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Abstract 21 

Spatial patterns of neutral genetic diversity are often investigated to infer gene flow in wild populations. 22 

However, teasing apart the influence of gene flow from the effect of genetic drift is challenging given that both 23 

forces are acting simultaneously on patterns of genetic differentiation. Here, we tested the relevance of a 24 

distance-based metric -based on estimates of effective population sizes or on environmental proxies for local 25 

carrying capacities- to assess the unique contribution of genetic drift on pairwise measures of genetic 26 

differentiation. Using simulations under various models of population genetics, we demonstrated that one of 27 

three metrics we tested was particularly promising: it correctly and uniquely captured variance in genetic 28 

differentiation that was due to genetic drift when this process was modelled. We further showed that (i) the 29 

unique contribution of genetic drift on genetic differentiation was high (up to 20 %) even when gene flow was 30 

high and for relatively high effective population sizes, and (ii) that this metric was robust to uncertainty in the 31 

estimation of local effective population size (or proxies for carrying capacity). Finally, using an empirical dataset 32 

on a freshwater fish (Gobio occitaniae), we demonstrated the usefulness of this metric to quantify the relative 33 

contribution of genetic drift and gene flow in explaining pattern of genetic differentiation in this species. We 34 

conclude that considering Isolation-by-Drift metrics will substantially improve the understanding of evolutionary 35 

drivers of observed spatial patterns of genetic variation. 36 

 Author Summary 37 

Genetic drift, a major evolutionary process compounded in small populations, is the random alteration of allelic 38 

frequencies over generations. It ultimately leads to a local loss of genetic diversity and to an increase in genetic 39 

differentiation among populations. Genetic drift is however often overlooked in spatial genetic studies, in which 40 

measures of genetic differentiation are thus equated to gene flow only. In this study, we reviewed the distance-41 

based metrics having been proposed to account for genetic drift. We then used simulations and an empirical 42 

dataset to evaluate the relevance of these metrics. These distances-based metrics are based on estimates of (or 43 

proxies for) population sizes, and is easily implemented in any regression-like analysis. We showed that these 44 

metrics can be efficiently used to quantify the contributions of both gene flow and genetic drift in measures of 45 

genetic differentiation in a large panel of realistic situations, making them a promising tool for geneticists aiming 46 

at better understanding processes underlying genetic differentiation in wild populations.  47 
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Introduction 48 

The maintenance of dispersal capacities among demes has long been recognized as being of tremendous 49 

importance for the viability of spatially structured populations [1,2], especially in the current context of 50 

increasing habitat fragmentation worldwide [3-5]. Given the technical challenges of directly monitoring 51 

individual movements [6,7], indirect estimates of gene flow (i.e. effective dispersal rates [8]) are now routinely 52 

assessed using molecular tools [9-16]. When investigating the influence of landscape features on gene flow [17-53 

20], many spatial genetic studies directly rely on pairwise measures of genetic differentiation (i.e. genetic 54 

distances such as Fst; [21,22]) as measures of functional connectivity [23-26]. Direct gradient analyses [27-29] 55 

are then used to investigate the relative contribution of spatial predictors of isolation-by-distance (IBD [30]), 56 

isolation-by-resistance (IBR [31]) and isolation-by-environment (IBE [20,32]) to the variance in pairwise genetic 57 

distances. However, in spatial genetics studies, an important additional source of genetic variation is often 58 

neglected: genetic drift [21,33]. Gene flow and genetic drift indeed interact as opposing forces, the former 59 

decreasing and the latter increasing genetic divergence among populations as their respective influences increase 60 

[34-38]. As a result, pairwise measures of genetic differentiation are directly impacted by the balance between 61 

these two processes [9,34,39] and dispersal rates and functional connectivity may actually be misinterpreted 62 

when genetic drift is overlooked because of biased estimates. Disentangling the respective contributions of these 63 

two evolutionary forces to the variance in genetic differentiation is thus of crude importance, as omitting the 64 

potential influence of genetic drift may strongly affect the interpretation of spatial genetic analyses [40,41]. 65 

There have been several attempts to relate pairwise measures of genetic differentiation to gene flow while 66 

accounting for genetic drift (e.g. [21,35,42-44]), although most of them do not allow segregating explicitly the 67 

respective effects of gene flow and drift [7,34]. The relative contribution of genetic drift to the variance in 68 

pairwise measures of genetic differentiation may be directly quantified using estimates of census (N) or effective 69 

(Ne) population sizes [21,33] with the two following basic assumptions: (i) N is positively correlated to Ne, and 70 

(ii) the lower Ne of a population, the higher the effects of genetic drift on allelic frequencies. These estimates of 71 

population sizes can be used to compute distance-based measures of genetic drift, that are then used as any other 72 

predictor (such as environmental, resistance or geographic distances) in regression-like analyses to decompose 73 

sources of variation in pairwise measures of genetic differentiation [28]. To our knowledge, the use of distance-74 

based measures of genetic drift was first proposed by Relethford [45], computed then as the sum of the inverses 75 

of each (census or effective) population size. More recently, Serrouya et al [40] proposed a similar metric, based 76 

on the harmonic mean of (census or effective) population sizes. The use of such metrics to account for the 77 
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contribution of genetic drift in spatial patterns of genetic variation was rarely considered in spatial genetics (but 78 

see [46,47]) and their efficiency in capturing the effects of genetic drift has never been tested theoretically, 79 

although it deserves full attention.  80 

Directly accounting for genetic drift through the use of N or Ne is probably the most straightforward 81 

approach, but implies a major difficulty: estimating these demographic parameters, a task that may turn out to be 82 

tricky [48-50]. Alternatively, we here propose to consider environmental estimates of local carrying capacities 83 

(K) as a proxy for population sizes. Carrying capacity reflects the upper asymptote of the logistic growth curve 84 

of a population given the distribution and abundance of resources determined by local environmental conditions 85 

[20,51,52] and can be approximated using specific environmental variables such as habitat patch size or habitat 86 

quality (e.g. [53,54]). Local environmental characteristics are most often used in the framework of IBE to 87 

compute pairwise ecological distances and hence ecological resistance to gene flow [20,32,55-58]. However, we 88 

argue that metrics habitually used in the framework of IBE do not meet the objective of disentangling the 89 

respective contributions of gene flow and genetic drift (see Box 1). Rather, distance-based metrics of genetic 90 

drift could be computed from environmental proxies in place of effective population sizes Ne using the formulae 91 

proposed by Relethford [45] and Serrouya et al [40] respectively. 92 

 93 

BOX 1. Why do Euclidian environmental distances fail to capture genetic drift? 94 

 Several metrics can be used as ecological distances in the framework of IBE, such as metapopulation 95 

connectivity indices [20,52] or simple univariate/multivariate Euclidean distances [32,47,59-61]. However, they 96 

may not be appropriate to quantify the effect of genetic drift in spatial patterns of genetic variation. For instance, 97 

metapopulation connectivity indices will not allow disentangling the respective contributions of gene flow and 98 

genetic drift as these metrics include both local patch and interpatch data in the same formula. The case of 99 

Euclidean distance metrics is subtler, and can be better understood through a concrete example. Consider four 100 

populations in a river channel (Fig 1). Two of them are located 1km apart in the upstream portion of the channel, 101 

and are respectively characterized by a river width of 10m and 20m. The two other populations are located 1km 102 

apart but in the downstream portion of the channel, and are respectively characterized by a river width of 110m 103 

and 120m. The (Euclidian) difference in river width between upstream populations and between downstream 104 

populations is the same, i.e. 10m. However, as river width may directly drive local carrying capacities [62-64], 105 

we may expect higher genetic differentiation between upstream than between downstream populations simply 106 

because of higher genetic drift upstream. Assuming that degrees of spatial connectivity between upstream and 107 
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between downstream populations are the same, one may fail to explain variability in pairwise measures of 108 

genetic differentiation when using a simple Euclidean distance between environmental variables. 109 

 110 

Fig 1. The absolute difference between proxies for local carrying capacities K (here, river width) may fail to 111 

explain spatial patterns of neutral genetic variation arising from genetic drift.  112 

 113 

 114 

In this study, we compared the relative efficiency of three genetic drift distance metrics based on both Ne 115 

and environmental proxies for local carrying capacity (K) in explaining spatial patterns of genetic variation, 116 

using regression commonality analyses as a statistical procedure of variance decomposition [28,65]. The first 117 

metric (ds; distance based on the subtraction, i.e. Euclidian distance) is inspired from common measures of IBE. 118 

The second one (di; distance based on the inverse) was proposed by Relethford [45]. The third one is the 119 

opposite to the harmonic mean (preferred over the arithmetic mean [66]) of carrying capacities (dhm; distance 120 

based on the harmonic mean). Because the metric based on the harmonic mean shows negative relationships with 121 

Fst [40,46] and thus does not behave as a classical distance-based metric (an increase in the dissimilarity 122 

between populations is supposed to lead to an increase in genetic differentiation), we rather considered its 123 

opposite.  124 
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  (3) 127 

We first investigated the ability and efficiency of each metric to account for genetic drift when they are 128 

directly computed from Ne, using simulations in simple two-deme situations and in more complex genetic 129 

models of population structure. Secondly, we used similar simulations to test whether these metrics are still 130 
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efficient when based on environmental proxies of carrying capacities, assuming that K is an imperfect proxy of 131 

Ne. Thirdly, we assessed the efficiency of each metric in an empirical case study involving a fish species (Gobio 132 

occitaniae) living in a river landscape and using environmental estimates of population sizes. We finally 133 

discussed how and why these simple metrics measuring isolation-by-drift (IBDr) should be recurrently used in 134 

spatial genetics studies, notably in the framework of regression commonality analyses. We notably expected the 135 

ds metric inspired from the IBE framework to perform poorly (Box 1), contrary to the di and dhm metrics that 136 

are expected to efficiently account for the effect of genetic drift in spatial patterns of genetic variation.  137 
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Results 138 

Simulated datasets 139 

A simple two-deme model. As expected, when the migration rate m between two demes of effective 140 

population sizes Ne1 and Ne2 was low (m = 0.005), mean Fst values were highest when both Ne1 and Ne2 were 141 

low, decreased when the Ne of one of the two demes increased, and were lowest when both Ne1 and Ne2 were 142 

high (Fig 2a). As expected, the ds metric poorly mirrored patterns of Fst (Fig 2b; r = 0.125). Contrastingly, the 143 

di and dhm metrics followed patterns very similar to that observed for Fst (Fig 2c, d), although di tends to better 144 

fit the general Fst pattern than dhm (r = 0.962 and r = 0.939 for di and dhm respectively), especially when at 145 

least one of the demes had low to intermediate Ne (Fig 2d).  146 

 147 

Fig 2. Behaviour of Fst (a) and each genetic drift metric (b: ds; c: di; d: dhm) in a simple two-deme system as a 148 

function of effective population sizes Ne1 and Ne2, expressed as haploid numbers of genes, both ranging from 30 149 

to 300. Fst values and genetic drift metrics were all standardized. Projections of the 3D perspective surfaces are 150 

shown at the base of each plot. 151 

 152 

 153 

 154 
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When migration rates m between the two demes were picked from an uniform distribution ranging from 155 

0.0001 to 0.3, ds systematically failed to explain a substantial proportion of variance in pairwise genetic 156 

distances (Fig 3a). On the contrary, di (Fig 3b) and dhm (Fig 3c) respectively explained up to 50% and 45% of 157 

variance in pairwise genetic distances at low migration rates (m < 0.005). This relative contribution of these two 158 

metrics decreased exponentially as m increased; for instance, the contribution of these metrics fell below 5% for 159 

0.1 < m < 0.15 (Fig 3b-c). Noteworthy, the dispersion around the model fit was slightly larger for di than for 160 

dhm (Fig 3b-c). 161 

 162 

Fig 3. Contribution of metrics ds (a), di (b) and dhm (c) to the variance in genetic differentiation as a function of 163 

the migration rate m in a simple two-deme system. 164 

 165 

 166 

Realistic genetic models. To evaluate the efficiency of each metric in more realistic situations, gene flows 167 

were simulated in a one-dimensional linear network or a two-dimensional lattice network. Each network was 168 

composed of 16 demes of varying effective population sizes Nei and exchanging migrants at a rate m following 169 

either a stepping-stone or a spatially limited (IBD) migration model (S2 Fig). For all four genetic models (and 170 

whatever the model parameters), the unique contribution of ds was close to zero (Fig 4a-d), that is, the amount of 171 

variance uniquely explained by this metric irrespective of the possible collinear effects of the other predictor mr 172 

coding for inter-deme matrix resistance was negligible. Overall, both di and dhm explained a non-negligible part 173 

of the total variance in pairwise Fst (i.e. from 5% to more than 50%) as soon as m was lower than 0.15 (Fig 4e-l). 174 

Under these conditions (m < 0.15), the relative unique contributions of di and dhm differed among genetic 175 

models: they were the lowest for a linear network with stepping-stone migration and were the highest in a lattice 176 

network with spatially limited dispersal. In this later case, di and dhm explained (for m < 0.05) much more 177 

variance than the traditionally used mr (Fig 4h, l). For other genetic models, the unique contributions of di and 178 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 13, 2015. ; https://doi.org/10.1101/031633doi: bioRxiv preprint 

https://doi.org/10.1101/031633


9 
 

dhm were as high as the unique contribution of mr as far as m remained low. di and dhm behaved very similarly 179 

with no noticeable differences, although dispersion around the mean was still higher for di than for dhm for all 180 

genetic models. 181 

 182 

Fig 4. Unique contribution of metrics mr and ds (a-d), or mr and di (e-h) or mr and dhm (i-l) as a function of the 183 

migration rate m for    . Results are for a linear network with stepping-stone migration (a, e, i), a linear 184 

network with spatially limited dispersal (b, f, j), a lattice network with stepping-stone migration (c, g, k) and a 185 

lattice network with spatially limited dispersal (d, h, l). Circles represent the average unique contribution of each 186 

variable and coloured areas represent the dispersion of unique contributions around the mean, as defined by 187 

standard deviations (in grey for mr and in green for genetic drift distance metrics). Vertical dashed lines indicate 188 

the migration rate m above which the unique contribution of genetic drift distance metrics become negligible. 189 
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 190 

 191 

When uncertainty was included in the estimation of demes’ effective population size so as to mimic an 192 

environmental proxy for K (using   [         ]), mr and ds showed similar patterns to those in absence of 193 

uncertainty (Fig 4); ds systematically failed to explain variance in genetic differentiation. di and dhm behaved 194 

similarly to situations where true estimates of Ne were used, although unique contributions were systematically 195 

lower (but still substantial for low m values) in average (Fig 5). Furthermore, dispersion around the mean was 196 

noticeably larger for di than for dhm, except for a linear network with stepping-stone migration (Fig 5). 197 

 198 
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Fig 5. Unique contribution of metrics mr and ds (a-d), or mr and di (e-h) or mr and dhm (i-l) as a function of the 199 

migration rate m for an uncertainty parameter   picked from a uniform distribution ranging from -0.9 to 0.9. See 200 

legend in Fig 4 for other details. 201 

 202 

Empirical dataset 203 

Concerning the empirical dataset involving the freshwater fish Gobio occitaniae in a river network (Fig 6a), 204 

neither null alleles nor linkage disequilibrium were detected, and all populations were at Hardy-Weinberg 205 

equilibrium after sequential Bonferroni corrections. Highest mean pairwise Fst values involved population 1 (Fig 206 

6b), which was situated upstream of the main channel. This population was characterized by the smallest river 207 

width but was not associated with lowest estimates of home-range size (estimated as the product of length and 208 
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width of the river network (including tributaries) delimited by any downstream or upstream weir), suggesting 209 

that river width may be a better proxy of K (and hence genetic drift) than the home range size.  210 

 211 

Fig 6. Main characteristics of the empirical dataset. (a) Geographical position of the river Célé (in black) and 212 

its tributaries (in grey). Grey dots represent the 19 sampling sites (numerated along the upstream-downstream 213 

gradient) while small black lines indicate the position of obstacles (weirs) considered in the study (that is, 214 

obstacles located on the mainstream channel and obstacles from tributaries used to compute home-range sizes). 215 

(b) Downstream-upstream profiles of mean Fst values, river width and home-range sizes. 216 

 217 

 218 

The pattern of IBD was characterized by a slightly positive relationship between Fst and mr (here coded as 219 

the between-deme riparian distance; Fig 7a). Piecewise regression explained a higher proportion of the variance 220 

in Fst (6.7%) that linear regression (3.2%), but the threshold value, located at about 75 km (Fig. 7a), probably 221 

stemmed from a border effect and had no true biological meaning. Overall, the IBD pattern was characterized by 222 

a wide degree of scatter for all distance classes, suggesting a lack of migration-drift equilibrium with genetic 223 

drift being more influential than gene flow (case III in [34]).  224 

 225 
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Fig 7. Scatterplot of pairwise Fst against (a) pairwise riparian distances (mr), (b) pairwise di values and (c) 226 

pairwise dhm values in the empirical dataset. The di and dhm metrics were computed from river width. All 227 

explanatory variables (mr, di and dhm) were rescaled from 0 to 1 to facilitate comparison of panels. 228 

  229 
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Whatever the proxy used for K, the unique contribution of mr was rather weak, ranging from 1.8 to 7.8% 230 

(Table 1). This variability in unique contributions of mr stemmed from collinearity with distance-based metrics 231 

of genetic drift, as revealed by common contributions C [28,65]: indeed, the highest unique contribution of mr 232 

(U = 7.8%) was also associated with the highest (negative) common contribution (C = - 4.8%). When K values 233 

were estimated from home-range sizes, the model including ds only explained 3.2% of variance in genetic 234 

differentiation (Table 1), with a negligible unique contribution of ds (0.3%). The model including di did not 235 

perform better (unique contribution of 1.1%) whereas the model including dhm explained up to 12.7% of 236 

variance in genetic differentiation. This substantial increase in model fit stemmed from dhm’s unique 237 

contribution (U = 9.8%) while the unique contribution of mr was comparable to previous models. When K values 238 

were estimated from river width, the unique contribution of di and dhm strongly increased to reach 41.3% and 239 

36.7% respectively (Table 1). These results confirm that river width was a better proxy for K than home-range 240 

size in this dataset. 241 

 242 

Table 1. Results of both MRDM and commonality analyses performed on empirical data.  243 

K Model R² Pred β p U C T 

Home-Range       0.032 mr 0.147 0.105 0.018 0.011 0.029 

 

  

ds 0.059 0.488 0.003 0.011 0.014 

       0.040 mr 0.185 0.038 0.034 -0.004 0.029 

 

  

di 0.104 0.173 0.011 -0.004 0.006 

        0.127 mr 0.192 0.026 0.037 -0.008 0.029 

 

  

dhm 0.313 0.001 0.098 -0.008 0.090 

River width       0.442 mr 0.283 0.001 0.078 -0.048 0.029 

 

  

di 0.652 0.001 0.413 -0.048 0.365 

        0.396 mr 0.219 0.003 0.048 -0.018 0.029 

 

  

dhm 0.607 0.001 0.367 -0.018 0.348 

For each type of environmental proxy for carrying capacities (K) and each model (Model), the table provides the 244 

model fit index (R²) and, for each predictor (Pred), the beta weight (β), the p-value (p) and finally unique (U), 245 

common (C) and total (T) contributions to the variance in the dependent variable. 246 

 247 

 248 
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When exploring the relationship between residuals of the linear regression between Fst and the di metric 249 

(based on measures of river width) and mr, piecewise regression explained a substantially higher proportion of 250 

the variance in Fst (23.8%) than linear regression (12.5%). The scatterplot showed an increase in residual values 251 

up to 8.5km and a clear-cut plateau beyond this threshold (Fig 7b). This pattern clearly suggests a lack of 252 

migration-drift equilibrium with gene flow being more influential than genetic drift up to 8.5km (case IV in 253 

[34]). This result indicates that accounting for the confounding contribution of genetic drift to pairwise measures 254 

of genetic differentiation may provide more precise information regarding the spatial extent of gene flow. 255 

 256 

  257 
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Discussion 258 

Our study demonstrates that considering IBDr metrics, that is, distance-based metrics based on estimates of 259 

effective population sizes or on environmental proxies for local carrying capacities, is a highly relevant approach 260 

to disentangle and thoroughly quantify the respective contribution of two major evolutionary processes, gene 261 

flow and genetic drift, to the variance in pairwise measures of genetic differentiation.  262 

 263 

Comparison of IBDr metrics 264 

The distance-based metrics of genetic drift (ds, di and dhm) tested here did not perform equally. As 265 

expected, ds -which is a simple subtraction between Ne or proxies of Ne - was a poor estimator of genetic drift. 266 

This observation has important implications for geneticists interested in testing hypothesis regarding isolation-267 

by-environment. Many local variables may adequately reflect the influence of environment on gene flow 268 

processes such as emigration and immigration [20]: this is the case of variables embodying information about 269 

habitat quality such as resource availability (mating partners, shelters, food), predatory risk or intraspecific 270 

competition [67-69]. For instance, some patches act as sources while others may attract dispersal individuals (i.e. 271 

sink patches), depending on the perception of local patch quality by individuals [70-72]. In this situation, a 272 

simple pairwise Euclidean distance between habitat quality variables may properly mirror the perceptual 273 

distinction driving individuals’ dispersal or settlement decisions. However, the case of local variables embodying 274 

information about patch size is more intricate [3]. Of course, effective dispersal events are often density-275 

dependent ([69]) and gene flow may thus be altered by spatial heterogeneity in patch sizes. But patch sizes may 276 

ultimately reflect local carrying capacities, and thus the possible effects of genetic drift rather than gene flow on 277 

genetic differentiation. In this situation, the use of a simple pairwise Euclidean distance between variables is 278 

irrelevant (see Box 1). Considering local environmental variables for isolation-by-environment studies thus 279 

requires a thorough understanding of their possible influence on effective population sizes and, when required, 280 

the choice of a specific metric such as di or dhm to quantify the relative influence of genetic drift. It is 281 

noteworthy that a single variable can be used to estimate both IBE and IBDr through the use of complementary 282 

metrics. 283 

When compared to ds, the di and dhm metrics demonstrated a much higher efficiency in quantifying genetic 284 

drift. They both exhibited patterns very similar to Fst in a simple two-deme situation, properly rendering the 285 

influence of genetic drift on deme differentiation as effective population sizes decreased (Fig 2c-d), and 286 

explaining up to 50% of variance in measures of genetic differentiation for low migration rates (Fig 3b-c). These 287 
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contributions to genetic variance followed an expected negative exponential as the migration rate increased, 288 

reflecting migration-drift equilibrium [7]. The same conclusions can be drawn from genetic data simulated under 289 

a series of more realistic situations (Fig 4). However, amounts of unique contributions at low migration rates 290 

strikingly depended on population structures and migration models, which reflected variation in the dynamics of 291 

migration-drift equilibriums. Overall, the use of drift metrics allowed explaining substantial amounts of variance 292 

in measures of genetic differentiation (up to 50%) at low migration rates.  293 

These metrics were still highly efficient in the fish empirical dataset (Table 1) despite an evident lack of 294 

migration-drift equilibrium (Fig 7a), making them particularly promising even for empirical case studies for 295 

which a deviation from a migration-drift equilibrium is detected [34]. For G. occitaniae, the use of di and dhm 296 

indeed allowed explaining substantial amounts of variance in genetic differentiation (Table 1) when river width 297 

was used as a proxy for local carrying capacities: only 2.9% of variance in measures of genetic differentiation 298 

would have been accounted for if mr had been considered as the only predictor (data not shown), whereas up to 299 

44.2% is explained when either with di or dhm are used as additional explanatory variables (Table 1). Finally, 300 

plotting the residuals of the linear regression Fst ~ dhm (or Fst ~ di) against Euclidean distances may help 301 

identify the spatial scale at which the amount of gene flow is counterbalanced by genetic drift, thus providing 302 

further insight into the extent of effective dispersal rate (Fig. 7b). This empirical case study nicely exemplifies 303 

the added value for geneticists of integrating distance-based metrics accounting for isolation-by-drift. 304 

 305 

Direct versus environmental estimates of Ne 306 

Interestingly, when a small level of uncertainty in the relationship between effective population sizes and 307 

estimates of local carrying capacities was considered, our simulations showed that both di or dhm were still 308 

efficient at detecting genetic drift. However, dhm slightly outperformed di at intermediate migration rates (i.e., 309 

for m ranging from 0.05 to 0.1) as the degree of uncertainty increased (S3 Appendix) since di’s unique 310 

contribution to the variance in genetic differentiation showed higher dispersion around the mean than dhm (Fig 311 

5). This trend was confirmed by the empirical dataset; when local carrying capacities were estimated from home-312 

range sizes, di failed to detect any genetic drift contribution to genetic differentiation, whereas dhm -though less 313 

efficient than with river width as a proxy- still explained ~ 10% of variance (Table 1). This difference stems 314 

from the inner characteristics of each metric (Fig 2c-d): While di values are highest for lowest effective 315 

population sizes and show a rapid decrease as soon as effective population sizes increase, the decrease in dhm 316 

values is much softer, thus still allowing the detection of genetic drift effects on genetic differentiation despite 317 
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higher uncertainty in environmental estimates of local carrying capacities, and eventually effective population 318 

sizes. Although the dhm metric appeared less efficient at perfectly reflecting the effect of drift in simple 319 

simulated datasets, it may actually be more robust when using environmental proxies for local carrying 320 

capacities and should therefore be preferred (or compared) to di. It is noteworthy that the two metrics can easily 321 

be used in competing models and, provided collinearity patterns are inspected [28], the best at fitting the dataset 322 

be selected according to model fit criteria such as the R
2
 or the Akaike Information Criteria. 323 

 324 

Biologically relevant metrics 325 

Simulations indicated that the influence of genetic drift was still perceptible for migration rates up to [0.1 - 326 

0.15], irrespective of the genetic model being considered (Figs 3-4-5). Interestingly, this range of values is 327 

higher than migration rates likely to be encountered in natural systems. Indeed, summary statistics from 49 328 

recent empirical studies that used BAYESASS [12] to estimate interpatch migration rates (collected from a 329 

literature survey by [73]; see S2 Text and S2 Table for details) indicated that the median value of average 330 

migration rates was 0.023, with more than 95% of studies showing average estimates lower than 0.1 (S4 Fig). 331 

For instance, the average estimate of migration rates in G. occitaniae in our empirical dataset was 0.02 332 

(unpublished data). These observations suggest that genetic drift is likely to be an important driver of spatial 333 

genetic variation in many empirical datasets. We thus argue that considering IBDr in future spatial genetic 334 

studies through the use of distance-based metrics such as di or dhm may thoroughly improve our understanding 335 

of observed spatial patterns of genetic variation, at least in situations where genetic drift is the actual main driver 336 

of genetic differentiation. 337 

 338 

Limitations of IBDr metrics 339 

Considering the difficulties in accurately estimating Ne from genetic data [50,74], the use of alternative 340 

estimates of population size such as observed local densities (e.g. [75,76]) or habitat patch size (e.g. [53,54]) to 341 

compute IBDr metrics is particularly appealing, but has yet to be considered with caution. The validity of such 342 

metrics indeed proceed from the assumption that effective population sizes have remained constant over time 343 

[45]. This assumption theoretically limits the practical use of distance-based metrics of genetic drift to systems in 344 

which populations are only subject to continuous drift, that is, to the evolutionary process of random fluctuations 345 

in allelic frequencies naturally occurring in all populations, whatever their size (although compounded in small 346 

ones [21,36,37]). For populations having suffered from bottleneck events [37,77] or from founder effects [78], 347 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 13, 2015. ; https://doi.org/10.1101/031633doi: bioRxiv preprint 

https://doi.org/10.1101/031633


19 
 

observed densities or local environmental variables may constitute inaccurate proxies for effective population 348 

sizes, thus making genetic drift metrics poor predictors of spatial patterns of genetic differentiation. In these 349 

situations, estimating effective population sizes from molecular data -although a delicate exercise- probably 350 

remains the best option (see [48] for a review synthesizing methods used to estimate Ne). More generally, 351 

integrating the demographic processes affecting effective population size over time will be an important 352 

challenge to overcome so as to make spatial genetics an integrative discipline accounting for the complexity of 353 

spatially and temporally dynamic populations [79].  354 

Conclusion 355 

Considering the ineluctable interplay between evolutionary forces such as gene flow and genetic drift, the 356 

combined use of distance-based metrics of genetic drift and classical landscape predictors such as matrix 357 

resistance metrics or ecological distances in regression commonality analyses [28] may substantially improve 358 

our understanding of how each process respectively contributes to observed spatial patterns of genetic variation. 359 

This approach is all the more relevant as it may provide accurate information about the contribution of each 360 

process even when a lack of migration-drift regional equilibrium has been identified, which constitutes a 361 

substantial advantage over many other methods.  362 

More generally, habitats modifications by humans have two components [3,80]; one acting on decreasing 363 

connectivity (fragmentation) and another acting on habitat and resource availability (habitat loss and 364 

degradation). By reducing the size of available habitats and by decreasing connectivity among habitats, humans 365 

are rapidly making the ground more and more fertile for genetic drift to becoming an increasingly influential 366 

evolutionary process. We therefore believe that the time is ripe to systematically quantify the influence of 367 

genetic drift on the spatial genetic structure of wild populations.  368 
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Methods 369 

Simulated datasets 370 

For all simulations, we used a computational pipeline including the programs ABCsampler [81], 371 

Simcoal2.1.2 [82] and arlsumstat [83] to simulate and analyse microsatellite genetic datasets, with 15 372 

independent loci following a stepwise mutation model and a unique mutation rate µ = 0.0005. Parameter values 373 

(local demes’ effective population sizes Nei and symmetrical migration rates mi) were picked from prior 374 

distributions using ABCsampler and were then used as inputs in Simcoal2.1.2 to simulate genetic data based on a 375 

coalescent approach. In all simulations, 30 haploid genotypes (that is, 15 diploid individuals) were sampled from 376 

each deme at the end of simulations and were used to compute pairwise Fst among demes using arlsumstat. ds, 377 

di and dhm metrics were computed on the basis of demes’ local carrying capacities K, with Ki = Nei + αNei . The 378 

parameter   represents the uncertainty in the estimate of local demes’ population size through an environmental 379 

proxy such as habitat patch size. The estimates of local demes’ effective population size were considered as 380 

unbiased for    , or uncertain for    . ds, di and dhm metrics computation as well as all statistical analyses 381 

were performed in R 3.1.2 [84].  382 

We first investigated the match between Fst values and each metric in a simple two-deme situation. Local 383 

demes’ population sizes Nei (expressed as haploid numbers of genes) were randomly picked from a uniform 384 

distribution ranging from i = [30 - 300] while the migration rate m was fixed at 0.005 and   was set to 0. We 385 

simulated       genetic datasets and computed, for each dataset, pairwise Fst as well as ds, di and dhm 386 

metrics. Both Ne1 and Ne2 were then divided into 30 classes of equal size and datasets were pooled for each 387 

Ne1xNe2 combination of classes (i.e., 900 pools). For each pool, we computed mean values of Fst, ds, di and dhm 388 

and eventually created four standardized pairwise matrices of size 30x30: a dependent matrix of mean Fst values 389 

and three explanatory matrices of mean ds, di and dhm values respectively. In addition to plotting each matrix as 390 

a function of Ne1 and Ne2 classes, we computed the respective Pearson’s correlation coefficients r between the 391 

Fst matrix and each explanatory matrix. 392 

Secondly, we assessed the explanatory power of each metric as a function of the migration rate m in a simple 393 

two-deme situation. Demes’ population sizes were randomly picked from a truncated normal distribution with a 394 

mean of 40 and a standard deviation of 200, values being bounded between 40 and 1000 (S1 Fig), while 395 

migration rates m were picked from a uniform distribution ranging from 0.0001 to 0.3. As previously, the 396 

parameter   was set to 0. We simulated       genetic datasets and computed, for each dataset, pairwise Fst as 397 

well as ds, di and dhm metrics. Datasets were then pooled according to their migration rate into 600 classes 398 
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defined every 0.0005 units (about 1000 datasets per class). For each class, we computed the model fit indices R² 399 

of the univariate linear regressions between Fst and each metric.  400 

We then assessed the strength of each metric (compared to a resistance metric) in four complex situations 401 

differing according to both the network structure and the migration model used for simulations (S2 Fig). We 402 

considered two different network structures: a one-dimensional 16-deme linear network and a two-dimensional 403 

16-deme lattice network. Euclidean distances between adjacent demes were arbitrarily set to 100m. We 404 

considered two distinct migration models: a spatially structured island model (or IBD model [21]) for which 405 

migration rates m decreases with Euclidean distance following an inverse square function, and a spatially 406 

structured stepping-stone model [85] where demes can only exchange migrants with adjacent demes. For each 407 

situation, 10000 genetic datasets were simulated. As previously, the parameter   was set to 0, demes’ population 408 

sizes N were randomly picked from a truncated normal distribution with a mean of 40 and a standard deviation 409 

of 200, values being bounded between 40 and 1000, and migration rates m were picked from a uniform 410 

distribution ranging from 0.0001 to 0.3. For each simulated dataset, we computed five pairwise matrices (Fst, ds, 411 

di, dhm and Euclidean distances mr, the latter acting as a simple measure of inter-deme matrix resistance) and 412 

performed three multiple linear regressions between Fst and each metric, with mr as a unique covariate: (1) 413 

           , (2)             and (3)             . All explanatory variables were z-414 

transformed (by subtracting the mean and dividing by the standard deviation of the variable) before regressions 415 

so as to standardize parameter estimates. Commonality analysis, a variance partitioning procedure that is 416 

particularly suited to identify collinearity issues likely to arise in most spatially structured dataset [28,65], was 417 

used in R (package yhat [86]) to estimate the respective unique contribution of each explanatory variable to the 418 

variance in the dependent variable. This unique contribution (U) is the part of the total variance in the dependent 419 

variable that is explained by the sole effect of the predictor being considered (mr or one of the three distance-420 

based metric of genetic drift). This approach improved the accuracy of the estimate of the contribution of each 421 

predictor when collinearity occurs. Datasets were finally pooled according to their migration rate into 30 classes 422 

defined every 0.01 units (about 330 datasets per class). For each class, we computed the mean and the standard 423 

deviation of unique contributions of each predictor. A unique contribution was considered as negligible as soon 424 

as the dispersion around the mean included zero. 425 

Finally, we investigated the influence of uncertainty in the estimation of demes’ population size through an 426 

environmental proxy. We used the same approach as described above (the same four genetic models with the 427 
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same initial sets of Ne and m parameters) but with the parameter   picked from a uniform distribution ranging 428 

from -0.9 to 0.9 (S3 Fig).  429 

 430 

Empirical dataset 431 

As en empirical example, we considered neutral genetic data collected in the gudgeon (Gobio occitaniae), a 432 

small benthic freshwater fish. Fieldwork was conducted in accordance with French laws and with the approval of 433 

the Prefecture du Lot. Five hundred and sixty-two individuals were caught in 2011 using an electro-fishing in 19 434 

sampling sites scattered along the mainstream channel of the river Célé (South-western France; Fig. 6a). Sites 435 

were scattered so as to cover the whole upstream-downstream gradient. For each individual, we collected and 436 

preserved in 70% ethanol a small piece of pelvic fins, before releasing the fish in their original site. Genomic 437 

DNA was extracted from samples using a salt-extraction protocol [87]. Genotyping was performed using a 438 

subset of 11 autosomal microsatellite loci chosen among those described in Grenier et al [88] (S1 Table). 439 

Polymerase chain reactions (PCR) and genotyping were performed as in Grenier et al [88]. The presence of null 440 

alleles was assessed at each locus by analysing homozygote excess in each population using MICROCHECKER 441 

2.2.3 [89]. We also checked for linkage disequilibrium among loci and for Hardy-Weinberg equilibrium at each 442 

population using GENEPOP 4.2.1 [90] after sequential Bonferroni correction to account for multiple related tests 443 

[91]. Pairwise Fst were computed between all pairs of site following Weir and Cockerham [22] using the 444 

MATLAB software-coding environment [92,93].  445 

Environmental variables were extracted from national vector datasets (BDCarthage from National 446 

Geographic Institute, France) and from the theoretical hydrographical network for France (RHT [94]) using 447 

ARCGIS 9.3. The riparian distance among sites was used as a measure of matrix resistance mr among sites. We 448 

first graphically inspected the linear relationship between pairwise Fst and the riparian distance mr between pairs 449 

of demes as proposed by Hutchison and Templeton [34] to assess migration-drift equilibrium (or lack of it) in 450 

our empirical dataset. We further investigated the observed pattern by using piecewise regression [95,96] to 451 

identify the distance threshold at which different linear relationships could be observed.  452 

As proxies for local carrying capacities, we used the width of the river at each station (which supposedly 453 

reflect the total amount of available habitat [62-64]), as well as the estimated home-range size of each 454 

population. The home-range size of each deme was computed as the product of length and width of the river 455 

network (including tributaries) delimited by any downstream or upstream weir (see Blanchet et al. 2010 for a 456 

description of weirs in this river), that is the water area in which a gudgeon may freely move without 457 
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encountering any obstacle. Matrices of pairwise ds, di and dhm were then computed from these estimates and 458 

were independently confronted to the matrix pairwise Fst using multiple regression on distance matrices 459 

(MRDM [97]; R package ecodist) with 1000 permutations and with mr as a covariate. Commonality analyses 460 

were then used to disentangle the relative contribution of each predictor to the variance in measures of genetic 461 

differentiation. Note that the ds matrix based on measures of river width was highly collinear with the mr matrix 462 

(r = 0.72): the corresponding model was thus omitted because collinearity among predictors are likely to cause 463 

important interpretation issues [28]. Details are however provided in Supporting Information (S1 Text).  464 

Finally, we plotted the residuals of the linear regression between Fst and the di metric (based on measures of 465 

river width) against mr and inspected the scatterplot to assess migration-drift equilibrium (or lack of it). We 466 

further investigated the observed pattern by using piecewise regression to identify the distance threshold at 467 

which different linear relationships could be observed. All piecewise regressions were performed using the R 468 

package segmented [98]. 469 
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Supporting Information 676 

S1 Fig. Theoretical distribution of 10000 demes’ population sizes randomly picked from a truncated normal 677 

distribution with a mean of 40 and a standard deviation of 200, values being bounded between 40 and 1000. 678 

S2 Fig. Network structures and migration models used in simulated datasets.  679 

S3 Fig. Theoretical distribution of Pearson’s r correlation values between the effective population sizes N used 680 

for simulations and local carrying capacities K used to compute genetic drift metrics for an uncertainty parameter 681 

  picked from an uniform distribution ranging from -0.9 to 0.9, in 10000 sixteen-deme datasets. 682 

S4 Fig. Distribution of average estimates of migration rates in 49 recent empirical studies (See S2 Table).  683 

S1 Table. Summary data for the 11 microsatellite loci used in the empirical dataset. Number of alleles (A; in 684 

brackets, effective number of alleles), observed and expected heterozygosity (Ho and He ) and fixation index (f) 685 

are given for each locus for the N individuals collected from each of the 19 sampled populations. Genebank ID 686 

are provided in brackets, below the locus name. 687 

S2 Table. Summary statistics of the 49 empirical studies considered to estimate the range of migration rates 688 

likely to be encountered in natural systems (from [73]). 689 

S1 Text. Empirical results from the model          , with ds computed from river width.  690 

S2 Text. Selection criteria for empirical studies cited in the literature survey by Patrick G. Meirmans [73] (See 691 

also S2 Table).  692 

S1 Dataset. Raw data used to investigate the match between Fst values and each IBDr metric in a simple two-693 

deme situation (Fig 2). For each simulation (Sim), the file provides effective population sizes of population 1 694 

(N1) and population 2 (N2), as well as pairwise FST (FST).  695 

S2 Dataset. Raw data used to assess the explanatory power of each IBDr metric as a function of the migration 696 

rate m in a simple two-deme situation (Fig 3). For each simulation (Sim), the file provides the migration rate 697 

(MIG), effective population sizes of population 1 (N1) and population 2 (N2) as well as pairwise FST (FST).  698 

S3 Dataset. Structure of pairwise matrices of migration rates used to assess the strength of each IBDr metric 699 

compared to a resistance metric in four complex situations differing according to both the network structure and 700 

the migration model. 701 

S4 Dataset. Raw data used to assess the strength of each IBDr metric compared to a resistance metric in a one-702 

dimensional 16-deme linear network with stepping-stone migration  and the α parameter set to 0 (i.e., N = K; 703 

Fig4 a, e, i). For each simulation (Sim), the file provides the migration rate (MIG), the effective population size 704 
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(N1-N16) and the estimated carrying capacity (K1-K16) of each population, as well as pairwise FST (from 705 

FST_2_1 to FST_16_15).  706 

S5 Dataset. Raw data used to assess the strength of each IBDr metric compared to a resistance metric in a one-707 

dimensional 16-deme linear network with spatially limited dispersal and the α parameter set to 0 (i.e., N = K; 708 

Fig4 b, f, j). Details as in S4 Data. 709 

S6 Dataset. Raw data used to assess the strength of each IBDr metric compared to a resistance metric in a two-710 

dimensional 16-deme lattice network with stepping-stone migration and the α parameter set to 0 (i.e., N = K; 711 

Fig4 c, g, k). Details as in S4 Data. 712 

S7 Dataset. Raw data used to assess the strength of each IBDr metric compared to a resistance metric in a two-713 

dimensional 16-deme lattice network with spatially limited dispersal and the α parameter set to 0 (i.e., N = K; 714 

Fig4 d, h, l). Details as in S4 Data. 715 

S8 Dataset. Raw data used to assess the strength of each IBDr metric compared to a resistance metric in a one-716 

dimensional 16-deme linear network with stepping-stone migration  and the α parameter picked from a uniform 717 

distribution ranging from -0.9 to 0.9 (i.e., N ≠ K; Fig5 a, e, i). For each simulation (Sim), the file provides the 718 

migration rate (MIG), the effective population size (N1-N16), the α parameter (NOISE1-NOISE16) and the 719 

estimated carrying capacity (K1-K16) of each population, as well as pairwise FST (from FST_2_1 to 720 

FST_16_15).  721 

S9 Dataset. Raw data used to assess the strength of each IBDr metric compared to a resistance metric in a one-722 

dimensional 16-deme linear network with spatially limited dispersal and the α parameter picked from a uniform 723 

distribution ranging from -0.9 to 0.9 (i.e., N ≠ K; Fig5 b, f, j). Details as in S8 Data. 724 

S10 Dataset. Raw data used to assess the strength of each IBDr metric compared to a resistance metric in a two-725 

dimensional 16-deme lattice network with stepping-stone migration and the α parameter picked from a uniform 726 

distribution ranging from -0.9 to 0.9 (i.e., N ≠ K; Fig5 c, g, k). Details as in S8 Data. 727 

S11 Dataset. Raw data used to assess the strength of each IBDr metric compared to a resistance metric in a two-728 

dimensional 16-deme lattice network with spatially limited dispersal and the α picked from a uniform 729 

distribution ranging from -0.9 to 0.9 (i.e., N ≠ K; Fig5 d, h, l). Details as in S8 Data. 730 

S12 Dataset. Empirical data. For each population, the "landscapedata" sheet provides the width of the river at 731 

sampling point (RiverWidth, in m), the size of the home-range at sampling point (HomeRange, in m²), the 732 

distance from the source, used to computed riverine distances (DistFromSource, in m). The "Geneticdata" sheet 733 

provides the pairwise matrix of FST. 734 
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