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Towards extracting supporting information 
about predicted protein-protein interactions  
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Abstract— One of the goals of relation extraction is to identify protein-protein interactions (PPIs) in biomedical literature. 
Current systems are capturing binary relations and also the direction and type of an interaction. Besides assisting in the curation 
PPIs into databases, there has been little real-world application of these algorithms. We describe UPSITE, a text mining tool for 
extracting evidence in support of a hypothesized interaction. Given a predicted PPI, UPSITE uses a binary relation detector to 
check whether a PPI is found in abstracts in PubMed. If it is not found, UPSITE retrieves documents relevant to each of the two 
proteins separately, and extracts contextual information about biological events surrounding each protein, and calculates 
semantic similarity of the two proteins to provide evidential support for the predicted PPI. In evaluations, relation extraction 
achieved an Fscore of 0.88 on the HPRD50 corpus, and semantic similarity measured with angular distance was found to be 
statistically significant. With the development of PPI prediction algorithms, the burden of interpreting the validity and relevance 
of novel PPIs is on biologists. We suggest that presenting annotations of the two proteins in a PPI side-by-side and a score that 
quantifies their similarity lessens this burden to some extent.  

Index Terms— Artificial Intelligence, Computational Biology/methods, Data Mining/methods, Semantics, Proteins/metabolism, 
Natural Language Processing, Protein Processing, Protein Processing Post-Translational  
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1. INTRODUCTION

Protein-protein interactions (PPIs) play an important role 
in the understanding of human biology. By analyzing 
PPIs and their interaction networks, researchers can un-
ravel the molecular mechanisms of disease progression 
[1]. Discovery and exploration of such interactions is fun-
damental to biological, pharmaceutical, and medical re-
search [2][3]. The BioGRID interaction database currently 
contains 19,595 unique proteins and 185,112 non-
redundant human PPIs [4]. Current studies have estimat-
ed the total size of the human interactome to be ~650,000 
interactions, leaving an estimated 500,000 undiscovered 
interaction pairs [5]. 

Wet-lab discovery of all individual interactions is un-
realistic using current detection methods. High-
throughput techniques such as yeast two-hybrid (Y2H) 
are plagued by high false-negative and high false-positive 
rates of up to 70% [6][7]. High confidence methods such 
as co-immunoprecipitation have low-throughput, and are 
of significantly high cost in terms of time, effort, and 
money [8][9]. Computational discovery of the interactome 
has thus become a priority in bioinformatics as a method 
to guide biology research. Supervised learning for PPI 
prediction utilizes information on known PPIs to produce 

manageable subsets of plausible interactions. A number of 
supervised machine learning algorithms have been ap-
plied to PPI prediction including support vector machines 
[10], decision tree [11], Bayes classifier [12], kernel-based 
[13], and random forest based methods [14]. These ap-
proaches analyze patterns in known biological infor-
mation to infer high-confidence interactions. Prediction 
methods are commonly placed into six categories based 
on input data including protein sequence, protein struc-
ture, genomic context, homology, experimental profiles, 
and literature-derived associations [15]. The computa-
tional and statistical mechanisms of supervised learning 
algorithms are well understood by machine learning spe-
cialists, but wet-lab researchers often have difficulty ac-
cepting output as valid indication that an interaction is 
likely to occur. Justification of predicted PPIs is thus par-
adoxically tasked to the wet-lab researcher who must lo-
cate relevant information in the scientific literature.     

Our collective knowledge of protein functions and 
pathways is scattered somewhere among 23 million arti-
cles in PubMed [16]. The number of articles continues to 
grow at the rate of 2 documents per minute [17], and it 
has become increasingly difficult for scientists to locate 
and distill relevant information [18].  Information colla-
tion through manual literature search has thus become a 
bottleneck in the process of scientific discovery [19]. The 
field of text mining has had a recent focus on the analysis 
of biomedical literature with the intent to enable scientists 
to harness the information available within PubMed. 
Many different approaches have been developed to ex-
tract information regarding PPIs. Such approaches in-
clude machine learning systems as well as empirical rule-
based information extraction systems [20]. Complex 
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events are typed n-ary associations of entities or other 
events that are characterized by an event trigger (typically 
a verb indicating an action) and one or more event partic-
ipants [21]. Event participants can be either named-
entities or other events and play specific roles in the event 
such as Theme or Cause. Specifically, complex event extrac-
tion extends binary relation extraction by identification of 
additional information about a given relation including 
direction, interaction type, binding site, and argument 
nesting [22]. Automated text mining efforts have been 
evaluated at the PubMed scale. The Turku Event Extrac-
tion algorithm (TEEs) developed by Bjourne et al. 
achieved state-of-the-art performance of 50.06% recall, 
59.48% precision, and 54.37% F-score on the BioNLP ‘09 
dataset [23][24]. It was approximately generalizable for 
large-scale application. When applied at the PubMed 
scale, TEEs extracted 21.3 million detailed bio-molecular 
events including protein-protein interactions [25]. 

Various approaches have been studied to apply bio-
medical text-mining to PPI prediction. In general, these 
methods are similar to non-text mining PPI prediction 
approaches in that they use data on known interactions to 
generate interaction hypotheses. Binary relation extrac-
tion has been utilized to generate interaction networks 
and uncover interactions hidden in free-text. Such meth-
ods are promising because they expand coverage of the 
known proteome [15] and can significantly accelerate PPI 
database curation efforts [26][27]. The topology of auto-
mated interaction networks generated through text-
mining can be exploited for use in interaction prediction 
[28]. Network models based on the co-occurrence of pro-
teins within sentences, abstracts, or articles have been 
found to reflect functionally relevant relationships [29]. 
Analysis of co-occurrence networks has shown that pro-
teins and genes co-mentioned in the same article can rea-
sonably be assumed to be related in some way [30][31].  
Co-occurrence analysis has also been applied to connect 
proteins to diseases, biological processes, phenotypes, 
chemicals and key words found in articles [32][30]. Hid-
den and unknown biological associations can be predict-
ed with high confidence using co-occurrence based meth-
ods. The degree of co-occurrence can be quantified to 
eliminate statistically weak associations and increase pre-
diction accuracy [31][15].  

Hidden relationships between two proteins can be 
confirmed by mining the literature for shared concepts. 
If we assume that A and C are both related to B, A and C 
may also share a direct relationship, and literature mining 
may reveal the shared concepts between A and C [33]. 
This method of network analysis has been applied to PPI 
prediction in various ways. Even if two proteins do not 
have an explicitly defined relationship in the literature, a 
functional relationship can be extrapolated by connecting 
both proteins to an overlapping set of intermediate con-
cepts (B1-Bn). Intermediate concepts are often designated 
to be the neighbors of A and C in an interaction network 
graph, but studies have shown success in linking proteins 
through intermediate concepts such as disease [34], key-
words [35], biological processes [13], orthology [36], and 
user-defined biological terms [34]. Novel relationships 

have been extracted from the literature in this way and 
confirmed to have biological relevance [32][37]. It has 
been shown that concepts shared in A-B and B-C relation-
ships can be located in the literature an average of 6.5 
years in advance of the first explicit appearance of an es-
tablished A-C relationship [33]. This time lag serves as an 
indication of the potential to which text-mining aided PPI 
prediction can accelerate wet-lab discoveries.  
Verbs are important to mine interaction networks be-
cause they are a syntactical requirement for expressing 
relations. PPI networks can be organized using triplet 
representation where the proteins are nodes and verbs are 
edges between nodes. Cohen et al. showed that altera-
tions in the argument structure of verbs and their nomi-
nalizations are both common and exceptionally diverse 
throughout subdomains of biomedicine [38]. Hierarchical 
clustering of verb sub-categorization throughout the sci-
entific literature has been shown to form stable clusters 
that represent various biomedical sub-domains [39]. 
Small pockets of specialized behavior in verb 
subcategorization have been noted in addition to many 
cases of specific usage within a single subdomain [40]. 

We present UPSITE, a text mining algorithm to ex-
tract information that supports or signifies a computa-
tionally predicted interaction. There is little research on 
the application of text mining to support a hypothesized PPI 
as opposed to extracting factual information that is direct-
ly reported in literature. Given a protein pair (A and C) 
that is hypothesized to be an interacting pair, UPSITE 
examines the scientific literature and extracts sentence 
level information which assists in human interpretation of 
the interaction plausibility. Complex event extraction is 
used to identify the mutual concepts of A-B and C-B 
where mutual concepts are event triggers extracted from 
the triplet representation of mined interactions. Event 
triggers are used as mutual concepts due to their high 
level of importance to interaction identification as well as 
their ability to accurately segregate biomedical subdo-
mains (Figure 1). UPSITE can be used to identify direct as 
well as indirect information that supports known or pre-
dicted interactions, respectively. 

2. METHODS 
We have developed UPSITE, a text mining tool for vali-
dating interaction hypotheses. The UPSITE pipeline con-
sists of three main steps: 1. relation extraction; 2. complex 

Figure 1-Measuring semantic similarity between pro-
teins. 
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event extraction; and 3. semantic similarity. In this sec-
tion, we provide a detailed description of the UPSITE 
workflow. Input to UPSITE is a pair of proteins (also 
called a query pair) which have been predicted to interact. 
UPSITE is designed to enable the exploration of the rela-
tionship between the proteins in the query pair. 

Information Retrieval 
Query expansion refers to the process of reformulating a 
seed query to improve information retrieval (IR). Queries 
and synonyms are normalized by removing non-
alphanumeric characters. Query expansion is then per-
formed using a synonym database constructed from the 
gene symbols contained within 6 genomic and proteomic 
databases by Chen and Sharp [41]. The expanded query is 
used to construct an Entrez URL-query according to the 
NCBI Entrez Programming Utilities documentation [42]. 
PubMed abstracts are obtained in XML format through 
Entrez esearch and efetch.  

Relation Extraction 
Relation extraction refers to the natural language pro-
cessing (NLP) techniques that identify a semantic rela-
tionship between terms. UPSITE is designed to identify 
both explicit and implicit PPIs. A sentence contains a rela-
tionship of interest if it describes or infers any influence 
or biologically relevant correlation between queried pro-
teins. This definition is relaxed from that of an explicit 
interaction in order to increase recall of extracted sentenc-
es. Unlike conventional binary relation extraction systems 
which focus on extracting explicit interactions, UPSITE 
extracts any sentences that are potentially useful in verify-
ing an interaction. Predicted interactions are not likely to 
be described in the current scientific literature. We thus 
focus on identification of sentences that support interac-
tion plausibility.   

We choose single sentences as our unit of analysis [43]. 
Only sentences containing co-occurrence of the query 
proteins are further processed. Queries and their syno-
nyms are normalized by removing all non-alphanumeric 
characters. Filtering is performed by running a case-
insensitive search for the normalized queries and their 
synonyms. Sentences that do not contain both proteins 
are disregarded. Prior to the relation detection phase, pa-
rentheses and parenthetical contents that do not contain 
proteins are discarded. Query proteins are blinded and 
replaced with ‘Protein1’ and ‘Protein2’. 

Our method of relation detection involves two scoring 
modules which assign scores according to empirically 
determined rules. We will refer to the scoring systems as 
‘scoring system 1’ and ‘scoring system 2’, reflecting their 
order in the program flow. The remaining sentences are 
part-of-speech (POS) tagged with the NLTK POS tagger 
[44]. Scoring system 1 extracts sentence features according 
to a rule-based, template matching system. Features were 
selected by conducting a review of the current text mining 
literature. The score assigned to each attribute was de-
termined by its frequency of occurrence in a dataset of 200 
randomly chosen sentences from the BioCreative II PPI 
dataset [45]. Lists of trigger words were generated by 

curation of verbs indicative of stimulation, conclusion, or 
inhibition. A sample of individual attributes and their 
respective scores can be found in Table 1. 
Table 1 - Example scoring attributes of scoring module 1 

Score Attribute 

+3 Exact query term in sentence 
+5 First word is query term 
+20 First word is query term and indicator 

of stimulation in sentence 
+5 Second word is a verb 
+5 Method of testing for interaction is 

mentioned 
+5 Indicators of Stimulation 
+9  Indicators of Conclusion 
-3 Indicators of Failure 
-2 Long sentences (>30 words) 
+10 Protein complex is described (Protein1-

Protein2) 
+5 Stimulation word in sentence 

Positively scored sentences from the scoring system 1 
are then passed to scoring system 2 which makes further 
use of NLP to decide the final sentence rankings. While 
scores from module 1 indicate the presence of a biological 
relation (syntax), scoring system 2 deciphers whether or 
not the query terms are involved in the relation (seman-
tics).  A parse tree is an ordered, rooted tree that repre-
sents the syntactic structure of a sentence [46]. A statistical 
parser trained on a Penn Treebank probabilistic context-

free grammar was used to generate parse trees using the 
Cocke–Younger–Kasami (CYK) parsing algorithm [47]. 
The parse tree is traversed using preorder traversal 
(depth-first search) to create an ordered list of simple de-
clarative clauses, verb phrases, noun phrases, query 
terms, and their location indices. Sentences are then as-
signed scores based on relative location of query terms 
and their Verb Phrase Verbs. A flowchart of UPSITE rela-
tion extraction can be found in Figure 2.  

The tag for a noun phrase in a parse tree is NP and the 
tag for the noun of a noun phrase is NN (Noun, singular 
or mass), NNS (Noun, plural), NNP (Proper noun, singu-
lar), or NNPS (Proper noun, plural). Figure 3 highlights 
the importance of the noun phrase in detecting inferred 

Figure 2-Relation extraction workflow 
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interactions. In Figure 3, the noun phrase “the expression 

of LATS2 and MDM2, hTERT and MDM2” contains both 
of the proteins of interest (MDM2 and hTERT) within a 
single complex noun phrase (indicated by NX). Preorder 
traversal of the parse tree is able to locate this close rela-
tionship between these two proteins. Similarly, an exam-
ple verb phrase describing an interaction between throm-
bin and cd69 is, “Thrombin induces tcr cross-linking for 
cd69 expression and interleukin 2 production”. Sentences 
containing relevant noun phrases and verb phrases are 
weighted +20. UPSITE outputs the top ten highest scoring 
sentences.  

Complex Event Extraction 
Given a pair of proteins (protein-A and protein-B), if they 
are not known to interact, an explicit statement of interac-
tion is unlikely to occur in published literature. The rela-
tion detection module of UPSITE attempts to extract sen-
tences implying or speculating interaction, but this meth-
od is limited to the sentence as a unit of analysis. We hy-
pothesize that this barrier can be broken through directed 
collation of relevant biological knowledge across Pub-
Med. To test this hypothesis, we have developed a meth-
od to generate support for undocumented PPIs by analyz-
ing textual descriptions of known interactions relevant to 

the query proteins. The queried pair is first split into its 
constituent proteins. Each query protein is separately pro-
cessed through the event extraction module. UPSITE’s 
information retrieval module was modified to retrieve 
abstracts relevant to a single protein and its synonyms. 
Retrieved abstracts are then processed by the TEES com-
plex event extraction algorithm. The TEES code is open 
source and freely available. We modified the TEES code to 
enable bulk processing of retrieved abstracts. Processing 
is completed using the GE11 training model which was 
developed for the BioNLP’11 shared task [23]. The output 
of TEES is a set of interaction XML files containing com-
plex events and their respective trigger words. UPSITE 
parses the interaction XML files and generates a list of 
trigger words. Word lists include triggers for all interac-

tions in the set of retrieved abstracts relevant to a given 
query protein. Following generation of trigger word lists, 
a distance metric is computed to measure their similarity. 
A flowchart of UPSITE semantic similarity can be found 
in Figure 4. 

Semantic similarity 
Semantic similarity of trigger word lists is measured by 
cosine similarity. To obtain this measurement, a docu-
ment-term matrix is formed using term frequency-inverse 
document frequency (tf-idf) vectorization as a function of 
cell counts. Cosine similarity is obtained using the linear 
kernel which is equivalent to the cosine 
similarity measure  [48]. Cosine similari-
ty was chosen as our distance function based off of a 
study by Xiang et. al comparing various methods of com-
paring vectors including dices coefficient, horn coeffi-
cient, euclidean distance, and manhattan distance and 
found cosine similarity to be the most accurate measure 
[49]. The cosine measurement is then converted to angu-
lar distance for ease of interpretability by first converting 
to radians, then converting to degrees. 

Figure 3-Example of parse tree 
Figure 4-Semantic similarity workflow 
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3. RESULTS  

Textual relationship validation 
The HPRD50 corpus was used to benchmark the perfor-
mance of UPSITE relation extraction. Although UPSITE 
differs from standard PPI binary relation detection algo-
rithms in that it has been optimized to detect implied ra-
ther than plainly expressed interactions, we felt that a 
comparison to current methods would still be a useful 
indication of system performance. The HPRD50 dataset 
was developed by Fundel et al. as a test set for the RelEx 
relation extraction system [50]. It contains sentences from 
50 abstracts referenced by the Human Protein Reference 
Database (HPRD)[51] and includes 145 annotated interac-
tions [52]. We chose the HPRD50 dataset because it de-
fines explicit interactions (e.g. direct physical interactions) 
in addition to implicit interactions (e.g. regulatory rela-
tions and modifications) [50]. To optimize performance 
against this dataset, UPSITE’s rule-based scoring system 
was used to generate feature vectors for a support vector 
machine (SVM). Individual features were weighted ac-
cording to the respective scores assigned in UPSITE’s 
scoring module. The entire algorithm was implemented 
using Python and a python wrapper to TEES. SVM was 
implemented using the Python library Scikit-learn [53].  
UPSITE achieved 0.88 F-score, 0.94 precision, and 0.83 
recall. The performance of UPSITE was compared to a 
similar algorithm (RelEx) as well as a baseline standard of 
sentence level co-occurrence. UPSITE demonstrated a 
10% increase in F-score as compared to RelEx and 39.6% 
increase as compared to baseline co-occurrence. Perfor-
mance comparison can be seen in Table 2. UPSITE was 
run using the Ubuntu 14.02 operating system with a 2.5 
Ghz Intel Core i7-4710HQ and 16GB RAM. Running time 
averaged to 3.1 hours per protein pair. UPSITE was then 
tested against the BIONLP shared task 09’ corpus. This 
test set included protein interactions which were manual-

ly curated from the abstracts of PubMed articles and is 
available online. We manually analyzed results on 200 
interactions and achieved .803 recall, .901 precision, and 
.849 F-score. 
Table 2 - Performance of Binary Relation Detection meth-

ods on HPRD50 corpus 

 Precision Recall F-score 

UPSITE 0.94 .0.83 0.88 
RELEX algorithm 0.80 0.80 0.80 
Co-occurrence 0.46 1 0.63 

Cosine similarity and complex event extraction 
Complex event extraction was performed by the TEES 
algorithm. The extraction performance of TEES has been 
extensively evaluated on the BioNLP Shared Tasks and it 
was the winning system of ST’09 achieving 58.28% preci-
sion, 46.73% recall, and 51.96% F-score. TEES has since 
been updated to TEES 2.2 and shown to achieve state-of-
the-art results in ST’11 with F-score 54.37%, precision 
59.48%, and recall 50.06% [25]. Although not used in this 
experiment, further modification of the TEES system us-
ing feature selection has pushed its performance to an F-
score of 57.24% [54].  

50 protein pairs known to interact (known) and 50 
randomly assigned protein pairs (random) were used to 
analyze performance and usefulness of the angular dis-
tance metric for trigger word lists. Average angular dis-
tance of known and random pairs was measured as a 
function of the number of papers parsed. Figure 5 shows 
the results of this analysis. Both known and unknown 
pairs were shown to closely follow a logarithmic regres-
sion with respective coefficients of determination of 
0.9865 and 0.9633. A two-sample Analysis of Variance 
(ANOVA) revealed an F-statistic of 1.284 and p-value of 
0.34. Thus, the observed variances are not statistically 
different. A two-tailed, two-sample t-test assuming une-
qual variances revealed a p-value of 0.002024 and T-
statistic of -3.4677. Because the observed means were not 
significantly different, we conclude that the angular dis-
tance metric is statistically valid at � � 0.005. ANOVA 
and T-test can be found in tables 3 and 4. In summary, 
angular distance metrics were calculated for 50 pairs of 
proteins known to interact (known dataset) and 50 ran-
domly paired protein (random dataset). We compared the 
distance scores using a two-tailed, two-sample t-test as-
suming unequal variances.  The results of this test indi-
cate that the scores from the known and random dataset 
are significantly different. The small p-value verifies that 
the method outlined in this study is useful in predicting 
whether two proteins are likely to interact.   

Availability 
We propose to make the supporting information ex-

tracted by UPSITE for each PPI on Wiki-Pi [57], a web-
server that presents information about individual PPIs, in 
future. We have made the tool available as an AMI (Ama-
zon Machine Instance) with all software dependencies, 
TEES models, corpora and NLP tools already setup. De-
tailed instructions on launching the AMI can be found on 

y = -5.201ln(x) + 93.695
R² = 0.9865

y = -4.559ln(x) + 95.539
R² = 0.9633
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our GitHub repository1. The entire source-code has been 
made available on the same repository with an installa-
tion script that downloads and installs all of the necessary 
software dependenices. The tool can be run via the com-
mand line using command line arguments that include 
the pair of proteins to be analyzed, the number of papers 
to be parsed per protein etc. Results may be written to an 
output file that contains the similarity score between the 
protein pair and related terms extracted from literature.  

4. DISCUSSION  
We have created UPSITE, a text mining algorithm for ex-
tracting supporting information about predicted protein-
protein interactions from scientific literature. Input to 
UPSITE is a pair of proteins or a list of protein pairs. 
UPSITE assists determination of interaction plausibility 
by extracting relevant textual data from the PubMed cor-
pus. This algorithm was designed to address the gap be-
tween discovering a PPI computationally and choosing to 
validate it experimentally. While PPI prediction algo-
rithms have the potential to accelerate wet-lab research, 
many  
Table 3-F-test Two-Sample for Variances 

 Known Pairs Random Pairs 

Mean 77.6 84.74163 

Variance 18.1 14.05495 

Observations 12 12 

df 11 11 

F 1.2  

P(F<=f) one-tail 0.34  

F Critical one-tail 2.81   

biologists remain apprehensive about their use. This lack 
of confidence is not surprising given the cost of resources 
that are to be invested in studying a predicted PPI in the 
lab. UPSITE fills this information-void by providing tex-
tual evidence to support interaction hypotheses.  
While previous studies have established the usefulness of 
semantic similarity in characterizing biological relation-
ships, the input data for these studies have been manually 
curated from scientific literature or extracted from pre-
existing databases [55][56]. We have shown that useful 
input data for comparing semantic similarity of proteins 
can be automatically extracted from free text to accurately 
classify protein relationships. UPSITE can perform di-
rected semantic similarity by selectively extracting trigger 
words for inclusion in the vector space model and calcu-
lating angular distance between query vectors.  
The performance of relationship extraction and semantic 
similarity is restricted by the amount of descriptive in-
formation contained in the scientific literature. Yu et al 
found that the majority (83%) of currently known human 
PPIs have been cited only once [58]. Biomedical text min-
ing is thus often faced with a large amount of data 
sparsity. This is especially an issue when dealing with 
predicted interactions because they are highly unlikely to 

 
1 https://github.com/MaximumEntropy/UPSITE.git 

have been previously verified in the literature. In small 
scale testing (100 protein pairs), we found single sentence 
relation extraction to provide useful validation evidence 
in 43% of test cases. However, cosine similarity was able 
to provide useful validation evidence in 95% of test cases. 
These data suggest that restriction of relation extraction to 
only co-occurrence sentences may constrain system per-
formance.  
Table 4-t-Test Two-Sample Assuming Unequal Variances 

  Known Pairs Random Pairs 

Mean 77.6 84.74 

Variance 18.05 14.05 

Observations 12 12 

Hypothesized Mean 
Difference 

0  

df 22  

t Stat -4.363775  

P(T<=t) one-tail 0.0001241  

t Critical one-tail 1.7171444  

P(T<=t) two-tail 0.0002481  

t Critical two-tail    

In future work, we hope that the methods described in 
this paper can be expanded upon by further harnessing 
complex event extraction to improve directed semantic 
similarity. Complex event extraction methods have been 
developed for the mining of various data types including 
interaction location, pathway, and relatedness. This in-
formation could be integrated into UPSITE to improve 
directed semantic similarity. Furthermore, future research 
should implement and compare performance of various 
similarity metrics including the Jaccard Index, Euclidean 
distance and latent semantic analysis.  

In sum, UPSITE is able to shorten the gap between 
computer prediction and wet-lab verification of interact-
ing protein pairs by providing textual validation of PPI 
hypotheses. PPIs are fundamentally important to the hu-
man biological system and their discovery can have ef-
fects throughout biological, medical, and pharmaceutical 
research. We hope that UPSITE will help to drive the 
adoption of PPI prediction algorithms by increasing wet-
lab researchers’ confidence in machine learning predic-
tions.  
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