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Abstract1

Blindness has evolved repeatedly in cave-dwelling organisms, and investigating loss of sight presents an2

opportunity to understand the operation of fundamental evolutionary processes, including drift, selection,3

mutation, and migration. The observation of blind organisms has prompted many theories for their4

blindness, including loss-by-disuse and selection against eye development when eyes are not used. Here5

we have developed amodel that shows just how strong selection must be for blind populations of a cave-6

dwelling species to evolve. We used approximations to determine levels of selection that would result in7

caves containing only sighted individuals, only blind individuals, or a stable population of both. We then8

incorporated drift into the model using simulations. Based on our model, strong selection is necessary9

for the evolution of blindness unless immigration rates are extremely low. Drift decreased the fixation of10

blindness in populations, although for intermediate levels ofmigration the level of selection required to fix11

blindness decreased substantially. We hypothesize that this degree of selection may be due to phototaxis12

in sighted individuals, whomove toward the light leaving only blind individuals in the cave.13
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Introduction14

Blindness has evolved repeatedly across taxa in caves, creating nearly a thousand cave-dwelling species15

and many more populations (Culver et al., 2000; Dowling et al., 2002; Bradic et al., 2012; Coghill et al.,16

2014). However, many populations of blind individuals experience some level of immigration, whichwould17

be expected to prevent the fixation of blindness in a newly established population (Avise and Selander,18

1972; Bradic et al., 2012; Coghill et al., 2014). Thus, blind cave-dwelling populations of typically sighted19

species pose an interesting challenge to our understanding of evolutionary biology. Namely, how does a20

fixed phenotype evolve from low frequency despite immigration?21

Darwin suggested that eyes would be lost by “disuse” (Darwin, 1859). We now consider this hypothesis the22

“neutral mutation hypothesis” — randommutations can accumulate in eye related genes or regulatory23

regions when, as in caves, there is no purifying selection to eliminate them. However, the accumulation of24

mutations (mutation pressure) causing blindness would take a long time to result in fixation of blindness25

in populations on its own (Barr, 1968). Thus, it is genetic drift combinedwithmutation pressure that would26

lead to blindness (Kimura and King, 1979; Borowsky, 2015). Genetic drift is the increases the frequency of27

blindness alleles created bymutations: eyes become increasingly less functional and finally disappear28

completely (Wilkens, 1988).29

There are a variety of cave dwelling vertebrates and invertebrates (referred to as cavernicoles, troglophiles,30

and troglobites). However, much of the work on the evolution of blindness has focused on the blind31

form of cavefishes, e.g. the Mexican tetra (Astyanax mexicanus) and Atlantic molly (Poecilia mexicana).32

For example, the hypothesis of relaxed selection is supported by the observation of a high number of33

mutations in cavefishputativeeyegenes (Hinauxetal., 2013;Protaset al., 2006;Grossetal., 2009). However,34

developmental evidence does not support this hypothesis: cavefish embryos begin eye development, but35

the eye disappears in larvae (Langecker et al., 1993; Jeffery et al., 2003). Randommutations should occur36

in genes controlling early eye development as well. Furthermore, although drift would often lead to loss37

of seeing individuals joining a population of blind individuals, this model depends on developing a high38

frequency of blindness in a cave population simply by drift in isolation.39

Alternatively, the “adaptation hypothesis” suggests that there is a cost to an eye; thus, individuals without40
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eyes have greater fitness resulting in the eventual elimination of seeing individuals. This cost may either41

come from the energy required to develop a complex structure or due to the vulnerability of the eye (Barr,42

1968; Strickler et al., 2007; Jeffery, 2005; Protas et al., 2007; Niven, 2008; Niven and Laughlin, 2008; Moran43

et al., 2015). Another hypothesis states that sight is not lost not due to the “cost” of development but44

due to pleiotropic mutations selected for other traits. For example, in Mexican tetra increased expression45

of Hedgehog (Hh; Jeffery, 2005) likely affects feeding structures, allowing better foraging in low light46

conditions (Jeffery, 2005, 2001). However, increased Hh signaling inhibits pax6 expression, which results47

in eye loss during development (Jeffery, 2005; Yamamoto et al., 2004). Alternatively, cryptic variationmay48

bemaintained in normal conditions, and expressed as blindness only in case of stress, such as entry into49

the cave (Rohner et al., 2013). When the cryptic variation is “unmasked” it is then exposed to selection50

and could become fixed in the population.51

These mechanisms of selection would result in the evolution of a blind population occurring quite slowly.52

Furthermore, given that there is often migration from surface to cave populations and that and these53

populations can interbreed, it seems that blind phenotypes should be lost (Avise and Selander, 1972). One54

possibility is that the strength of selection for blindness is large enough to counter immigration (Avise and55

Selander, 1972). Although blind fish maintained in the dark in the lab do not appear to have an advantage56

of this magnitude (Sadoglu, 1967), recent work suggests a very high cost to developing neural tissue,57

including eyes (Moran et al., 2015).58

Due to the immigration of individuals from the surface and the expected level of selection for the eyeless59

phenotype, cave populations are an example of migration–selection balance (Wright, 1969; Hedrick, 2011;60

Nagylaki, 1992). However, much of the work in this area has explored the “invasion” of a novel allele or the61

maintenance of polymorphism, rather than fixation of different alleles in different populations (Yeaman62

and Otto, 2011; Yeaman andWhitlock, 2011).63

Here we have developed amodel that shows just how strong selection must be to generate blind popula-64

tions of a cave-dwelling species. Incorporating genetic drift into themodel actually increases the level65

of selection required for fixation. This level of selection is not compatible with the hypothesis that eyes66

are lost due to drift or that eyes are lost due to selection for improved foraging and pleiotropy (assuming67

pleiotropy imposes only weak selection). However, if eye development imposes a high cost (Moran et al.,68
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2015) then the adaptation hypothesis is plausible. Alternatively, we suggest reconsidering the historic69

hypothesis that a high level of selection is due tomigration of seeing individuals, who are strongly pho-70

totactic, out of the cave (Lankester, 1925; Romero, 1985). Thus, we suggest that a standing presence of71

blindness alleles, combinedwith extreme loss of sighted individuals in the cave, is a likely scenario leading72

to evolution of blind cave-dwelling populations.73

Model and Analysis74

Assumptions75

Consider a species with two populations: surface-dwelling and cave-dwelling. We are interested in76

determining when the cave population will evolve blindness, i.e. become comprised of mostly blind77

individuals, as has occurred in numerous natural systems. We first assume that the surface and cave78

populations do not experience drift (i.e. populations are of infinite size). Additionally, immigration from79

the surface population into the cave affects the allele frequency in the cave, but emigration from the80

cave to the surface does not affect the surface population, as we assume that the surface population is81

significantly larger than the cave. Generations are discrete and non-overlapping, andmating is random.82

We track a single biallelic locus, where b+ is the dominant, seeing allele, and where b– is the recessive,83

blindness allele. The frequencies of b– are denoted by ̃𝑞 ∈ [0, 1] on the surface and 𝑞 ∈ [0, 1] in the cave.84

On the surface, we assume that blindness is selected against, and ̃𝑞 is dictated by mutation-selection85

balance.86

Calculating the frequency of the blindness allele87

Within the cave, the life cycle is as follows. (1) Embryos become juveniles and experience constant selection88

with relative fitnesses of 𝑤b– b– = 1 + 𝑠 and 𝑤b+ b– = 𝑤b+ b+ = 1, where 𝑠 ≥ 0. (2) Juveniles migrate into89

and out of the cave such that a fraction𝑚 of adults come from the surface and 1 − 𝑚 from the cave, where90

0 ≤ 𝑚 ≤ 1. (3) Adults generate gametes with one-waymutation, where 0 ≤ 𝑢 ≤ 1 is the probability that a91

b+ becomes a non-functional b–. (4) Gametes unite randomly to produce embryos. Given this life cycle,92
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we calculate the allele frequency of the daughter generation (𝑞′) via standard equations:93

𝑞u� =
(1 + 𝑠)𝑞2 + 1𝑞(1 − 𝑞)
(1 + 𝑠)𝑞2 + 1(1 − 𝑞2)

selection (1a)

𝑞u� = 𝑞u�(1 − 𝑚) + ̃𝑞𝑚 immigration (1b)

𝑞′ = 𝑞u� + (1 − 𝑞u�)𝑢 mutation (1c)

The change in allele frequency in one generation is94

Δ𝑞 = 𝑞′ − 𝑞 =
𝑠𝑞2 [1 − 𝑞 − 𝑚(1 − 𝑢)(1 − ̃𝑞)] + [ ̃𝑞𝑚(1 − 𝑢) + 𝑢 − 𝑞 (𝑚(1 − 𝑢) + 𝑢)]

1 + 𝑠𝑞2 (2)

Furthermore, b– is maintained at a stable equilibrium on the surface: ̃𝑞 = √𝑢/𝑧, where 𝑧 is the selection95

coefficient against b– on the surface and 𝑢 ≤ 𝑧 ≤ 1.96

Identifying equilibrium frequencies of the blindness allele97

Themodelwehavedeveloped is an exampleofmigration-selectionbalance (Figure 1;Wright, 1969;Hedrick,98

2011; Nagylaki, 1992). An equilibrium exists for this model when Δ𝑞 = 0. Assuming 𝑠 > 0 and setting99

Δ𝑞 = 0, Equation 2 can be rearranged into the following cubic polynomial100

− 𝑞3 + 𝐵𝑞2 + 𝐶𝑞 + 𝐷 = 0 (3)

where

𝐵 = 1 − 𝑚(1 − 𝑢)(1 − ̃𝑞)

𝐶 = −
𝑚(1 − 𝑢) + 𝑢

𝑠

𝐷 =
̃𝑞𝑚(1 − 𝑢) + 𝑢

𝑠
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There are three possible roots of this equation, corresponding to three possible equilibria. Depending101

on the parameter values, Equation 3may have three real roots or one real root and two imaginary roots.102

While the values of the roots of this polynomial can be expressed analytically, these equations are too103

complex to be helpful for understanding the system. For simplicity, we will let ̂𝑞 represent any possible104

equilibrium, and ̂𝑞u� ≤ ̂𝑞u� ≤ ̂𝑞u�, stand for the roots of Equation 3.105

Rather than tackling the equilibria directly, we first demonstrate that the cave has a protected poly-

morphism. A protected polymorphism exists if the allele frequency moves away from both fixation and

extinction, i.e. Δ𝑞 < 0 for 𝑞 = 1 and Δ𝑞 > 0 for 𝑞 = 0. For 𝑞 = 0

Δ𝑞 = ̃𝑞𝑚(1 − 𝑢) + 𝑢 = (1 − 𝑢)𝑚√𝑢/𝑧 + 𝑢

and 𝑞 = 0 will be an equilibrium if 𝑢 = 0; otherwise Δ𝑞 > 0 at 𝑞 = 0 due to immigration of individuals

containing b– (Figure 2). For 𝑞 = 1

Δ𝑞 = −𝑚(1 − ̃𝑞)(1 − 𝑢) = −𝑚(1 − √𝑢/𝑧)(1 − 𝑢)

and 𝑞 = 1 will be an equilibrium if 𝑚 = 0 or 𝑢 = 1; otherwise Δ𝑞 < 0 at 𝑞 = 1 due to immigration of106

individuals containing b+ (Figure 2). Thus a protected polymorphism always exists except at the edge cases107

𝑚 = 0, 𝑢 = 0, and 𝑢 = 1. In biological terms, the cave population will be polymorphic despite directional108

selection for b– if there is some immigration from the surface population and the surface population109

is polymorphic. For 𝑠 = 0, there is only one equilibrium, and it is near 0. For large 𝑠, there is only one110

equilibrium, and it is near 1. Three equilibria will only exist for moderate levels of selection (Figure 2).111

Validity of equilibria. An equilibrium is only valid in ourmodel if it is real and between [0, 1]; otherwise,112

it is not biologically interpretable in this system. The lower bound for any equilibrium is u� ̃u�(1−u�)+u�
u�(1−u�)+u� if113

𝑚 > 0 or 𝑢 > 0; otherwise it is 0 (Lemma 1). The upper bound for any equilibrium is 1 − 𝑚(1 − 𝑢)(1 − ̃𝑞)114

(Lemma 2). Thus if any equilibrium is real it is valid. The only exception to this rule is the edge case when115

𝑠 = 𝑚 = 𝑢 = 0. In this case, all evolutionary forces are eliminated, and 𝑞′ = 𝑞 for all 𝑞. Here every possible116

value of 𝑞 is an equilibrium, although only 𝑞 ∈ [0, 1] makes any sense. Furthermore, it is important to117

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2015. ; https://doi.org/10.1101/031872doi: bioRxiv preprint 

https://doi.org/10.1101/031872
http://creativecommons.org/licenses/by-nc-nd/4.0/


note that if 𝑚 > 0,118

̃𝑞 ≤
𝑚 ̃𝑞(1 − 𝑢) + 𝑢
𝑚(1 − 𝑢) + 𝑢 ⟹ ̃𝑞 ≤ ̂𝑞 (4)

indicating that the equilibrium frequencies in the cave are always greater than the allele frequency on the119

surface.120

Approximations. In order to study equilibria, we will simplify our model by assuming that 𝑢 ≪ 1 such121

that 1 − 𝑢 ≈ 1 and122

Δ𝑞 ∝ 𝑠𝑞2 [1 − 𝑞 − 𝑚(1 − ̃𝑞)] + [ ̃𝑞𝑚 + 𝑢 − 𝑞 (𝑚 + 𝑢)] (5)

Weak-selection approximation. If selection is weak, then an equilibrium exists near ̃𝑞 (Figure 2). We123

use a second-order Taylor series at 𝑞 = 0 to determine the upper bound on 𝑠 for the presence of three124

equilibria (i.e. when selection is so strong that an equilibrium near ̃𝑞 does not exist). The second-order125

series allows us to determine the lower two equilibrium points, although this approximation is inaccurate126

as q increases. This approximation gives us127

Δ𝑞 ≈ 𝑠(1 − 𝑚)𝑞2 − (𝑚 + 𝑢)𝑞 + 𝑚 ̃𝑞 + 𝑢 (6)

after assuming that1− ̃𝑞 ≈ 1. This equationhas two roots,whichare the lowest twoof three total equilibria,

̂𝑞u�,1 =
𝑚 + 𝑢 − √(𝑚 + 𝑢)2 − 4𝑠(1 − 𝑚)(𝑚 ̃𝑞 + 𝑢)

2𝑠(1 − 𝑚)

̂𝑞u�,1 =
𝑚 + 𝑢 + √(𝑚 + 𝑢)2 − 4𝑠(1 − 𝑚)(𝑚 ̃𝑞 + 𝑢)

2𝑠(1 − 𝑚)

These two roots exist only if128

0 < √(𝑚 + 𝑢)2 − 4𝑠(1 − 𝑚)(𝑚 ̃𝑞 + 𝑢) ⟹ 𝑠 <
(𝑚 + 𝑢)2

4(1 − 𝑚)(𝑚 ̃𝑞 + 𝑢) (7)

which provides us with an estimate of the upper bound on 𝑠 for the presence of three equilibria.129
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The derivative of Equation 6 is dΔu�
du� (𝑞) = 2𝑠(1 − 𝑚)𝑞 − (𝑚 + 𝑢), and a equilibrium will be stable if130

−2 < dΔu�
du� ( ̂𝑞) < 0. From this, it can be easily shown that ̂𝑞u�,1 is stable and ̂𝑞u�,1 is unstable.131

Strong-selection approximation. In order to determine the lower bound on 𝑠 for the presence of three132

equilibria, we assume that selection is strong enough such that 𝑢/𝑠 ≈ 0 and ̃𝑞/𝑠 ≈ 0. Therefore,133

Δ𝑞 ∝ −𝑞 [𝑞2 − [1 − 𝑚(1 − ̃𝑞)] 𝑞 + 𝑚/𝑠] (8)

and the equilibria can be described as

̂𝑞u�,2 = 0

̂𝑞u�,2 =
1
2

⎛⎜⎜⎜
⎝

1 − 𝑚(1 − ̃𝑞) − √[1 − 𝑚(1 − ̃𝑞)]2 −
4𝑚
𝑠

⎞⎟⎟⎟
⎠

̂𝑞u�,2 =
1
2

⎛⎜⎜⎜
⎝

1 − 𝑚(1 − ̃𝑞) + √[1 − 𝑚(1 − ̃𝑞)]2 −
4𝑚
𝑠

⎞⎟⎟⎟
⎠

The latter two equilibria will exist only if134

𝑠 >
4𝑚

[1 − 𝑚(1 − ̃𝑞)]2

which provides us an estimate of the lower bound for the presence of three equilibria.135

The derivative of Equation 8 is dΔu�
du� (𝑞) = −3𝑞2 + 2 [1 − 𝑚(1 − ̃𝑞)] 𝑞 − 𝑚/𝑠, and it can be easily shown136

that ̂𝑞u�,2 is unstable and ̂𝑞u�,2 is stable.137

Validityofapproximations. Bysubstituting ̂𝑞u�,1 and ̂𝑞u�,1 back intoEquation5,weobtainΔ𝑞 = −𝑠𝑞2 ( ̂𝑞 − ̃𝑞𝑚).138

Thus, Δ𝑞 ≤ 0, which indicates that ̂𝑞u�,1 overestimates ̂𝑞u� and that ̂𝑞u�,1 underestimates ̂𝑞u�. By substituting139

̂𝑞u�,2 and ̂𝑞u�,2 back into Equation 5, we find that Δ𝑞 = ̃𝑞𝑚 + 𝑢(1 − 𝑞). Thus Δ𝑞 ≥ 0, which indicates that140

̂𝑞u�,2 overestimates ̂𝑞u� and that ̂𝑞u�,2 underestimates ̂𝑞u�. However, the error in our approximations is slight141

(Figure 3).142
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Dynamics. The dynamics of the evolution of the cave population depend on the parameter values and143

the starting allele frequency, 𝑞0 (Table 1). If there is one equilibrium value, then b– will evolve to be the144

major allele in the population if ̂𝑞 > 0.5. If there are three equilibria, and ̂𝑞u� > 0.5, then b– will become145

the major allele only if its initial frequency is above the threshold ̂𝑞u�.146

Based on these approximations the dynamics of the system can be summarized as follows. First, there147

are three possible equilibria: ̂𝑞u� ≈ ̂𝑞u�,1, ̂𝑞u� ∈ [ ̂𝑞u�,1, ̂𝑞u�,2], and ̂𝑞u� ≈ ̂𝑞u�,2. Second, there are four possible148

equilibria configurations: 1, 2a, 2b, and 2c.149

Case 1, (u�+u�)2

4(1−u�)(u� ̃u�+u�) < 4u�
[1−u�(1− ̃u�)]2 : only one equilibrium exists, and it is stable. The population will150

always evolve towards it.151

Case 2, 4u�
[1−u�(1− ̃u�)]2 < (u�+u�)2

4(1−u�)(u� ̃u�+u�) : depending on the strength of 𝑠, this case may have one of three152

possible configurations:153

Case 2a, 0 ≤ 𝑠 < 4u�
[1−u�(1− ̃u�)]2 : Only one equilibrium exists, ̂𝑞u�, and it is stable. The population will always154

evolve towards it.155

Case 2b, 4u�
[1−u�(1− ̃u�)]2 < 𝑠 < (u�+u�)2

4(1−u�)(u� ̃u�+u�) : All three equilibria exist; ̂𝑞u� and ̂𝑞u� are stable, while ̂𝑞u� is156

unstable. If the population starts below ̂𝑞u�, it will evolve towards ̂𝑞u�. If it starts above ̂𝑞u�, it will evolve157

towards ̂𝑞u�.158

Case 2c, (u�+u�)2

4(1−u�)(u� ̃u�+u�) < 𝑠: only one equilibrium, ̂𝑞u�, exists, and it is stable. The population will always159

evolve towards it.160

The evolution of blindness161

When the cave population is founded, its initial allele frequencywill likelymatch the equilibrium frequency162

on the surface (𝑞0 = ̃𝑞). Since ̃𝑞 < ̂𝑞, the allele frequency in the cave will increase due to selection until it163

reaches the lowest equilibrium. If this equilibrium is ≥ 1
2 , we consider the population to have evolved164

blindness. If there is only a single equilibrium, and 𝑠 ≥ 4u�−8 ̃u�u�−4u�
1−2u�(1− ̃u�) (i.e. 𝑚 ≤ u�+4u�

2u�(1− ̃u�)+4−8 ̃u� , Lemma 3), b–165

will evolve to become the major allele. If there are three equilibria (Case 2b), then the population will not166
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evolve blindness: the maximum value of ̂𝑞u� ≈ 1
8 . Therefore, blindness will only evolve if167

𝑠 ≥ max
⎧{
⎨{⎩

4𝑚 − 8 ̃𝑞𝑚 − 4𝑢
1 − 2𝑚(1 − ̃𝑞) ,

(𝑚 + 𝑢)2

4(1 − 𝑚)(𝑚 ̃𝑞 + 𝑢)
⎫}
⎬}⎭

≈ 𝑠 ≥
𝑚

4 ( ̃𝑞 + u�
u�)

(9)

This approximation is valid when ̃𝑞 < 1
16 and 𝑢 ≪ 𝑚 ≪ 1. We analytically calculated ultimate allele168

frequencies for our model and compared it to the above approximation (Figure 4A), and we also explored169

the approximation when 𝑢 and ̃𝑞 are varied (Figure 5).170

Finite-population simulations171

Constant migration172

To investigate the impact of drift on our model, we simulated diploid populations of size𝑁 = 1000, where173

the frequency of adults was determined by drawing 2𝑁 alleles from a binomial distribution with mean 𝑞u�174

(Equation 1b). 𝑞′ was calculated based on the post-drift adult allele frequency and immigration. For each175

set of parameters, we recorded the average 𝑞′ frequency across these 100 populations at specific time176

points.177

For highmigration rates, the average allele frequency is similar to the infinitemodel, except that drift allows178

some populations that have three equilibria to evolve blindness (Figure 4B). However, at lowmigration179

rates (𝑚 < 𝑢/ ̃𝑞 = 10−4), populations have low average frequency of b– at 10 thousand generations,180

unless 𝑠 > 1. As immigration decreased, these populations became dependent on de novomutations181

to produce b–, which is a slow process. At 5 million generations, which is close to the estimated age of182

cavefish populations Gross (2012), the average allele frequency is a better match to the results from the183

the infinite-population model (Figure 4C); although, selection is ineffective for 𝑠 < 1/2𝑁 = 5 × 10−4.184

Episodic migration185

Because cave and surface populations are may be connected intermittently due to flooding, we simulated186

periods of immigration followed by periods of isolation following a first-order Markov process. The187
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probability of switching between isolation and immigration or vice versa was 10% every generation.188

Results for the intermittently connected simulations were nearly identical to previous simulations, with189

the exception that at high levels of migration and selection, drift was more effective in increasing allele190

frequencies (Figure 4D).191

Discussion192

Both our model and simulations show that strong selection (characterized as 𝑠 > 0.05; Rieseberg and193

Burke, 2001) is necessary for a cave population to evolve blindness. Our simulations demonstrate that194

genetic drift, which is likely to occur in small cave populations, markedly decreases the fixation of these195

rare alleles, resulting in the need for even greater selection.196

Model197

Our model demonstrates that without drift, blindness occurs in cave populations only when 𝑠 is large or198

𝑚 is very small. This result is logical: given low levels of immigration, selection increases the frequency199

of the blindness allele. In contrast, for high levels of immigration there will always be some sighted fish.200

This case essentially results in a single population, for which selection in the large surface population for201

sighted fish outweighs small-scale selection in the cave (Nagylaki and Lou, 2008). In other words, gene202

flow prevents local adaptation, as expected. For intermediate levels of immigration, there will be sighted203

fish unless selection removes them.204

What is surprising about our result is the level of selection required to fix blindness in the population. This205

result contrasts with the level of the selection found in most cases of local adaptation. Sadoglu (1967)206

argued that given the observed number of populations of blind fish living in caves, drift would have fixed207

at least one for a useful eye, However, because all populations appear to be blind or with a significantly208

reduced eye, this indicates strong selection for “degenerative genes”.209
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Drift210

The “neutral mutation hypothesis” is equivalent to no selection for the blindness allele in a small popula-211

tion. This hypothesis relies on drift to fix populations for blindness. Thus, we explored the interaction of212

immigration, selection and blindness with simulations. However, our simulations including drift produce213

similar results to our model, with two notable exceptions. First, as observed previously, drift removes the214

blindness allele when it occurs at low levels; thus, for low immigration rates, populations consisted primar-215

ily of sighted fish, except when very strong selection immediately increased the frequency of blindness.216

This is opposite of predicted by the “neutral mutation hypothesis”.217

Whenmigration is very high, drift has minimal effect, as the two populations essentially function as one,218

with the surface population swamping the smaller cave population. However, for intermediate levels of219

migration the level of selection required to fix blindness decreased substantially. In this case, immigration220

is increasing the frequency of the blindness allele in each generation, allowing more chances for selection221

to overcome drift. This result is consistent with the observation of Blanquart et al. (2012)222

Allowing populations to evolve for longer periods of time does increase the likelihood that a population223

can drift to fixation for blindness. As for higher levels of immigration, more generations results in a greater224

chance for a blindness mutation to occur in the population, and for drift to increase the frequency of this225

allele. Similarly, increasing the mutation rate, either for the whole genome or as a way to allowmultiple226

mutations to produce blindness, results in a greater likelihood of blind populations. As for higher levels of227

immigration, a greater chance of producing amutation for blindness results in an increased number of228

chances for a population to evolve blindness.229

Effect of intermittent connections230

On the low end of migration, intermittent connections effectively result in a decrease in the immigration231

rate and “replenishment” of the blindness allele, which increases in the level of selection required to232

fix blindness in the population. In contrast, when immigration rates are high, disconnecting the two233

populations and effectively reducing the immigration rate allows populations to fix for blindness, at least234

until the next period of high immigration.235
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Previous observations of strong selection236

The values we suggest here as “strong selection” are high, but not inconsistent with previous observations.237

Previous calculations of strong selection resulting in selective sweeps in wild populations range from238

0.02–0.7 (Sáez et al., 2003; Schlenke and Begun, 2004; Wootton et al., 2002; Nair et al., 2003). Estimated239

selection coefficients for drug resistance in Plasmodium falciparumwere 0.1–0.7 (Wootton et al., 2002;240

Nair et al., 2003). These extremely high values for selection led to fixation in 20-80 generations. For a241

major advantageous allele, the average value of 𝑠 has been estimated as 0.11 in plants and 0.13 in animals242

(Rieseberg and Burke, 2001; Morjan and Rieseberg, 2004). Thus, estimated selection coefficients for cave243

species are consistent with a selection mechanism that is stronger than previously proposed.244

Potential mechanisms of strong selection245

Previous mechanisms of selection proposed for cave species have primarily been weak (Darwin, 1859;246

Sadoglu, 1967). However, recent work has suggested that eye development imposes a high metabolic247

cost, particularly for juveniles (Moran et al., 2015). In a food-limited environment, like a cave, this cost248

could lead to the level of selection suggested by our model. Additionally, an alternative mechanism of249

selection exists: migration of seeing individuals, who are strongly phototactic, out of the cave (Lankester,250

1925; Romero, 1985). Emigration of sighted individuals functions like selection because it systematically251

removes b+ alleles from the cave population. Phototaxis has been observed in eyed cavefish (Espinasa252

and Borowsky, 2000). Migration thus imposes strong selection in the cave for blind individuals. This253

mechanism of strong selection would explain the observation that blindness in cave dwelling organisms254

evolved repeatedly. This hypothesis is consistent with all previous hypotheses of how blindness arises (i.e.255

randommutation or differential expression) but suggests an alternative mechanism of selection that is256

much stronger than previously proposed fitness advantages (i.e. reallocation of resources). Furthermore,257

it suggests a way of maintaining a mostly blind cave population despite interbreeding and gene flow from258

surface populations (Bradic et al., 2012; Avise and Selander, 1972). Interestingly, our work is consistent259

with work suggesting standing cryptic variation for eye size in cavefish (Rohner et al., 2013; Rohner, 2015).260

The primary effect of the variation being cryptic rather than de novowould be that the allele frequency in261

the surface population would be higher than expected. However, strong selection would still be required.262
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Alternatively, vibration attraction behavior, where individuals are attracted to moving objects, provides a263

strong advantage for some individuals by allowing them to find food (Yoshizawa et al., 2012). This behavior264

is observed in multiple cavefish populations (Yoshizawa et al., 2010). In contrast, this behavior would like265

result in predation in a sighted environment (Yoshizawa and Jeffery, 2011). Surface populations show a266

low frequency of this behavior (Yoshizawa and Jeffery, 2011). However, in this case the genetic basis of the267

behavior would have to be linked to blindness, and whether this is the case is unknown.268

Application to other local adaptation scenarios269

Although we have described our model in the context of cave and surface populations, with the allele270

under selection for blindness, this work also applies to other scenarios of local adaptation. Generally, our271

scenario can be considered ametapopulation with divergent selection (Blanquart et al., 2012; Yeaman272

and Otto, 2011). However, while previous work focused on stable polymorphism, here we have addressed273

how populations become fixed for a state.274
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Appendix278

Lemma 1. If 𝑚 > 0 or 𝑢 > 0, and 𝑠 ≥ 0, the minimum value of an equilibrium is u� ̃u�(1−u�)+u�
u�(1−u�)+u� . If 𝑚 = 𝑢 = 0279

and 𝑠 > 0, the minimum value of an equilibrium is 0. If 𝑚 = 𝑢 = 𝑠 = 0, all points are equilibria, and thus 0280

is the lowest possible valid equilibrium.281

Proof. Case 1. Let 𝑓 (𝑞) represent the change in allele frequency over one generation (Equation 2). Let282

𝑞∗ = u� ̃u�(1−u�)+u�
u�(1−u�)+u� . If 𝑠 = 0 and 𝑚 > 0 (or 𝑢 > 0), 𝑓 (𝑞∗) = 0, and therefore 𝑞∗ is an equilibrium for these283
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parameters.284

Now let 𝑠 ≥ 0, and 𝑞 < 𝑞∗. The denominator of 𝑓 (𝑞) is positive, and the numerator is285

𝑠𝑞2 [1 − 𝑞 − 𝑚(1 − 𝑢)(1 − ̃𝑞)] + [ ̃𝑞𝑚(1 − 𝑢) + 𝑢 − 𝑞 (𝑚(1 − 𝑢) + 𝑢)] (10)

𝑞 <
𝑚 ̃𝑞(1 − 𝑢) + 𝑢
𝑚(1 − 𝑢) + 𝑢 ⟹ 𝑞 < 1 − 𝑚(1 − 𝑢)(1 − ̃𝑞)

⟺ 1 − 𝑞 − 𝑚(1 − 𝑢)(1 − ̃𝑞) > 0

⟺ the first part of (10) is positive

𝑞 <
𝑚 ̃𝑞(1 − 𝑢) + 𝑢
𝑚(1 − 𝑢) + 𝑢 ⟺ 𝑞 (𝑚(1 − 𝑢) + 𝑢) < ̃𝑞𝑚(1 − 𝑢) + 𝑢

⟺ ̃𝑞𝑚(1 − 𝑢) + 𝑢 − 𝑞 (𝑚(1 − 𝑢) + 𝑢) > 0

⟺ the second part of (10) is positive

∴ (10) is positive, and 𝑓 (𝑞) > 0 ∀𝑞 < 𝑞∗

Since 𝑓 (𝑞) > 0 ∀𝑞 < 𝑞∗, 𝑞∗ is the lowest value that can be an equilibrium.286

Case 2. Let 𝑚 + 𝑢 = 0 and 𝑠 > 0. Now (10) is 𝑠𝑞2(1 − 𝑞), which has its lowest equilibrium at 0.287

Case 3. If 𝑠 = 0, all possible values of 𝑞 are equilibria.288

Lemma 2. Themaximum value of an equilibrium is 1 − 𝑚(1 − 𝑢)(1 − ̃𝑞).289

Proof. Let 𝑞∗ = 1 − 𝑚(1 − 𝑢)(1 − ̃𝑞). Since limu�→∞ 𝑓 (𝑞∗) = 0, 𝑞∗ is a potential equilibrium. Now let290

𝑞 > 𝑞∗.291
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𝑞 > 1 − 𝑚(1 − 𝑢)(1 − ̃𝑞) ⟺ 1 − 𝑞 − 𝑚(1 − 𝑢)(1 − ̃𝑞) < 0

⟺ the first part of (10) is negative

𝑞 > 1 − 𝑚(1 − 𝑢)(1 − ̃𝑞) ⟺ 𝑞 > 1 − 𝑚(1 − 𝑢) + ̃𝑞𝑚(1 − 𝑢)

⟺ 𝑞 − 1 + 𝑚(1 − 𝑢) + 𝑢 > ̃𝑞𝑚(1 − 𝑢) + 𝑢

⟺ 𝑞(𝑚(1 − 𝑢) + 𝑢) − (1 − 𝑞)(1 − 𝑚(1 − 𝑢) − 𝑢) > ̃𝑞𝑚(1 − 𝑢) + 𝑢

⟹ 𝑞(𝑚(1 − 𝑢) + 𝑢) > ̃𝑞𝑚(1 − 𝑢) + 𝑢

⟺ the second part of (10) is negative

∴ (10) is negative, and 𝑓 (𝑞) < 0 ∀𝑞 > 𝑞∗

Since 𝑓 (𝑞) < 0 ∀𝑞 > 𝑞∗, 𝑞∗ is the highest value that can be an equilibrium.292

Lemma 3. If 𝑚 ≤ u�+4u�
(2u�(1− ̃u�)+4−8 ̃u�)(1−u�)

and ̃𝑞 < 1/2, there exists an equilibrium ≥ 1/2.293

Proof. By rearranging Equation 3, we find a formula for themigration rate that will generate an equilibrium294

at 𝑞:295

𝑚̂(𝑞) =
(1 − 𝑞)(𝑞2𝑠 + 𝑢)

(𝑞2𝑠(1 − ̃𝑞) + 𝑞 − ̃𝑞)(1 − 𝑢)
(11)

First, we can show that 𝑚̂(𝑞) monotonically decreases for 𝑞 ≥ 1/2:296

−
d𝑚̂(𝑞)

d𝑞 = 𝑠𝑞 (2 ̃𝑞 + 2(1 − ̃𝑞)𝑢 − (1 + 3 ̃𝑞 + (1 − ̃𝑞)𝑢) 𝑞 + 2𝑞2 + 𝑠(1 − ̃𝑞)𝑞3) + (1 − ̃𝑞)𝑢

And

0 ≤ ̃𝑞 ≤ 1/2 ≤ 𝑞 ≤ 1 ⟹ (2𝑞 − 1)(𝑞 − ̃𝑞) + ̃𝑞(1 − 𝑞) + (2 − 𝑞)(1 − ̃𝑞)𝑢 ≥ 0

⟺ 2 ̃𝑞 + 2(1 − ̃𝑞)𝑢 − (1 + 3 ̃𝑞 + (1 − ̃𝑞)𝑢) 𝑞 + 2𝑞2 ≥ 0

⟹ 𝑠𝑞 (2 ̃𝑞 + 2(1 − ̃𝑞)𝑢 − (1 + 3 ̃𝑞 + (1 − ̃𝑞)𝑢) 𝑞 + 2𝑞2 + 𝑠(1 − ̃𝑞)𝑞3)

+ (1 − ̃𝑞)𝑢 ≥ 0

⟺ dû�(u�)
du� ≤ 0
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Therefore, 𝑚̂(𝑞) monotonically decreases from 𝑚̂ (1/2) to 𝑚̂ (1) = 0 as 𝑞 increases from 1/2 to 1. Stated297

another way, if 0 ≤ 𝑚 ≤ 𝑚̂ (1/2) there exists an equilibrium 1/2 ≤ 𝑞 ≤ 1.298
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Figure 1: Dynamics of cave populations are governed by migration-selection balance. The top curve

shows the change in allele frequency due to selection, while the bottom curve shows the change in allele

frequency due to immigration. The middle curve shows how selection and migration are balanced to

produced three equilibria points. Parameters: 𝑠 = 0.1, 𝑚 = 0.01, 𝑢 = 10−6, ̃𝑞 = 0.01.
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Figure 2: As selection increases, the evolutionary dynamics of the cave population changes. When 𝑠

is low (bottom line; 𝑠 = 0), there is only one equilibrium: near 0. As 𝑠 increases (middle five lines,

𝑠 = 0.05, 0.1, 0.15, 0.2, and 0.25) the local maximum (upper hump) increases and crosses the x-axis,

producing three equilibria. When 𝑠 gets high enough (top line; 𝑠 = 0.3), the local minimum (lower valley)

also crosses the x-axis, resulting in one equilibrium again. For all curves𝑚 = 0.01, 𝑢 = 10−6, and ̃𝑞 = 0.01.

The figure on the right is an enlarged view of the box in the figure on the left.
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Figure 3: Our equilibria approximations are accurate. The approximations developed in this paper (solid

lines) are a good fit for calculated values of 𝑠 that result in equilibrium for a given 𝑞 (circles) using Equation

3. Because these approximations are accurate we can use them to better understand this system. The

dashed lines are our approximate bounds for the existence of three equilibria (i.e. for small and large

values of 𝑠, there is one value of 𝑞; for intermediate values of 𝑠 there are three possible values of 𝑞). Other

parameters are 𝑚 = 0.01, 𝑢 = 10−6, and ̃𝑞 = 0.01.
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Figure 4: Populations evolve blindness with the help of strong selection. (A) The equilibrium b– frequency

for an infinite population and (B–D) average frequencies after 𝑡 generations in finite populations (100

replicates). Colors correspond to the frequency of b– for a given combination of 𝑠 and𝑚, where blue is high

(blindness evolved) and red is low (blindness did not evolve). Colors levels are determined by a base-10

logit scale. The solid white line corresponds to the threshold calculated in Equation 9, and the dash white

line corresponds to 𝑚̂(1/2) (Equation 11). The area between the solid and dashed lines corresponds to

the region where three equilibria exist. Other parameters are 𝑢 = 10−6, ̃𝑞 = 0.01, and 𝑞0 = ̃𝑞.
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Figure 5: Strong selection is necessary for the evolution of blindness. Each panel represents a different

mutation rate, and each line represents a threshold for the evolution of blindness based on ̃𝑞 and 𝑞0 = ̃𝑞.

The rate of mutation of b+ to b– alleles is a significant factor in the establishment of the thresholds, e.g.

if ̃𝑞 = 0.01 and 𝑚 = 0.01, then 𝑠 > 0.129 for 𝑢 = 10−4 and 𝑠 > 0.250 for 𝑢 = 10−6; if 𝑚 = 0.001, then

𝑠 > 0.004 for 𝑢 = 10−4 and 𝑠 > 0.023 for 𝑢 = 10−6.
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Tables393

Table 1: Evolutionary Dynamics of Blindness as 𝑡 → ∞

One Equilibrium

0 ≤ 𝑞0 < ̂𝑞 𝑞u� increases to ̂𝑞

̂𝑞 < 𝑞0 ≤ 1 𝑞u� decreases to ̂𝑞

Three Equilibria

0 ≤ 𝑞0 < ̂𝑞u� 𝑞u� increases to ̂𝑞u�

̂𝑞u� < 𝑞0 < ̂𝑞u� 𝑞u� decreases to ̂𝑞u�

̂𝑞u� < 𝑞0 < ̂𝑞u� 𝑞u� increases to ̂𝑞u�

̂𝑞u� < 𝑞0 ≤ 1 𝑞u� decreases to ̂𝑞u�
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