection in this species have ranged251

from 0.13–0.16 (Terekhanova et al., 2014).252

The selection coefficient of a blindness allele is determined not only by the amount of energy saved by253

not having a visual system but also by any other pleiotropic effects, such as enhancement to feeding254

ability (Jeffery, 2005). If an allele produces multiple, adaptive phenotypes, its selection coefficient is255

more likely to be high enough to promote local adaptation and differentiation between cave and surface256

populations. Genotype-dependent dispersal (Edelaar and Bolnick, 2012; Bolnick and Otto, 2013) is one257

possible pleiotropic effect of blindness mutations that has not been considered in recent research on258

cavefish. Ninety years ago, Lankester (1925) proposed that blindness evolves in caves because fish with259

eyes may be attracted to sources of light and preferentially leave caves. In our model, emigration of260

sighted individuals would be equivalent to increasing the selection coefficient, 𝑠, because individuals with261

𝐵 alleles would systematically leave the cave. Even a low level of preferential emigration, e.g. 1%, would262

provide a significant boost to local adaptation and the evolution of blindness in caves. It is quite possible263

that in some species genotype-dependent dispersal combined with lower development costs promotes264

the elimination of sight in caves despite the immigration of sightedness alleles from the surface.265
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While we have drawn conclusions about a single locus, multiple genes are involved in eye development266

and sight. Loss-of-function mutations to any of these genes could produce blindness in caves. Linked267

genes would effect our model by increasing the effective mutation rate of a sighted haplotype to a blind268

haplotype, reducing the amount of selection required for the evolution of blindness. Unlinked genes269

would provide more opportunities for drift to assist the evolution of blindness in caves.270

Weconclude that inmost cases strong selection is necessary for the evolution of blind populations in caves.271

This result is consistent with two different observations of cavefish: (1) phototactic fish may leave caves,272

effectively selecting for themaintenance ofmostly blind fish, and (2) themetabolic cost of eyes is very high.273

Additionally, the model and results presented in this paper are applicable beyond the evolution of cave274

populations, expanding existing migration-selection balance theory. We have developed approximations275

that allow us to understand the interaction of selection, migration, andmutation. Through simulation we276

have incorporated genetic drift into the model and determined that in some situations it can enhance the277

power of selection to drive local adaptation. Periods of isolation can also be important in these situations.278
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Appendix283

All the proofs below were validated in Mathematica (Wolfram Research, Inc., 2015).284

Lemma 1. If𝑚 > 0 or 𝑢 > 0, u�u�(1−u�)+u�
u�(1−u�)+u� is a possible equilibrium, and there is no equilibrium less than it. If285

𝑚 = 𝑢 = 0, 0 is an equilibrium.286

Proof. Case 1. Let 𝑓 (𝑞) = 𝑞′ − 𝑞 represent the change in allele frequency over one generation (Equation 1).287

Let ̃𝑞 = u�u�(1−u�)+u�
u�(1−u�)+u� . If 𝑠 = 0 and 𝑚 > 0 (or 𝑢 > 0), 𝑓 ( ̃𝑞) = 0, and therefore ̃𝑞 is an equilibrium for these288

parameters. Furthermore, if 𝑠 ≥ 0, 𝑓 (𝑞) > 0 ∀𝑞 ∈ [0, ̃𝑞). Therefore, there is no equilibrium lower than ̃𝑞.289

Case 2. Let 𝑚 = 𝑢 = 0, 𝑓 (0) = 0.290

Lemma 2. 1 − 𝑚(1 − 𝑢)(1 − 𝑄) is a possible equilibrium, and there is no equilibrium greater than it.291

Proof. Let ̃𝑞 = 1 − 𝑚(1 − 𝑢)(1 − 𝑄) and ℎ = 0. Since limu�→∞ 𝑓 ( ̃𝑞) = 0, ̃𝑞 is a potential equilibrium.292

Furthermore, if 0 ≤ ℎ ≤ 1 and 𝑠 ≥ 0, 𝑓 (𝑞) < 0 ∀𝑞 ∈ ( ̃𝑞, 1]. Therefore, there is no equilibrium higher than293

̃𝑞.294

The derivation of a tighter upper bound can be achieved by not assuming ℎ = 0; however, we do not295

report it at this time.296

Lemma 3. Let 𝑠 > 0. Let 𝑚 > 0 or 𝑢 > 0. If ℎ ≥ 1/3 or if ℎ < 1/3 and 𝑠ℎ > u�(1−u�)+u�
1+u�−u�(1−u�)(1−2u�) , 𝑔(𝑞)297

(Equation 3) has exactly one root in [0, 1].298

Proof. Let 𝑚 > 0 or 𝑢 > 0. Then 𝑔(1) < 𝑔(0) and 𝑔(1) ≤ 0 ≤ 𝑔(0). By the intermediate value theorem299

there is at least one root in [0, 1]. Let 𝑠 > 0 and we will show that there is exactly one root for several300

cases.301

Case 1. Let 1/2 < ℎ ≤ 1. Then 𝑔(−∞) < 0 and 𝑔(∞) > 0. By the intermediate value theorem, 𝑔(0) has302

at least one root below 0, between 0 and 1, and above 1. Since 𝑔(0) is cubic, it can have at most 3 roots;303

therefore, there is exactly one root in [0, 1].304

Case 2. Let ℎ = 1/2. 𝑔(𝑞) reduces to a quadratic equation with one root less than 0 and exactly one root305

in [0, 1].306
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Case 3. Let 1/3 ≤ ℎ < 1/2. d2u�(u�)
du�2 ≤ 0, and 𝑔(𝑞) is concave in [0, 1]. Thus 𝑔(𝑞) has exactly one root in307

[0, 1].308

Case 4. Let 0 ≤ ℎ < 1/3 and 𝑠ℎ > u�(1−u�)+u�
1+u�−u�(1−u�)(1−2u�) . Then

du�(u�)
du� (−∞) < 0, du�(u�)

du� (0) ≥ 0, du�(u�)
du� (1) ≤ 0,309

and du�(u�)
du� (0) > du�(u�)

du� (1). By the intermediate value theorem, theremust be a local minimum in (−∞, 0]310

and and a local maximum in [0, 1]. Thus 𝑔(𝑞) has exactly one root in [0, 1].311

Derivation of Equation 5. In order to derive Equation 5 we first assume that 𝑢 = 0. Then312

lim
u�→0

𝑠u�∗ (𝑚, ℎ, 𝑢, 𝑄)
𝑚 =

𝑞∗ − 𝑄
𝑞∗(1 − 𝑞∗) (𝑞∗ + ℎ(1 − 2𝑞∗))

However, we also need to determine when Δ𝑞 has only one root. First we approximate Δ𝑞 by a second-313

order Taylor series near 𝑞 = 0.314

Δ𝑞 ≈ 𝑠(1 − 𝑚) (1 − ℎ(3 + 2ℎ𝑠)) 𝑞2 + (ℎ𝑠(1 − 𝑚) − 𝑚) 𝑞 + 𝑚𝑄

Next we find315

lim
u�→0

inf {𝑠 ∶ Δ (𝑠, 𝑚, ℎ, 𝑢, 𝑄) < 0}
𝑚 =

1 − 6𝑄
ℎ +

2𝑄 − 2√𝑄2 + ℎ𝑄 (1 − 3ℎ(1 − 3𝑄) − 6𝑄)
ℎ2

where Δ (𝑠, 𝑚, ℎ, 𝑢, 𝑄) is the discriminant of the Taylor approximation.316

Equation 5 is the maximum of these two values.317
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Figure 1: As selection increases, the evolutionary dynamics of the cave population changes. When 𝑠

is low (bottom line; 𝑠 = 0), there is only one equilibrium: near 0. As 𝑠 increases (middle five lines,

𝑠 = 0.05, 0.1, 0.15, 0.2, and 0.25) the local maximum (upper hump) increases and crosses the x-axis,

producing three equilibria. When 𝑠 gets high enough (top line; 𝑠 = 0.3), the local minimum (lower valley)

also crosses the x-axis, resulting in one equilibrium again. For all curves 𝑚 = 0.01, ℎ = 0, 𝑢 = 10−6, and

𝑄 = 0.01. The figure on the right is an enlarged view of a small part of the figure on the left.
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Figure 2: The level of dominance (ℎ) of the blindness allele (𝑞) affects the level of selection (𝑠) required

to produce blind populations. Each line represents how strong selectionmust be relative to migration

(𝑚) for blindness to evolve in the cave for a given level of dominance (𝑠∗/𝑚). Regions above the curves

produce populations that are “blind” and regions below are not. Each panel contains a different condition

for defining whether the cave is blind. (a) For the blind allele to become the majority allele requires

stronger selection when the allele is recessive (ℎ = 0). (b) For the blind phenotype to become themajority

phenotype requires stronger selection when the allele is recessive. (c) For the blind allele to become

fixed requires stronger selection when the allele is dominant. (d) For the blind phenotype to become

fixed requires stronger selection when the allele is recessive. The curves were calculated analytically with

𝑢 = 10−6 and 𝑄 = 0.01.
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Figure 3: Our recessive-blindness equilibria approximations are accurate. The approximations developed

in this paper (solid lines) are a good fit for calculated values of 𝑠 that result in equilibrium for a given

𝑞 (circles) using Equation 3. The dashed lines are our approximate bounds for the existence of three

equilibria (i.e. for small and large values of 𝑠, there is one equilibrium; for intermediate values of 𝑠 there

are three possible equilibria). Other parameters are 𝑚 = 0.01, 𝑢 = 10−6, and 𝑄 = 0.01.
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Figure 4: Populations evolve blindness in the face of immigration only with the help of strong selection.

(a) The equilibrium frequency of the blindness allele (𝑏) for an infinite population, and (a–d) average

frequencies of 𝑏 after 𝑡 generations in finite populations (100 replicates) with either constant or episodic

migration. Colors correspond to the frequency of the blindness allele (𝑏) for a given combination of

selection (𝑠) andmigration (𝑚), where blue is high frequency (blindness evolved) and red is low (blindness

did not evolve). The solid white line corresponds to 𝑠∗
0.5. The area between the solid and dashed lines

corresponds to the region where three equilibria exist. Other parameters are 𝑢 = 10−6, 𝑄 = 0.01, and

𝑞0 = 𝑄.
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