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ABSTRACT  

Much work has been devoted to understanding the evolutionary processes shaping genetic variation 

across genomes. Studies have found neutral polymorphism is reduced close to genes and in regions of low 

recombination, suggesting the effects of natural selection. However, the effect of selection on neutral 

sequence divergence between species remains ambiguous. While studies have reported correlations 

between divergence and recombination, theoretical arguments suggest selection may not affect divergence 

at linked neutral sites. Here we address these outstanding issues by examining how natural selection has 

affected divergence between distantly related species. We show that neutral divergence is negatively 

correlated with functional content and positively correlated with estimates of background selection from 

primates. These patterns persist even when comparing humans and mice, species that split 75 million 

years ago. Further, neutral divergence is positively correlated with recombination rate. The correlation 

increases when focusing on genic regions, and biased gene conversion cannot explain all of this 

correlation. These signatures suggest that natural selection has affected linked divergence between 

distantly related species. Coalescent models indicate that background selection can generate these 

patterns. Even when the contribution of ancestral polymorphism to divergence is small, background 

selection in the ancestral population can still explain a large proportion of the variance in divergence 

across the genome. Thus, the view that selection does not affect divergence at linked neutral sites needs to 

be reconsidered. Our work has important implications for understanding evolution of genomes and 

interpreting patterns of genetic variation. 

 

INTRODUCTION 

Determining the evolutionary forces affecting genetic variation has been a central goal in 

population genetics over the past several decades. A large body of empirical and theoretical work has 

suggested that neutral genetic variation within a species can be influenced by nearby genetic variants that 

are affected by natural selection (reviewed in Cutter and Payseur 2013). This can occur via two 

mechanisms. In a selective sweep, a neutral allele linked to a beneficial mutation will reach high 

frequency (Maynard Smith and Haigh 1974; Kaplan et al. 1989). Selective sweeps reduce neutral genetic 

variation surrounding regions of the genome where selection more commonly occurred. The second 

process, background selection, also reduces neutral genetic variation (Charlesworth et al. 1993; Hudson 

and Kaplan 1995; Nordborg et al. 1996; Charlesworth 2012a). Here deleterious mutations that are 

eliminated by purifying selection also remove nearby neutral genetic variation. Many empirical studies 

have found strong evidence for the effects of background selection and selective sweeps affecting patterns 

of neutral genetic diversity across the human genome. For example, several studies have reported a 

correlation between genetic variation and recombination rate (Nachman 2001; Hellmann et al. 2003, 
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2005, 2008; Cai et al. 2009; Lohmueller et al. 2011). This correlation can be driven by selective sweeps 

and background selection because these processes affect a larger number of base pairs in areas of the 

genome with low recombination rate than with high recombination rate. Additionally, other studies found 

reduced neutral genetic diversity surrounding genes (Payseur and Nachman 2002; Cai et al. 2009; 

McVicker et al. 2009; Hernandez et al. 2011; Lohmueller et al. 2011; Enard et al. 2014), which is 

consistent with the idea that there is more selection occurring near functional elements of the genome. 

While the evidence for selection reducing genetic diversity is unequivocal, the effect of selection 

on sequence divergence between species is less clear. Elegant theoretical arguments have suggested 

selection does not affect the substitution rate at linked neutral sites (Birky and Walsh 1988). However, 

these theoretical arguments do not include mutations that arose in the common ancestral population. Such 

ancestral polymorphism is widespread and has been shown to be a significant confounder in estimating 

population divergence times (Edwards and Beerli 2000). When also including ancestral polymorphisms, it 

becomes less clear whether selection affects divergence at linked neutral sites. Based on simple 

coalescent arguments, neutral polymorphism in the ancestral population will be affected by linkage to 

selected sites the same way as genetic diversity within a population (Figure 1). Presumably, neutral 

divergence between closely related species, with lots of ancestral polymorphism, then could be affected 

by selection. But, selection is thought to not have an effect on linked neutral divergence when considering 

species with very long divergence times (Birky and Walsh 1988; Hellmann et al. 2003; Cruickshank and 

Hahn 2014). The argument for the lack of an effect with long split times is that there would be many 

opportunities for mutations to occur after the two lineages split (Figure 1). These neutral mutations that 

occur after the split would not be influenced by selection at linked neutral sites (Birky and Walsh 1988) 

and would dilute the signal from the ancestral polymorphism. Thus, it is generally believed that selection 

at linked neutral sites should not affect divergence between distantly related species. An example of this 

argument was presented by Hellmann et al. (2003). They argued that the positive correlation between 

human-baboon divergence and human recombination was due to mutagenic recombination, rather than 

selection affecting linked neutral sites, because of the long split time between humans and baboons (>20 

million years). Reed et al. (2005) suggested that though it is unlikely background selection by itself could 

explain the entire correlation observed by Hellman et al., background selection may still contribute to 

divergence. However, beyond these verbal arguments, there has been little quantitative investigation of 

the effect that selection has on divergence at linked neutral sites among distantly divergent species when 

including ancestral polymorphism. 

In addition to conflicting conceptual predictions about the expected effect of selection on 

divergence at linked neutral sites, empirical studies have also been ambiguous. While some studies found 

no evidence for a correlation between divergence and recombination such as in Drosophila (Begun and 
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Aquadro 1992; McGaugh et al. 2012) or in yeast (Noor 2008), other studies have reported correlations 

between divergence and recombination in Drosophila (Kulathinal et al. 2008; Begun et al. 2007). Further, 

positive correlations between human-chimpanzee divergence and human recombination rate (Hellmann et 

al. 2005; Cai et al. 2009; Lohmueller et al. 2011), human-macaque divergence and human female 

recombination rate (Tyekucheva et al. 2008), or human-baboon divergence and human recombination rate 

(Hellmann et al. 2003) have been reported. Intriguingly, several studies (Lercher and Hurst 2002; Mouse 

Genome Sequencing Consortium et al. 2002; Hardison et al. 2003) reported a positive correlation between 

human-mouse divergence and human recombination rate, but this empirical finding has not been 

interpreted in a model-based population genetic framework since its publication over 10 years ago. 

Finally, even though there was evidence for a strong reduction in human-chimpanzee divergence and 

human-macaque divergence surrounding genes (Tyekucheva et al. 2008; McVicker et al. 2009), 

McVicker et al. attributed the reductions seen for human-dog divergence to variation in mutation rates. 

Thus, the degree to which divergence is affected by selection across species with different split times 

remains elusive. 

 Determining whether and how selection affects linked neutral divergence is critical to 

understanding the evolutionary forces influencing genetic variation and mutational processes. If selection 

in the ancestral population only has a limited effect on divergence, it would suggest correlations between 

recombination and divergence to be evidence of mutagenic recombination. This may further suggest the 

need to consider recombination rates when modeling variation in mutation rates across the genome 

(Lercher and Hurst 2002; Hellmann et al. 2003; Pratto et al. 2014; Arbeithuber et al. 2015; Francioli et al. 

2015). Because mutations rates have been difficult to reliable estimate in humans (Scally and Durbin 

2012; Ségurel et al. 2014), understanding the biological factors influencing them will be of paramount 

concern for obtaining improved estimates. If, on the other hand, selection can affect linked neutral 

divergence, correlations between divergence and recombination or reductions of linked neutral divergence 

surrounding genes would suggest an abundance of selection affecting linked neutral sites (Sella et al. 

2009). Selection affecting linked neutral diversity and divergence is at odds with the neutral and nearly 

neutral theories (Kimura 1983; Ohta 1973; Akashi et al. 2012), which have been the prevailing views in 

molecular population genetics for the last several decades. It would also suggest the need to consider the 

effects of selection when estimating mutations rates from neutral divergence. 

Here we aim to examine the effects of selection on linked neutral divergence for species with a 

range of split times. We first present evidence that neutral divergence is reduced at sites linked to selected 

sites across a wide range of taxa, including those with split times as long as 75 million years ago. Many of 

these results cannot be caused by mutagenic recombination or biased gene conversion. Then, we present a 

theoretical argument as to how background selection can affect variation in neutral divergence across the 
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genome, even for species with long split time such as human and mouse. We use simulations to explore 

the conditions under which background selection is predicted to affect linked neutral divergence and show 

that this effect is likely to be widespread across many taxa. Our empirical and simulation-based findings 

suggest the view that selection does not affect divergence at linked neutral sites between distantly 

diverged species needs to be revised. 

 

RESULTS 

Neutral divergence is reduced in regions of the genome with greater functional content 

To understand the role of natural selection in reducing linked neutral divergence, we first 

examined the relationship between functional content and neutral divergence. We defined functional 

content as the proportion of sites within a window that overlapped with an exon or a phastCons region. 

We hypothesized that the effect of selection on linked neutral sites would be more pronounced at regions 

with greater functional content (Payseur and Nachman 2002). This hypothesis predicts a negative 

correlation between functional content and neutral divergence. To test this, we divided the human genome 

into non-overlapping windows of 100kb. To obtain putatively neutral divergence for each window, we 

filtered sites that overlapped with an exon transcript or a 44-way phastCons region (see the Methods 

section for further details). For human-mouse and human-rat divergence, we corrected for multiple 

mutations by applying the Kimura two-parameter model (Kimura 1980).  

We found a negative correlation between functional content and neutral divergence between pairs 

of closely related species (Spearman’s ρhuman-chimp = -0.3286, P < 10-16, Spearman’s ρhuman-orang = -0.2985, 

Figure 2A, Figure 2B, Supplementary Table 1). Such a finding is consistent with the hypothesis that 

selection has reduced neutral divergence close to functional elements between closely related species. We 

next tested whether there was a correlation for more distantly related pairs of species, such as human-

mouse and human-rat. These species were predicted to have diverged approximately 75 million years ago 

(Mouse Genome Sequencing Consortium et al. 2002) and, as such, current thinking would predict that 

there would be no correlation between divergence and functional content due to selection affecting linked 

neutral sites. Instead, we find that functional content is negatively correlated with neutral divergence, 

even between pairs of distantly related species (Figure 2C, Figure 2D). The magnitude of the correlation 

is greater than that seen for the closely related species (Spearman’s ρhuman-mouse = -0.4885, P < 10-16, 

Spearman’s ρhuman-rat = -0.4774, P < 10-16, Supplementary Table 1). Some features of the genome such as 

CpG sites or GC content are known to correlate with genic content (Kong et al. 2002; Hellmann et al. 

2005; Cai et al. 2009; Lohmueller et al. 2011). To test whether these features confounded the correlations 

found in our data, we repeated our analyses removing potential CpG sites by omitting sites preceding a G 

or following a C (McVicker et al. 2009). The correlations were essentially unchanged after filtering CpG 
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sites (Supplementary Table 1). We next computed partial correlations controlling for GC content. 

Similarly, we found that the correlations persisted (Supplementary Table 1) and were similar to or 

greater than that seen in the unfiltered data. These results suggest that the negative correlation between 

functional content and divergence is not driven by mutational properties associated with sequence 

composition. 

Biased gene conversion is an additional evolutionary force that has been shown to influence 

patterns of divergence (Galtier and Duret 2007; Duret and Arndt 2008). In this process, double-strand 

breaks in the DNA in individuals heterozygous for AT/GC variants will be preferentially repaired with 

the GC allele, resulting in AT ! GC substitutions occurring at a higher rate than GC ! AT substitutions 

(Duret and Arndt 2008; Duret and Galtier 2009; Berglund et al. 2009). To control for the effects of biased 

gene conversion on this analysis, we filtered out sites that could be affected. Since the exact sites affected 

by biased gene conversion are difficult to identify, we employed three different sets of filters, each with 

varying degrees of stringency. First, we filtered previously identified biased gene conversion hotspots 

(Capra et al. 2013). We obtained phastBias gBGC tracks for human and tabulated divergence excluding 

the sites that overlapped with the phastBias gBGC track. Negative correlations between functional content 

and divergence were essentially unchanged after filtering those sites (e.g. Spearman’s ρhuman-mouse =              

-0.4838, Supplementary Table 2), suggesting that biased gene conversion clustered within the phastBias 

track cannot account for empirical correlations seen in the data.  

However, since phastBias could only identify 25-50% of sites that are affected by biased gene 

conversion (Capra et al. 2013), we next filtered out any AT ! GC substitutions in regions of 

recombination hotspots, because it is thought that the effect of biased gene conversion is strongest in 

those regions (Glémin et al. 2015). To identify sites that fell into recombination hotspots, we used the 

double-strand break map (Pratto et al. 2014). Note, we did not wish to use recombination hotspots 

identified from patterns of linkage disequilibrium as the power to identify such hotpots may be related to 

SNP density, which may in turn be influenced by the degree of divergence between species. We filtered 

any substitutions where one species carried an A or T allele and the other carried a C or a G (i.e. weak to 

strong or strong to weak substitutions). Again, negative correlations between functional content and 

divergence were essentially unchanged after filtering those sites (e.g. Spearman’s ρhuman-mouse = -0.4480, 

Supplementary Figure 1, Supplementary Table 2). Finally, we employed a more stringent filter for 

biased gene conversion by filtering any AT ! GC substitution genome-wide. Similar to what was seen 

with the other filters, the correlation between functional content persisted (Spearman’s ρ = -0.4710, 

Supplementary Table 2). In sum, our results suggest that the reduction in neutral divergence due to 

selection in the ancestral population has persisted to the present time. Importantly, because human-mouse 

divergence was computed only at putatively neutral sites, this pattern is unlikely to be driven by the direct 
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effects of purifying selection removing deleterious mutations (see Discussion). 

Neutral human-rodent divergence correlates with background selection in primates 

Next, we examined the relationship between human-mouse divergence and the strength of 

background selection across the genome inferred from divergence within primates (McVicker et al. 

2009). This strength of background selection is captured by the B-value, which represents the degree to 

which neutral variation at a given position is reduced by selection relative to neutral expectations. While 

McVicker et al. found that divergence between primates was indeed reduced due to background selection, 

they did not consider human-mouse divergence in their analyses and did not model background selection 

within the human-dog ancestor. As such, there is no a priori reason why the B-values of McVicker et al. 

should be related to human-mouse divergence. 

Nevertheless, we found a positive correlation between human-mouse divergence and the B-values 

from McVicker et al. (Spearman’s ρ = 0.5459, P < 10-16, Figure 3A, Supplementary Table 3). We also 

found a correlation between human-rat divergence and the B-values (Spearman’s ρ = 0.5242, P < 10-16, 

Figure 3B, Supplementary Table 3). These results suggest that regions of the genome that show 

stronger signals of background selection within primates (lower B-values) tend to show lower levels of 

human mouse divergence. Additionally, the positive correlation remained after filtering sites that may be 

within a CpG context or affected by gene conversion (Spearman’s ρ = 0.4404, Supplementary Figure 2, 

Supplementary Table 4), suggesting that some other process must be driving it.  Our interpretation of 

this finding is that regions of the genome that are affected by background selection within primates had 

also been affected by background selection in the human-mouse ancestral population, and that this latter 

signal is still detectable in patterns of human-mouse divergence. Thus, this a second line of evidence 

suggesting that selection can affect linked neutral divergence. 

Divergence of closely and distantly related species is positively correlated with human 

recombination 

Third, we examined the relationship between human recombination rates from the deCODE 

genetic map (Kong et al. 2010) and neutral divergence. We found a positive correlation between human 

recombination and neutral divergence between pairs of closely related species (Spearman’s ρhuman-chimp = 

0.2564, P < 10-16, Spearman’s ρhuman-orang = 0.2496, P < 10-16, Figure 3A, Figure 3B, Supplementary 

Table 5) as well as pairs of distantly related species (Figure 3C, Figure 3D). The magnitude of the 

correlation for distantly related species is about half that seen for the closely related species (Spearman’s 

ρhuman-mouse = 0.1432, P < 10-16, Spearman’s ρhuman-rat = 0.1337, P < 10-16, Supplementary Table 5).  

To test whether natural selection could explain the correlation between genetic variation and 

recombination, we stratified windows of the genome into regions that are near genes and far from genes. 

We hypothesized that if natural selection reduced divergence at linked neutral sites, it would be more 
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effective in removing divergence in regions overlapping genes because genes are more likely to be targets 

of natural selection (Lohmueller et al. 2011). Thus, we binned windows based upon the proportion that 

overlapped with a RefSeq transcript. We then computed Spearman’s ρ between divergence and 

recombination for each set of windows. We found that the correlation between divergence and 

recombination is stronger for windows that have greater overlap with RefSeq transcripts (Supplementary 

Figure 3A), suggesting that the correlation was stronger in regions near genes as opposed to far from 

genes. This result is consistent with the hypothesis that natural selection reduces divergence at linked 

neutral sites. After filtering for CpG sites or controlling for GC content, the correlations persisted 

(Supplementary Table 5) and were similar to or greater than that seen in the unfiltered data. These 

results suggest that the positive correlation between recombination and divergence is not driven by 

mutational properties associated with sequence composition. 
Because biased gene conversion is thought to occur at a greater rate in regions of the genome 

with higher recombination rates, we were especially concerned that it could be driving the correlation 

between divergence and recombination. However, positive correlations between human recombination 

and divergence were essentially unchanged after filtering the sites within the phastBias track sites (e.g. 

Spearman’s ρhuman-chimp = 0.249, Supplementary Table 6), After filtering AT!GC sites within human 

double-strand break hotspots, the overall correlation between human-chimpanzee divergence and human 

recombination was slightly weaker, though still significant (Spearman’s ρhuman-chimp = 0.2351, 

Supplementary Table 6), suggesting that biased gene conversion is unlikely to explain the correlation 

between human-chimpanzee divergence and human recombination. Though it remained formally 

significant, the overall correlation between human-mouse divergence and recombination substantially 

decreased after this filtering (Spearman’s ρhuman-mouse = 0.0426, P<10-5, Supplementary Table 6). This 

suggests that we cannot exclude the possibility that biased gene conversion could be driving much of the 

genome-wide correlation between recombination and divergence when considering distantly related 

species. However, the presence of biased gene conversion does not negate the possibility that natural 

selection could also still affect divergence. Thus, we hypothesized that if natural selection could reduce 

neutral divergence at linked sites, it may still be detectable in windows near genes. Therefore, we 

stratified the windows based on the percentage of sites of each window that overlapped with a RefSeq 

transcript. The correlation between human-mouse divergence and human recombination was greater than 

0.1 when considering windows with at least 10% overlap with a RefSeq transcript (Supplementary 

Figure 3B, Supplementary Figure 4). This implies that even after stringent filtering for biased gene 

conversion, genic windows still show a stronger correlation between recombination and divergence than 

do non-genic windows. Further, the fact that genic windows still show a significantly positive correlation 

between human-mouse divergence and recombination suggests that biased gene conversion cannot 
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explain all of the patterns and that some other evolutionary force, such as selection at linked neutral sites, 

must be invoked. 

After filtering all AT ! GC substitutions genome-wide, the correlation between human-

chimpanzee divergence and human recombination was reduced, but remained significant (Spearman’s ρ = 

0.1475, Supplementary Table 6). The correlation between human-mouse divergence and human 

recombination became negative after filtering all weak to strong and strong to weak substitutions 

(Spearman’s ρhuman-mouse = -0.060, P < 10-6). However, the potential effect of background selection in 

reducing neutral divergence at linked sites was again evident when we stratified windows overlapping 

genes and those not overlapping genes. We found that the correlation between human-mouse divergence 

and human recombination is significantly positive (Spearman’s ρhuman-mouse = 0.0985) at windows with 

>75% overlap with a RefSeq transcript (Supplementary Table 7).  

In summary, filtering out sites that could be under the influence of biased gene conversion using 

different criteria suggested that biased gene conversion may be driving much of the genome-wide 

correlation between recombination and divergence at distantly related species. However, even after more 

stringent filtering, the correlation between recombination and divergence could still be detected when 

considering windows that are near genes. Therefore, some other mechanisms must be invoked to explain 

this pattern. Further, other patterns that are more stable through the course of evolution such as the 

proportion of sites that are functional and the amount of background selection in the ancestral primate 

populations suggest that selection has affected linked neutral divergence.  

Theoretical models predict a substantial contribution of background selection to variation in 

neutral divergence even for old split times 

Any effect of background selection on the variation in neutral divergence across the genome can 

only result from its effect on divergence in the ancestral population, since deleterious mutations do not 

affect the fixation rate at linked neutral sites (Birky and Walsh 1988). An old split time between two 

species leads to only a small proportion of the total divergence having been accumulated in the ancestral 

population of the two species. As such, one would expect that for old split times, the impact of 

background selection on variation in divergence across the genome is negligible. 

However, here we show that even when the amount of divergence that accumulated in the 

ancestral population (!!) is small relative to the total divergence (!!), there can still be a substantial 

amount of variation in divergence across the genome being influenced by background selection. We 

analyze a simple two-locus model to explore the influence of ancestral population size (!!), mutation rate 

(µ) and strength of background selection (!) on the proportion of variance in divergence that can be 

explained by background selection (Figure 5A). Recombination in the ancestral population leads to a 

distribution of coalescent times within each locus, with an average coalescent time of !. We assume that 
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recombination rate within each locus is large enough, such that there is no variation in ! for a fixed value 

of B, i.e. Var !|B ≈ 0. A difference in ! between loci is therefore only attributable to differences in 

background selection: E !|! = 2!!!. Further, variation in ancestral (!!) and total (!!) divergence 

results from a Poisson distributed number of mutations added to the genealogy, such that !"# !!|! =
! !!|! = 4!!!"# and !"# !!|! = ! !!|! = ! !!|! + 2!!"#!!!". Here, ! is the sequence length of 

a locus. The law of total variance can be used to compute the variance in total divergence across loci with 

varying levels of background selection:  

!
!"# !! = !"#! ! !! ! + !![!"#[!!|!]] 

!
Thus, variance in total divergence can be decomposed into variance due to background selection and 

variance due to the mutational process. For simplicity, the first locus experiences no background selection 

(!! = 1), and the second locus experiences some fixed amount of background selection (0 ≤ !! ≤ 1). 

Under this model, we can compute the variance due to background selection as: 

!
!"#! ! !! ! = ((![!!|! = 1]!– !![!!|! = !2])/2)

2!.!
!
We then compute the variance due to the mutational process as: 
!

!![!"# !! ! ] = (!"# !! ! = 1 + !"# !! ! = !! )/2.!
!
We assume an old split time, such that the divergence that accumulated from present time to population 

split is similar to the human-mouse divergence (40%). Both loci have a sequence length (!) of 100kbp. 

Our theoretical analysis of variance approach shows, that even with this old split time and a very small 

ancestral mutation rate of 1 x 10-9/bp, more than 20% of variation in divergence can be attributed to 

background selection in the ancestral population, as long as the ancestral population size is not too small 

(>600,000) and the effect of background selection is strong (!! < 0.2; Figure 5A). Note that under these 

conditions, the proportion of divergence that accumulated in the ancestral population can be as low as 

0.3% (Figure 5B).  However, the proportion of the variance in divergence that is attributable to the 

ancestral population is larger than 20% (Figure 5C), mainly due to background selection leading to 

differences in ! between loci. With a larger mutation rate (2 x 10-8/bp), one can observe a strong influence 

of background selection on variation in divergence even when ancestral population size is relatively small 

(>50,000). When assuming a moderately large population size of 200,000, and a moderate strength of 

background selection (!! = 0.75), then as much as 50% of variance in divergence can be explained by 

background selection. Nonetheless, the proportion of divergence that accumulated in the ancestral 

population in this case is still only 3.4%. Our results demonstrate that, even for old split times where the 
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vast majority of divergence accumulated after the population split, a moderate effect of background 

selection in the ancestral population can have a strong influence on the variation in divergence between 

genomic regions. 

Coalescent simulations predict background selection can reduce neutral divergence between species 

with long split times  

Because the theoretical model described above assumes free recombination within windows and 

only considers a pair of loci at a time, we used coalescent simulations to examine whether background 

selection could generate this correlation under more realistic models. We modeled the effect of 

background selection as a reduction in the ancestral population size using the B-values estimated in 

McVicker et al. (see the Methods section for further details). For each window of the genome, we used a 

two-part strategy to simulate a neutral genealogy that was affected by background selection. The first part 

considered the genealogy in the ancestral population. This was done by simulating a neutral ancestral 

recombination graph (ARG) in a constant size population for a sample size of two using the population-

scaled recombination rate 4NaBr, where Na is the ancestral population size, and r is the recombination rate 

for the window, which we took from the deCODE genetic map. The ARG for the ancestral population 

used a population-scaled mutation rate 4NaBµa, where µa is the ancestral mutation rate, which we set to 2.5 

x 10-8 for these simulations. The second part of the genealogy considered the divergence that accumulated 

from time tsplit till the present day. Mutations were added to this part of the genealogy following a Poisson 

process (see Methods for more details).  

We found that across all population sizes and split times examined, background selection 

generated a positive correlation between recombination and divergence as well as a positive correlation 

between divergence and B-values, even for pairs of species that split up to 100N generations ago (Figure 

6). Interestingly, this correlation remained strong even when the proportion of the divergence due to 

ancestral polymorphism was small. For example, for a pair of populations with tsplit=100N generations and 

an ancestral population of size 50,000, only 1.53% of the divergent sites are due to ancestral 

polymorphism. However, this model predicts a correlation of 0.2114 between recombination and 

divergence and a correlation of 0.377 between recombination and B-values. Although ancestral 

polymorphism only contributes in a small way to the total divergence, the variance in the amount of 

ancestral polymorphism across the windows accounts for nearly 60% of the variance in divergence across 

different windows (Supplementary Figure 5). In general, the correlations decreased as both the split 

time increased and the size of the ancestral population decreased (Figure 6). This behavior is expected as 

the contribution of the variance in levels of ancestral polymorphism to the variance in divergence 

decreases with increasing split time and decreasing ancestral population size (Supplementary Figure 5). 

These results are in agreement with the theoretical results presented for the two-locus models. 
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We also explored the effect of background selection on divergence using additional sets of B-

values. Specifically, we used the theoretical predictions of the effect of background selection as a function 

of U, (the deleterious mutation rate), the recombination rate, and sh (the heterozygous selection 

coefficient). We then picked values of U and sh that produced a distribution of B-values with mean of 0.8, 

the predicted mean strength of background selection in humans (McVicker et al. 2009), and 0.6, the mean 

predicted strength of background selection in Drosophila (Comeron 2014). For these B-values, we found 

that background selection still could generate a positive correlation between recombination and 

divergence with very ancient split times (Supplementary Figure 6). As before, we found that this pattern 

persisted across different ancestral population sizes (Supplementary Figure 6).  

Background selection in the human-mouse ancestor can explain genomic variation in neutral 

divergence  

We tested whether background selection could explain our empirical observations regarding 

neutral human-mouse divergence. To do this, we used a coalescent simulation approach, which included 

background selection in a manner similar to that described above. Here we used parameter values that are 

more plausible for human-mouse populations. For example, we used an average mutation rate of µa = 2 x 

10-8 per generation for the human-mouse ancestral population. We included mutation rate variation across 

windows of the genome by drawing µa from a gamma distribution. Interestingly, a gamma distribution 

used for human mutation rates that had been calibrated by human-chimpanzee divergence (Voight et al. 

2005) predicts a greater variance in human-mouse divergence than seen empirically. Thus, we selected the 

values of the parameters for a gamma distribution as well as the ancestral human-mouse population size 

to matched the mean and standard deviation of our observed human-mouse divergence (see Methods, 

Supplementary Figure 7). Ultimately, this model uses a human-mouse ancestral population size of 

600,000. Given these parameters (Supplementary Figure 8), we then simulated 200 sets of genome-wide 

windows and computed Spearman’s correlation between divergence and the McVicker B-values for each 

replicate.  

When considering models without background selection (i.e. B=1 for all windows), the average 

value of Spearman’s ρ was 0.025, and none of the 200 simulation replicates approached the value of 

Spearman’s ρ seen empirically (0.441, Figure 7). This result suggests that values of Spearmans’ ρ as large 

as that seen empirically cannot be generated by the neutral coalescent process. On the other hand, when 

modeling background selection using the McVicker B-values, the average Spearman’s ρ was 0.4461 

which was comparable to the Spearman’s ρ computed from empirical human-mouse divergence (Figure 

7).  In sum, our results suggest that a model with background selection in the ancestral population can 

generate a positive correlation between the B-values and human-mouse divergence that is compatible to 

what is seen empirically, making background selection a plausible explanation for our empirical patterns.  
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DISCUSSION 

Overall we show that neutral divergence, even between distantly related species, has been 

affected by natural selection. There are five lines of evidence in support of this assertion. The first line of 

evidence is that neutral divergence of distantly related species (i.e. human-mouse) negatively correlates 

with functional content. If natural selection is reducing neutral divergence at linked sites, the expectation 

is that neutral divergence would be lowest in regions with high functional content because natural 

selection tends to target those regions. Our empirical findings matched with the prediction (Figure 2). 

Second, human-mouse neutral divergence strongly correlates with the estimates of background selection 

in primates (Figure 3). These correlations persist after filtering out confounding factors, specifically CpG 

content and biased gene conversion sites. Third, we found a significant positive correlation between 

human recombination and putatively neutral divergence between closely and distantly related species 

(Figure 4). This correlation is evidence of selection affecting linked neutral sites because selection is 

predicted to reduce linked neutral divergence across a larger region of the genome in areas of low 

recombination than higher recombination. The fourth line of evidence is that the correlation between 

neutral divergence and recombination is stronger at regions that are near genes compared to regions that 

are far from genes (Supplementary Figure 3 and Supplementary Figure 4). The reason why this is 

evidence of selection at linked sites is that natural selection is generally thought to affect regions of the 

genome that are functional, such as coding regions. Therefore, we would expect selection at linked sites 

to have more of an effect on regions near genes than regions far from genes. Our result is consistent with 

this prediction. Further, the overall correlation between recombination and neutral divergence of closely 

related species persists after filtering out sites that are potentially influenced by biased gene conversion. 

For distantly related species, even though the overall correlation between recombination and neutral 

divergence decreased, the signature of selection at linked sites was apparent when we stratified regions of 

the genome into whether they were near or far from genes. These results suggest that the signal of 

selection at linked sites when considering species with a long split time is quite subtle, perhaps weakened 

by changing recombination rates (see below), and that it could only be detected near genes because those 

regions ought to experience the strongest effect of selection at linked sites. The fifth line of evidence 

comes from our theoretical models and coalescent simulations. Our simulations show that even with very 

ancient split times (10N generations), when only a small amount (<10%) of the divergence comes from 

ancestral polymorphism, background selection is still expected to leave a signature on patterns of neutral 

divergence (Figure 6). Specifically, it can lead to a correlation between recombination and neutral 

divergence as well as a correlation between B-values and neutral divergence. These correlations occur 

because varying amounts of background selection across the genome can induce variation in the 
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coalescent times across the genome, thus accounting for a large fraction of the variance in divergence 

across the genome. 

While we initially observed s a genome-wide correlation between human-mouse divergence and 

recombination (Figure 4), it largely disappeared after filtering weak to strong and strong to weak 

substitutions that may have been affected by biased gene conversion. As such, much of this correlation 

seen in the data may be driven by biased gene conversion and not background selection.  An obvious 

question is why we do not observe a correlation between human-mouse divergence and recombination 

rate genome-wide due to background selection when our simulations suggest one should be detected. One 

possibility could be that recombination rates may have changed throughout evolution. Even though 

human and chimpanzee do not share recombination hotspots, the broad scale recombination rates between 

human and chimpanzee tend to be conserved (Auton et al. 2012). Thus, the correlation between human-

chimpanzee divergence and human recombination rate was still apparent. However, even the broad scale 

recombination rates differ between human and mouse (Jensen-Seaman et al. 2004). Changing 

recombination rates would likely erode the correlation between recombination and human-mouse 

divergence. Our simulations predict that if we had an estimate of the human-mouse ancestral 

recombination rate, then we would detect a positive correlation between human-mouse divergence and 

recombination rate. Nevertheless, the fact that in regions of the genome close to genes we could still 

detect a significant correlation between neutral human-mouse divergence and human recombination 

suggests that the signal from background selection is strong enough to have not been completely eroded 

by these changes in recombination rates.  

These results suggest that examining the correlation between recombination and neutral 

divergence might not be the best measure to detect selection at linked sites. Perhaps other measures such 

as functional content or B-values that may not drastically change over the course of evolution are better 

alternatives. When we explored these other alterative patterns, we found correlations consistent with 

predictions from models of background selection. This result suggests that natural selection has affected 

neutral divergence and that the reason we do not see striking correlations between divergence and 

recombination rate may largely be due to a lack of power because of changing recombination rates. 

 Our coalescent simulations suggest that background selection can generate the correlation 

between human-mouse divergence and B-values seen in our data. However, these simulations make 

assumptions regarding the values of parameters like the ancestral human-mouse population size, 

generation times, and mutation rates over the last 75 million years. There is much uncertainty surrounding 

all of these parameters (Kumar and Subramanian 2002; Smith et al. 2002; Mouse Genome Sequencing 

Consortium et al. 2002; Hardison et al. 2003; Hodgkinson and Eyre-Walker 2011; Geraldes et al. 2011). 

For example, we assumed the ancestral human mouse population size was 600,000 and µa = 2 x 10-8 per 
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generation. This population size is the same order of magnitude as previously suggested for mice 

(Geraldes et al. 2011; Halligan et al. 2013). Assuming the human-mouse ancestor had a generation time 

of 1 year, our mutation rate would be higher than that previously suggested for mammals (Kumar and 

Subramanian 2002; Mouse Genome Sequencing Consortium et al. 2002; Hardison et al. 2003). However, 

a longer generation time would make the rates more comparable. We predict that µa = 2 x 10-9 per 

generation, and 1 year per generation would require an ancestral population size of 4 million to generate 

the correlations seen in the empirical data. Nevertheless, the parameter space over which we expect 

background selection to generate a correlation between divergence and B-values is quite large, suggesting 

conclusions should not depend on the specific parameter values (Figure 5, Figure 6 and Supplementary 

Figure 6). 

While we found that models incorporating background selection predict correlations comparable 

to the empirical data, in principal, several other evolutionary processes may be able to generate these 

patterns. First, selective sweeps in the ancestral population could reduce divergence just like background 

selection. Given that we are unlikely to be able to survey patterns of polymorphism in the human-mouse 

ancestor in more than two lineages, it will be difficult or nearly impossible to distinguish between these 

two types of selection at linked neutral sites. Thus, one should interpret our use of B-values as reflecting a 

reduction in divergence due to the combined effects of both background selection and selective sweeps, as 

suggested in McVicker et al. (2009). A second possibility is that the negative correlation between 

divergence and functional content as well as the positive correlation between divergence and B-values 

could be driven by differences in mutation rate across the genome. Indeed, McVicker et al. attributed a 

positive correlation between B-values and human-dog divergence to the effects of variable mutation rates. 

However, for this mechanism to explain our results, it would require that mutation rates would have to be 

lower closer to genes and in regions of the genome thought to experience more background selection (i.e. 

in regions with lower B-values). Current evidence does not support either requirement. Recent estimates 

of the de novo mutation rate have not found any evidence of a reduction close to genes (Francioli et al. 

2015). Further, Palamara et al. (2015) found that their estimates of the mutation rate do not differ as a 

function of B-values. Further, mutagenic recombination is unlikely to explain the empirical patterns in our 

study. Specifically, the correlation between divergence and functional content does not depend on 

recombination rate. The negative correlation between divergence and functional content remained strong 

when controlling for variation in recombination rates (Supplementary Table 1) suggesting our results 

are unlikely to be driven by mutagenic recombination. Nevertheless, our results do not rule out the 

possibility of mutagenic recombination and this topic certainly warrants further investigation. A final 

possibility is that the reduction in neutral divergence near genes and in regions with lower B-values could 

be due to the direct effects of purifying selection removing variation from the population. We attempted 
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to mitigate this effect by considering putatively neutral sites that were not in exons or conserved across 

species. Thus, for the direct effects of purifying selection to explain our results, there would have to be 

many unidentified noncoding functional elements that are under purifying selection but are not detected 

by phastCons. Current studies provide, at best, limited support for such a scenario (Gulko et al. 2015).  

Our finding that the genome-wide correlation between neutral human-mouse divergence and 

recombination rate substantially decreases when filtering weak to strong and strong to weak mutations 

suggests an important role for biased gene conversion at shaping patterns of divergence across genomes. 

Thus, our results are in line with previous reports of the importance of this effect (Duret and Arndt 2008; 

Duret and Galtier 2009; Capra et al. 2013; Berglund et al. 2009; Glémin et al. 2015). 

One concern is whether poor alignment of divergent sequences influences our results. 

Specifically, we found that divergence at putatively neutral sites decreases with increasing functional 

content (Figure 2). It is possible that human and mouse sequences close to genes are easier to align 

because they have not diverged as much than sequences further from genes. Then, if the alignments 

further from genes contain more errors, there would appear to be more diverged away from genes. While 

this is conceptually possible, we do not believe it is driving the patterns seen in our analyses because poor 

alignments would not predict some of the patterns seen in our data. For example, if poorer alignment 

quality in regions far from genes was driving many of our results, then we would expect the correlation 

between recombination and human-mouse divergence to be strongest when considering all windows of 

the genome. When only considering genic windows, the correlation should decrease because we are only 

considering good-quality alignments. However, we observe the opposite pattern. The correlation between 

recombination and divergence actually increases with increasing the amount of genic sequence within a 

window. This result is more consistent with selection at linked neutral sites affecting divergence, rather 

than alignment quality. 

Other studies have argued that background selection will not affect divergence between distantly 

related species because the genealogy in the ancestral population only comprises a small proportion of the 

total genealogy between one chromosomes from each of the two species (Birky and Walsh 1988; 

Hellmann et al. 2003; Begun et al. 2007; Cruickshank and Hahn 2014). This means that ancestral 

polymorphism will only account for a small proportion of the total divergence between distantly related 

species. It was thought that the signature of selection reducing the genealogy in the ancestral population 

would be diluted by the mutations that occurred since the split. As such, there would be no detectable 

signature of background selection. Our theoretical results and simulations show the proportion of 

ancestral polymorphism is actually a poor predictor of the correlation between divergence and 

recombination as well as between divergence and B-values. For example, consider a pair of species that 

split N generations ago with an ancestral population size of 25,000. In this model, 40% of the divergence 
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is attributable to ancestral polymorphism (Figure 6). Now consider a second pair of species that split 

100N generations ago where Na=200,000. Here <5% of the divergence is due to ancestral polymorphism. 

Previous intuition would suggest the effect of background selection would be stronger in the first pair of 

species because they split more recently and ancestral polymorphism makes a greater contribution to 

divergence. However, our simulations show the exact opposite pattern (Figure 6). The correlation 

between B-values and divergence is higher in the model with the more ancient split (Spearman’s ρ = 

0.6098) than the one with the more recent split (Spearman’s ρ = 0.4517). Similar results are seen for the 

correlation between recombination and divergence. The reason for this discrepancy is that the main driver 

of these correlations is not the average amount of ancestral polymorphism, but rather the contribution of 

the variance in ancestral polymorphism to the variance in divergence. Even when ancestral polymorphism 

makes only a small contribution to the overall average divergence, a substantial amount of the variance in 

total divergence across the genome can still be explained by variance in ancestral polymorphism, 

particularly if the ancestral population size is large. Our theoretical results suggest that the variance in the 

amount of background selection in different regions of the genome can account for a lot of the variance in 

total divergence, even for species that split long ago. In sum, our theoretical results and simulations 

suggest that previous intuition has understated the importance of even small amounts of ancestral 

polymorphism on genome-wide patterns of divergence between species. 

The importance of the ancestral population size at determining the effect of selection at linked 

neutral sites may explain a counter-intuitive pattern in our empirical analyses. We found that the negative 

correlation between functional content and human-rodent divergence was twice as large as that between 

functional content and human-primate divergence (Supplementary Tables 1 and 2). This pattern is 

counter-intuitive under previous thinking because ancestral polymorphism makes a greater contribution to 

human-primate divergence than human-rodent divergence. However, the human-rodent ancestor likely 

had a larger population than the primate ancestor. Our simulations suggest that in such cases, the species 

that diverged longer ago, where ancestral polymorphism makes a smaller contribution to divergence, can 

have stronger effects of background selection. 

 Our results have important implications for understanding patterns of genetic variation and 

divergence across genomes. First, our findings add to the growing literature suggesting the importance of 

background selection at shaping genome-wide patterns of variability across species (Wright and 

Andolfatto 2008; McVicker et al. 2009; Cutter and Choi 2010; Hernandez et al. 2011; Lohmueller et al. 

2011; Charlesworth 2012a; Flowers et al. 2012; Hufford et al. 2012; Charlesworth 2012b; Cutter and 

Payseur 2013; Halligan et al. 2013; Campos et al. 2014; Comeron 2014; Slotte 2014; Wilson Sayres et al. 

2014). Our new contribution to this literature is that natural selection affects divergence, even between 

distantly related species. Second, our findings indicate that correlations between recombination and 
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divergence between distantly related species cannot, by themselves, be interpreted as evidence of 

mutagenic recombination. Our work suggests the need to consider whether models including background 

selection, as well as biased gene conversion, can explain the findings before attributing correlations to 

mutagenic recombination. Third, our work suggests that estimators of mutational properties that rely on 

contrasting patterns of divergence across different parts of the genome that may be differentially affected 

by background selection may yield biased results. This effect has been studied within primates in greater 

detail in recent work (Narang and Wilson Sayres 2015). Fourth, the fact that we detect evidence of 

background selection between distantly related species suggests that there is still some information about 

the distribution of coalescent genealogies across the genome. This distribution of coalescent genealogies 

can be exploited to obtain more reliable estimates regarding the human-mouse ancestral population size. 

While several methods exist to estimate ancestral demographic parameters from divergence (Takahata 

1986; Rannala and Yang 2003; Wall 2003; Siepel 2009; Gronau et al. 2011), we suggest that these 

methods may be applicable for very distantly related species. Our findings that background selection can 

increase the variance in coalescent times across the genome suggest these methods as well as other 

statistical methods which seek to infer demographic history from the distribution of coalescent times 

across the genome, such as the PSMC approach (Li and Durbin 2011), should account for the increased 

variance in coalescent times across the genome due to background selection. Not accounting for 

background selection could result in inferring spurious demographic events to account for the additional 

variance in coalescent times across the genome. Lastly, our results suggest a need for caution when using 

patterns of divergence to calibrate neutral mutation rates. Some of the variation in divergence across the 

genome may be due to varying coalescent times—further accentuated by selection—rather than differing 

mutation rates (Gillespie and Langley 1979; Edwards and Beerli 2000). Future work could explore the 

extent to which selection at linked neutral sites can explain the discrepancies between different types of 

estimates of mutation rates (Scally and Durbin 2012; Ségurel et al. 2014). 

 

METHODS 

Correlation analyses 

To calculate the divergence between each pair of species, we divided the human genome into 

100kb non-overlapping windows. We obtained the pairwise (.axt) alignments between human/chimpanzee 

(hg18/panTro2), human/orang (hg18/ponAbe2), human/mouse (hg18/mm9), and human/rat (hg18/rn4) 

from the UCSC genome browser. These alignments are the net of the best human chained alignments for 

each region of the genome (Kent et al. 2003). Any bases that fell into to the regions of centromere, 

telomere and repeat were not considered further in this study. We also excluded sites that were missing in 

either of the species in the alignment. To obtain the putatively neutral regions, we filtered out sites that 
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fell into coding and conserved regions. The coding regions were retrieved from the UCSC Table Browser 

with the following specifications: clade: Mammal, genome: Human, assembly: Mar. 2006 

(NCBI36/hg18), group: Genes and Gene predictions, track: UCSC Genes, table: knownGene. Similarly, 

the conserved regions were retrieved from the UCSC Table Browser with the following specifications: 

clade: Mammal, genome: Human, assembly: Mar. 2006 (NCBI36/hg18), group: Comparative Genomics, 

track: Conservation, table: Vertebrate El (phastConsElements44way). For each window, we computed the 

total number of base pairs that passed the filtering criteria. To reduce variation, we only considered 

windows in which the total number of eligible base pairs was greater than 10,000. Then we computed the 

divergence by tabulating the number of base pairs that are different between the two species being 

compared. To account for multiple mutation hits for the distantly related species pairs (human-mouse and 

human-rat), we applied the Kimura two-parameter model (Kimura 1980). In addition, the recombination 

rate for each window was computed using the high-resolution pedigree-based genetic map assembled by 

deCODE (Kong et al. 2010). We then calculated Spearman's ρ between divergence and recombination 

using the cor function in R. 

Filtering criteria 

To filter out possible CpG sites, we excluded sites that were preceded by a C or were followed by 

a G in hg18 (McVicker et al. 2009). To control for the effects of biased gene conversion, we employed 

three different filters. First, we removed bases that overlapped with the phastBias track for humans (Capra 

et al. 2013) . The phastBias track was retrieved from the UCSC Table Browser with the following 

specifications: clade: Mammal, genome: Human, assembly: Mar. 2006 (NCBI36/hg18), group: All 

Tables, database: hg18, table: phastBias Tracts 3. Second, confounding effects due to biased gene 

conversion were also controlled for by omitting AT ! GC substitutions in double-strand break regions. 

The double-strand break map obtained from Pratto et al. (2014) was used as a proxy for recombination 

hotspots. Rather than polarizing the directionality of the substitution, which may be error prone, we 

removed all divergent sites where one species had an A or a T nucleotide and the other had either a C or a 

G nucleotide. Thus, we only retained weak to weak or strong to strong mutations. Third, we removed all 

AT!GC substitutions across the genome. This was done using the same steps as previously described. 

Simulations  

To determine whether background selection could affect genetic divergence, we performed 

coalescent simulations that included background selection. We modeled background selection as a simple 

reduction in effective population size in the ancestral population (Charlesworth et al. 1993; Hudson and 

Kaplan 1995). This was done by scaling the ancestral population size Na, by the B-values. Unless 

otherwise noted, we used the B-values from McVicker et al. (2009). Each simulation replicate consisted 

of two parts. The first part modeled genetic variation in the ancestral population, and would include the 
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effects of background selection. For each window i, we simulated an ancestral recombination graph 

(ARG) with a population-scaled recombination rate 4NaBiri, where Na is the ancestral population size, Bi 

is the strength of background selection affecting window i, and ri is the recombination rate for window i. 

Mutations to the genealogy assuming a population-scaled mutations rate θ=4NaBiµa,iLi, where µai is the 

ancestral per-base pair mutation rate for window i and Li is the number of successfully aligned neutral 

bases in window i. Simulations were done using the program ms (Hudson 2002). Note, we included 

recombination in the ancestral population because it affects the variance in coalescent times across 

windows and this variance in coalescent times will in turn affect the variance in levels of divergence, 

which will ultimately affect the strength of the correlation between divergence and recombination. Thus, 

we aimed to capture the appropriate variance to the extent possible. This part of the simulation generated 

the amount of divergence due to ancestral polymorphism, which we call da. 

We then added the mutations that arose since (i.e. more recently) the split. The divergence from 

the present time to split time follows a Poisson distribution where the rate parameter equals the expected 

divergence between two populations. For the simulations in Figure 6, !! = 2!!"#$%!" where ds  is the 

expected divergence from the present time to the split time in the divergence model, tsplit is the split time, 

µ is the mutation rate, and L is the length of each sequence. When computing both da and ds for the results 

in Figure 6, we assumed µ = 2.5 x 10-8 per base-pair per generation. For each window of the genome, !! 
was simulated using the rpois function in R. Finally, the total divergence within a window is the sum of 

divergence generated in the ancestral population (da) and the divergence generated since the two species 

split (ds).  

Due to the differences in generation times and mutation rates between the human and mouse 

lineages, we modified our approach for these simulations (Figure 7 and Supplementary Figure 8). First, 

here ds =(tmouse µmouse+ thumanµhuman)L, where tmouse is the number of generations on the lineage leading to the 

mouse from tsplit till the present day, thuman is the number of generations on the lineage leading to human 

experienced from tsplit till the present day, µmouse is the mutation rate along the mouse lineage, and µhuman is 

the mutation rate along the human lineage. There is much uncertainty surrounding these parameters. 

However, the following values are broadly consistent with what has been reported previously and match 

the observed mean and standard deviation of human-mouse divergence (Supplementary Figure 7). First, 

we assumed tsplit = 75 million years ago. We then assumed mice have 1 generation per year, giving tmouse = 

75 x 106 generations. We assumed humans have 25 years per generation, making thuman = 3 x 106. We then 

set µmouse = 3.8 x 10-9 per generation and µhuman =3.75 x 10-8 per generation. These estimates are broadly 

consistent with previous reports and allow for approximately twice as much divergence on the mouse 

lineage as compared to the human lineage (Mouse Genome Sequencing Consortium et al. 2002). Thus, 

the expected value for ds was 0.3975 per site.  
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We assumed that µa was equal to 2 x 10-8 per generation, which is the average of µhuman and µmouse. 

We accounted for variation in mutation rates across different regions of the genome by drawing µa from a 

gamma distribution (Voight et al. 2005). We kept the ratio of µa to µmouse constant across all windows of 

the genome. For example, µa / µmouse = 5.26. Then if µa,i is the rate for the ith region drawn from the gamma 

distribution, we set µmouse,i equal to µa,i / 5.26. A similar procedure was used to find µhuman,i. Increasing the 

variance in the mutation rate across regions increased the variance in divergence across windows of the 

genome and decreased the correlation between divergence and the B-values. We then examined different 

values of Na and parameters of the gamma distribution that matched the observed mean and standard 

deviation of the distribution of human-mouse divergence. We set Na  = 600,000 and the shape parameter 

equal to 1212 and the scale equal to 1.65 x 10-11, which matched the observed mean and standard 

deviation of human-mouse divergence reasonably well (Supplementary Figure 7).  

To explore alternate sets of B-values, we computed B-values using the following approach. We 

began with the theoretical prediction from (Hudson and Kaplan 1995) that . Note 

that Ri represents the recombination rate for the ith window of the genome that is taken from the deCODE 

map. We then searched over values of U and sh that, in combination with the genome-wide distribution of 

Ri, yielded mean values of B that were equal to 0.8 and 0.6. For B = 0.8, we used U = 0.00152 and sh = 

0.003. For B = 0.6, we used U = 0.0054 and sh = 0.005. 
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FIGURE LEGENDS  

Figure 1: Models of how genealogies are affected by selection at linked neutral sites. The genealogies on 

the left represent species with a short split time such as human and chimpanzee. The genealogies on the 

right represent species with a long split time such as human and mouse. Red lines represent two lineages 

and their coalescent times. Blue lines represents two lineages and their coalescent time when there is 

selection at linked neutral sites in the ancestral population. Yellow stars denote mutations accumulating 

on each of the two lineages after they split. Note that with the longer split time, the proportion of the 

genealogy attributed to the ancestral population decreases. 

 

Bi = exp − Ui
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⎢
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Figure 2: Neutral divergence is negative correlated with functional content. Each point represents the 

mean divergence and functional content in 1% of the 100kb windows binned by functional content. Red 

lines indicate the loess curves fit to divergence and functional content. Note that the last bin containing 

less than 1% of the windows was omitted from the plot. While the graph presents binned data, the 

correlations reported in the text are from the unbinned data. (A) Human-chimpanzee, (B) Human-

orangutan, (C) Human-mouse, and (D) Human-rat divergence. 

 

Figure 3: Neutral divergence is positively correlated with the strength of background selection inferred 

from primates (McVicker’s B-value). Each point represents the mean divergence and B-value in 1% of the 

100kb windows binned by B-values. Red lines indicate the loess curves fit to divergence and 

recombination. Note that the last bin containing less than 1% of the windows was omitted from the plot. 

While the graph presents binned data, the correlations reported in the text are from the unbinned data. (A) 

Human-mouse and (B) Human-rat divergence. 

 

Figure 4: Neutral divergence is positively correlated with human recombination rate. Each point 

represents the mean divergence and recombination in 1% of the 100kb windows binned by recombination 

rate. Red lines indicate the loess curves fit to divergence and recombination. Note that the last bin 

containing less than 1% of the windows was omitted from the plot. While the graph presents binned data, 

the correlations reported in the text are from the unbinned data. (A) Human-chimpanzee, (B) Human-

orangutan, (C) Human-mouse, and (D) Human-rat divergence. 

 

 

Figure 5: A two-locus model for the effect of background selection on divergence. (A) The variance in 

divergence between two loci explained by background selection as a function of the strength of 

background selection at the second locus (B2). (B) The expected proportion of divergence due to 

polymorphism in the ancestral population as a function of B2. (C) The variance in divergence between the 

two loci explained by polymorphism in the ancestral population as a function of B2. Different columns 

denote different mutation rates. Colored lines denote different ancestral population sizes (Na). Note that 

the variance in divergence attributable to background selection is greater than the expected proportion of 

divergence contributed by ancestral polymorphisms. 

 

Figure 6: Background selection is predicted to affect neutral divergence across a range of split times and 

ancestral population sizes. Solid line shows the expected correlation coefficients (Spearman’s ρ) between 

neutral divergence and recombination rate as a function of split time. Dashed line shows the expected 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2015. ; https://doi.org/10.1101/031740doi: bioRxiv preprint 

https://doi.org/10.1101/031740
http://creativecommons.org/licenses/by-nc-nd/4.0/


! 23!

Spearman’s ρ between neutral divergence and McVicker’s B-values as a function of split time. Red lines 

denote the proportion of the divergence due to polymorphism that arose in the ancestral population. Error 

bars denote ±�one standard error of the mean. Panels A-D denote difference in ancestral population sizes 

(Na). Note that the correlations are greater than 0 for a range of split times and ancestral population sizes, 

even when the proportion of divergence due to ancestral polymorphism is low. 

 

Figure 7: Models of background selection predict a correlation between neutral human-mouse divergence 

and McVicker’s B-values. Gray histogram denotes 200 simulations without including background 

selection. Blue histogram denotes 200 simulations incorporating background selection (see text). Red line 

represents the correlation computed from empirical human-mouse neutral divergence and McVicker’s B-

values. Thus, plausible levels of background selection can match the observed correlation while neutral 

simulations cannot. 
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Figure 4. 
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Figure 5. 
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Figure 7. 
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