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Abstract

Estimation of heritability is fundamental in genetic studies. In recent years, heri-

tability estimation using linear mixed models (LMMs) has gained popularity, because

these estimates can be obtained from unrelated individuals collected in genome wide

association studies. Typically, heritability estimation under LMMs uses either the

maximum likelihood (ML) or the restricted maximum likelihood (REML) approach.

Existing methods for the construction of confidence intervals and estimators of standard

errors for both ML and REML rely on asymptotic properties. However, these assump-

tions are often violated due to the bounded parameter space, statistical dependencies,

and limited sample size, leading to biased estimates, and inflated or deflated confidence

intervals. Here, we show that often the probability that the genetic component is esti-

mated as zero is high even when the true heritability is bounded away from zero, empha-

sizing the need for accurate confidence intervals. We further show that the estimation

of confidence intervals by state-of-the-art methods is highly inaccurate, especially when

the true heritability is either relatively low or relatively high. Such biases are present,

for example, in estimates of heritability of gene expression in the GTEx study, and

of lipid profiles in the LURIC study. We propose a computationally efficient method,

Accurate LMM-Based confidence I ntervals (ALBI), for the estimation of the distribu-

tion of the heritability estimator, and for the construction of accurate confidence inter-

vals. Our method can be used as an add-on to existing methods for heritability and vari-

ance components estimation, such as GCTA, FaST-LMM, GEMMA, or EMMA. ALBI

is available at http://www.cs.tau.ac.il/~heran/cozygene/software/albi.html.
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Introduction

It has been known for decades that genetic variation accounts for a substantial portion of

disease risk. Quantifying this portion, or estimating the heritability, had been traditionally

performed using related individuals such as in twin studies [1–3]. Genome-wide association

studies (GWAS) have identified thousands of genetic variants that are associated with

dozens of common diseases [4, 5]. A natural approach to estimating the heritability from

GWAS is to consider the total heritability explained by the identified variants. However,

each of these implicated variants explains only a small fraction of the genetic component

of the trait, and for many traits, even the sum total of the contributions of all identified

genetic variants only explains a fraction of the heritability that was estimated from twin

studies [6].

More recently, linear mixed model (LMM) approaches [7–10] have been applied to estimate

the heritability from cohorts of unrelated individuals, such as in GWAS [11]. LMMs achieve

considerably more accurate estimates because they can utilize all variants, and not just the

variants that are statistically significant from a GWAS. Heritability estimates using LMMs

are now widely utilized to understand the genetic architecture of complex traits [12]. In

these studies, inferences about the genetic architecture of the trait are made by interpreting

the heritability estimates.

Because there is statistical uncertainty in the estimation, a typical study uses confidence in-

tervals (CIs) for the heritability rather than point estimates in its analysis. Unfortunately,

as we show in this paper, the CIs reported by current LMM approaches are highly inaccu-

rate (see also [13–17]). This is because these approaches make several assumptions about

the data, mainly including the assumption that the estimators follow certain asymptotic

distributions. In particular, estimators for traits with either significantly high or low heri-
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tability are especially biased because the estimates are near the boundaries. Additionally,

these CIs may spread beyond the natural boundaries of their parameters, e.g., including

negative values for heritability. As a result, these CIs are often inaccurate, difficult to

interpret, or lead to erroneous conclusions.

These biases exist because estimators do not necessarily obey the conditions required for

them to asymptotically follow the normal distribution. To cope with this, non-standard

asymptotic theory for boundary and near-boundary maximum likelihood estimates has

been developed for independent data (e.g., [18–20]), while others [21] have extended the

theory to the case where the phenotype can be partitioned into sufficiently many indepen-

dent vectors. Unfortunately, these conditions typically do not hold for genomic datasets.

First, only a single observation is typically drawn from the distribution. Second, the pa-

rameter space is bounded, as the heritability is only defined between zero and one, and

the true heritability value may lie on the boundary or near it. Therefore, an alternative

approach is required.

The disagreement between the theoretical distribution of estimators and their empirical

distribution results in consequences which are not limited to CIs only. One important

property of the theoretical distribution of estimators, when the true parameter value is

near the boundary, is a high probability for a boundary estimate [19, 20]. This is in line

with a plurality of reports in the literature, in which the heritability of a phenotype is often

estimated to be zero or one [14, 17, 22–24] using restricted maximum likelihood (REML)

estimators, which are the state-of-the-art method in heritability estimation.

Previous approaches to remedy these issues have taken several directions. Visscher et

al. [25] studied the heritability estimator in a range of pedigree- and marker-based ex-

perimental designs. While they derived an analytical expression for the variance, their
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method assumed that the heritability estimator follows a normal distribution. Inaccu-

racies in CI coverage probabilities have also been reported in longitudal studies, leading

some authors to suggest exhaustive hierarchical bootstrapping schemes, e.g., [26]. Re-

cently, Furlotte et al. [27] studied the uncertainty in heritability estimates and suggested

its quantification using the Bayesian posterior distribution of the heritability value, con-

ditioned on the observed phenotype. Other works have suggested extending the REML

estimation method with Bayesian priors, e.g., [22, 24]. It has also been suggested to replace

the asymptotic normality assumption with the asymptotics developed for the non-standard

boundary case [28]. However, a large sample size is still required for these approximations

to be effective. Finally, alternative statistics have been suggested as a basis for building

CIs, such as a quadratic function of the estimator for random effects [29], or a ratio of

linear combinations of quadratic functions of the phenotype [14, 30]. Unfortunately, all of

these methods either assume asymptotics which typically do not hold in practice, or do

not pertain to REML estimation.

In this paper, we present a novel approach for accurately building heritability CIs using

LMMs. Instead of an asymptotic approximation, our method uses a parametric bootstrap

test inversion approach to construct CIs via sampling phenotypes, performing heritability

estimation on the sampled phenotypes, and using these estimates as a basis for CI construc-

tion [31]. As a näıve implementation of this approach would be computationally prohibitive,

we present a highly accurate approximation that allows us to efficiently construct the in-

tervals. We demonstrate our approach on both the Genotype-Tissue Expression [32] and

the Ludwigshafen Risk and Cardiovascular Health (LURIC) [33] datasets. An implementa-

tion of our approach, which we call Accurate LMM-Based confidence Intervals (ALBI), is

available at http://www.cs.tau.ac.il/~heran/cozygene/software/albi.html.
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Results

Heritability estimates and confidence intervals

Heritability estimates from population samples can be computed from estimates of the

parameters of the linear model y = µ + u + e, where µ is the population mean, u ∼

N (0, σ2gK) is the genetic component of the trait, and e ∼ N (0, σ2eI) is the environmental

component. K is a kinship matrix capturing the genetic relatedness between individuals

in the sample, constructed from their genotypes. Heritability is defined as h2 = σ2g/(σ
2
g +

σ2e). Similarly, under certain assumptions (see Methods), the heritability estimate is ĥ2 =

σ̂2g/(σ̂
2
g + σ̂2e). This captures the proportion of the variance of the trait that corresponds

to the genetic component.

To quantify the amount of uncertainty in heritability estimates, all current methods report

the standard error of their estimators. The main application of these reported standard

errors is to imply the construction of CIs for the true genetic and environmental variance

components σ2g , σ
2
e , or for the true heritability, h2. These CIs are based on the assumption

that the estimator is approximately normally distributed. Given an estimated value, ĥ2,

a standard error estimate, ê, and a required confidence level, 1 − α (e.g., 95%), the CI is

constructed as (ĥ2 − k · ê, ĥ2 + k · ê), where k = Φ−1(1−α/2), the (1−α/2)-th quantile of

the standard normal distribution. For example, a 95% confidence level CI is computed as

(ĥ2−1.96ê, ĥ2+1.96ê). The standard error is calculated using the inverse Fisher information

matrix of the estimators, or using similar approaches (for details, see e.g., [34]).
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Current methods of building confidence intervals are inaccurate

We investigated the accuracy of such CIs, using the standard error estimation performed

by GCTA [35] (a popular software for heritability analysis using LMMs), which employs

the approach of assuming a normal distribution for the estimator. Suppose we draw a

phenotype vector from the the distribution assumed by the LMM. By the definition of

a CI with a confidence level of, e.g., 95%, if we were to repeat such a draw multiple

times with the same heritability value h2, and compute a CI from each draw, then these

CIs should cover h2 95% of the times. For a range of confidence levels (70%, . . . , 95%),

we used GCTA to build a CI based on the normal approximation for that level. We

then checked the percentage of times in which the CI covers h2, as a function of h2.

Figure 1 uses kinship matrices from two real studies, and shows that for a wide range of h2

values, and particularly for extreme values (small or large), these normal CIs are largely

inaccurate. The two studies are the Genotype-Tissue Expression (GTEx) study [32] and

the Ludwigshafen Risk and Cardiovascular Health (LURIC) study [33]. The GTEx project

is a sample and data resource designed to study the relationship among genetic variation,

gene expression, and other molecular phenotypes in multiple human tissues. It provides

a collection of multiple different tissues per donor, along with their genotypes. LURIC is

targeted to contribute to the identification and assessment of environmental and genetic

factors for cardiovascular diseases. Genotypes and lipid profiles are available for patients

hospitalized for coronary angiography between 1997 and 2000 at a tertiary care center in

Southwestern Germany (see Methods).

The results of Figure 1 imply that the accuracy of the standard normal CIs depends both on

the dataset and on the true heritability of the trait. To further demonstrate this, for each

value of a true h2, we compared the empirical standard deviation of the REML estimator
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of ĥ2 to the average of the standard error reported by GCTA. Here too, we found that

these standard errors are inaccurate, especially at low and high true h2 values, with an

error of a multiplicative factor of up to ×1.7 (see Figure 2). As a point of comparison, we

additionally studied the Northern Finland Birth Cohort study (NFBC) dataset [36], where

the extent of these biases is much more limited.

To demonstrate that the above issues are due to the normal approximation for the distribu-

tion of the estimator, we repeatedly sampled phenotypes for the studied datasets, assuming

a certain heritability, and examined the distribution of the estimators. We observe that, in-

deed, the distribution is often far from normal, showing skewness and high probabilities for

0 and 1. Figure 3 illustrates this for several values of true h2, when σ2p = 1,β = 0p. In line

with the findings presented previously, the distributions from GTEx and LURIC violate the

normality assumptions, while NFBC follows the normal distribution more closely.

The high probability of boundary estimates (ĥ2 = 0 or ĥ2 = 1), evidenced in Figure 3, is

strongly reflected in published results from applied research. For example, 55% of the gene

expression profiles in the GTEx data were estimated to have heritability of 0, and 15% of

profiles to have heritability 1. Similarly, we calculated the heritability of expression profiles

of lipids in the LURIC dataset, estimating 42% of the profiles to have ĥ2 = 0 (none had

ĥ2 = 1). Such results are often difficult to interpret. It is not clear whether the prevalence

of 0 heritability estimates suggests a true underlying zero value of heritability (h2 = 0),

and therefore that a genetic variance component does not exist, or that this estimation is

due to statistical noise or possibly a result of an underlying numerical error.

We can use the sampling approach described above to characterize, for a given kinship

matrix, the probability that the heritability would be estimated as either 0 or 1 given

the true heritability. This probability, as a function of the true heritability, is shown in
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Figure 4. As we can see, for the GTEx and LURIC datasets, these probabilities are high for

a wide range of heritability values, which explains the large number of observed heritability

estimates that equal zero. On the other hand, the NFBC dataset has a low probability of

obtaining a zero estimate, unless the true heritability is small (up to ∼0.15).

Accurate LMM-based confidence intervals

Motivated by these inaccuracies, we have developed a novel method, which we call Accurate

LMM-Based confidence I ntervals (ALBI), for rapidly estimating the distribution of the

REML heritability estimator and for computing accurate heritability confidence intervals.

We give an overview of the method and its properties here. For the full description see

Methods.

An explicit calculation of the estimator distribution, via the parametric bootstrap [37], can

be performed as follows. For a given heritability value h2, a large number of phenotype

vectors is drawn according to the LMM, and the REML estimator ĥ2 is computed for each

such vector. This process can be repeated for a grid of feasible h2 values, as needed, and

we can use as many bootstrap replicates as needed in order to achieve a desired accuracy.

Unfortunately, this brute-force method is often a prohibitively time-consuming procedure

(see Table 1).

To address this, we have developed a fast analytical approximation, which consists of the

following elements. First, it depends only on the eigenvalues of the kinship matrix. Second,

under several common scenarios, it gives a closed-form formula for the derivative of the

restricted log-likelihood function, which can then be easily calculated. This formula also

allows for the evaluation of the probability of the estimate falling within an interval without

the need to estimate the entire distribution. Finally, all operations are performed using
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the eigenvectors of the kinship matrix, which allows for a computational complexity linear

in the number of samples. Our approximation is highly efficient (Table 1) and it provides

an excellent match to the brute-force estimation (see Methods).

Once we have the estimator distribution for any possible value of the true heritability, we

can efficiently construct accurate CIs, based on the duality between hypothesis tests and

CIs. For each true value of h2, we select a subset of ĥ2 that has sampling probability 1−α,

according to the respective estimator distribution, and define it to be the acceptance region

for that value of h2. The CI for a value ĥ2 is the interval containing all values of h2 for

which ĥ2 does not imply the rejection of the hypothesis of the true heritability value being

h2, with a confidence level of 1−α. As a comparison, we show the result of the CIs derived

with ALBI (Figure 1). These CIs achieve the desired confidence level accurately.

Using ALBI, and comparing our accurate CIs to those of methods employing the normal

approximation, we observed that CIs derived from the normal approximation are often too

wide. This is problematic in scenarios where, for example, one is interested to know if

the value h2 = 0 is included in the CI, Cĥ2 . It may then be the case that Pr(0 ∈ Cĥ2) is

estimated to be too high, causing the researcher to infer that a phenotype may have zero

heritability, often erroneously. Indeed, Pr(0 ∈ Cĥ2) is significantly higher in GCTA than

in the ALBI CIs, up to ×4.1 times in GTEx (see Figure 5).

A fast preliminary assessment of the accuracy of the normal approxima-

tion

As we have demonstrated, the accuracy of the normal approximation of the estimator

greatly depends on the kinship matrix of the cohort used to make the estimates. We can

use ALBI to efficiently compute the probability of estimating a heritability of 0 or 1, given
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the true heritability value, and generate the data shown in Figure 4. ALBI can compute

these probabilities without the need to repeatedly sample the phenotypes and without re-

estimating the heritability each time, and thus it is highly efficient. Therefore, we can use

these estimated probabilities to quantify how accurate we expect the normal approximation

of the heritability estimates to be for a given dataset, prior to explicitly estimating the CIs

for each of the estimates. For example, looking at Figure 4, it is clear that heritability

estimates in the NFBC data will be much more accurate than in the GTEx or LURIC

datasets.

Methods

For clarity of presentation, we begin by defining the heritability under the linear mixed

model, providing an outline of the REML estimation method, and detailing some important

properties of the likelihood function. Finally, we present ALBI, our method of calculating

the heritability estimator’s distribution and constructing accurate confidence intervals for

heritability.

The linear mixed model

We consider the following standard linear mixed model (see [38] for a detailed review):

y = Xβ + Zu + e,

where n is the number of samples, y is a n × 1 vector of random variables, X is a n × p

matrix of covariates (possibly including an intercept vector 1n as a first column), β is a

p × 1 vector of fixed effects, Z is a n ×m design matrix, u is a m × 1 vector of random
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effects, and e is a vector of errors. We assume u and e are statistically independent and

distributed normally as u ∼ N
(
0m,

1
mσ

2
gIm

)
, e ∼ N

(
0n, σ

2
eIn
)
. Define K = 1

mZZT.

Under these conditions it follows [11] that:

y ∼ N
(
Xβ, σ2gK + σ2eIn

)
. (1)

Typically, y is a vector of phenotype measurements for each individual, X is a matrix of

covariates (e.g., an intercept term, sex, age) and Z is the standardized genotype matrix,

i.e., columns have zero mean and unit variance. K is commonly called the kinship matrix,

or the genetic relationship matrix, and is estimated from the genotypes as K = 1
mZZT

(see A.1).

The heritability is defined as the proportion of total variance explained by genetic fac-

tors [39]:

h2 =
σ2g

σ2g + σ2e
.

Defining σ2p = σ2g + σ2e , Equation (1) becomes:

y ∼ N
(
Xβ, σ2p(h

2K + (1− h2)In)
)
. (2)

Heritability estimation with ML and REML

The most common way of estimating h2 is REML estimation (see A.2). For completeness,

we give an overview of the REML estimation method. REML consists of maximizing the

likelihood function that is associated with n − p linearly independent contrasts [40]. The
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restricted log-likelihood function is, up to additive and multiplicative constants:

`REML(h2, σ2p,β) ∝

− (n− p) log σ2p − log |Vh2 | − log |XTV−1
h2

X| − (y −Xβ)T V−1
h2

(y −Xβ)

σ2p
,

where Vh2 = h2K+(1−h2)In. For a fixed h2, the values of σ2p and β that maximize `REML

can be derived analytically, and plugged back in to derive a profile restricted likelihood

function fREML, which is a function of h2, that is maximized instead.

In Appendix A.3, we show that the distribution of ĥ2 depends only on h2, and is invariant

under changes to σ2p and β. We may therefore limit our study to the ĥ2 estimator alone, in

the special case of fixed σ2p = 1,β = 0p, which substantially simplifies the problem.

Estimating the distribution of REML estimators with parametric boot-

strap

We now turn to describe a method to estimate the distribution of REML estimators. We

begin with a direct calculation, and then describe a faster approximation.

Direct parametric bootstrap

For a fixed value of h2 (and assuming σ2p = 1,β = 0p), we can estimate the distribution of

ĥ2 with a parametric bootstrap method. Since the distribution of ĥ2 is continuous in the

open interval (0, 1), we divide this range into equally sized bins of a fixed size (0.01), and

instead estimate the probability mass function of a random variable taking values in the

set {0, (0, 0.01], (0.01, 0.02], . . . , (0.09, 1), 1}.
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Explicitly stated, the method consists of the following steps:

1. Random sampling: Draw N (e.g., 10,000) phenotypes y∗1, . . . ,y
∗
N from the multivari-

ate normal distribution N
(
0n, h

2K + (1− h2)In
)
.

2. REML estimation: Calculate the REML estimates ĥ2(y∗1), . . . , ĥ2(y∗N ) for each of

these phenotypes, using a software package such as GCTA.

3. Density estimation: For each one of the bins above, count the proportion of estimates

ĥ2(y∗i ) that fall in that bin; similarly, compute the fraction of estimates evaluating

to a boundary estimate ĥ2(y∗i ) = 0 or 1. Use these fractions as an estimate of the

density of ĥ2 for this value of h2.

In what follows, we discuss how to perform each one of these steps more efficiently.

Step 1: Random sampling

Drawing a vector y from the distribution N (0n,Vh2) may be done by drawing a vector of

standard i.i.d. normal variables ỹ ∼ N (0, In), and calculating y = V
1/2
h2

ỹ. Any statement

about y can then be restated in terms of ỹ, or further in terms of a vector u = UT ỹ =

UTV
−1/2
h2

y, where U is a matrix whose columns are the eigenvectors of K. Note that since

U is orthonormal, u is also distributed N (0, In). Therefore, instead of drawing multiple

phenotypes y∗1, . . . ,y
∗
N , we draw u1, . . . ,uN ∼ N (0, In), and rephrase later stages in terms

of these u-s. Using u instead of ỹ simplifies further calculations, and additionally does not

require expensive matrix multiplications.
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Step 2: REML estimation

Local evaluation. Instead of finding the global maximum of the restricted profile log-

likelihood function fREML directly, we employ two changes: (i) we search for local maxima

instead of the global maximum; (ii) we use the derivative f
′
REML instead of fREML it-

self.

The main advantage of this approach is that in order to evaluate if a point estimate ĥ2 is

a maximum, we need only check a local condition at this point. For example, to check if

0 is a local maximum, we simply evaluate if f
′
REML(0) ≤ 0, so evaluating all other points

ĥ2 across the range is not required. In theory, it is possible that multiple local maxima

exist, in which case we compare the likelihood itself directly at these points. However, in

practice we have observed that this multiplicity happens only rarely, and even an arbitrary

decision between local maxima does not noticably hurt CI accuracy.

As we are estimating the distribution of ĥ2 at a specified resolution, we are in fact more

interested in the question of the estimate ĥ2 being inside an interval. Using the derivative,

it is simple to check if an interval (c1, c2) contains a local maximum; If f
′
REML(c1) > 0

and f
′
REML(c2) < 0, then there exists at least one ĥ2 ∈ (c1, c2) which is a local maximum.

While this is only a sufficient condition for the existence of a local maximum within the

interval, we find that when the interval is sufficiently small (e.g., of width 0.01), it is also a

necessary condition. In addition, the probability of having multiple local maxima inside a

small interval is negligible. Therefore, evaluations are only necessary at grid points.

Closed-form formula. From the discussion above, it follows that we are interested in the

condition of evaluating the derivative of the profile restricted log-likelihood function for a

given phenotype y, when evaluated at a point ĥ2, restated as a function of u = UTV
−1/2
h2

y.
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Fortunately, in several common scenarios, it is possible to give a closed-form expression of

this derivative, whose computation is linear-time in the number of individuals.

We describe here the case where K was estimated from a standardized genotype matrix;

and where X = 1n, i.e. there are no covariates but there is an intercept. This is largely

the most common use case. The full derivation for this case, as well as its extension to

the case in which X additionally includes principal components of K, is given in Appendix

A.4. This is a generalization of the work in [41, 42].

Let d1, . . . , dn be the eigenvalues of the kinship matrix in decreasing order, K, and recall

that U is a matrix whose columns are K’s eigenvectors. For a true heritability value h2, a

possible point estimate value H2, and for i = 1, . . . , n− 1, define

ξh
2,H2

i =
h2(di − 1) + 1

H2(di − 1) + 1

 di − 1

H2(di − 1) + 1
− 1

n− 1

n−1∑
j=1

dj − 1

H2(dj − 1) + 1

 ,

and also define ξh
2,H2

n = 0.

A necessary condition for ĥ2(y) = H2, when 0 < H2 < 1, is having f
′
REML(H2) = 0, which

translates to

n∑
i=1

ξh
2,H2

i u2i = 0 ,

where u = UTV
−1/2
h2

y (a proof is given in A.4). Similarly, when ĥ2(y) = 0 or 1, the

respective conditions are having f
′
REML(0) ≤ 0 or f

′
REML(1) ≥ 0, which translate to

n∑
i=1

ξh
2,0
i u2i ≤ 0 or

n∑
i=1

ξh
2,1
i u2i ≥ 0 , (3)
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respectively. This is in line with the result of [41]. In practice, we only wish to bound

the maximum within an interval. A sufficient condition for a local maximum to be in an

interval (c1, c2) is having

n∑
i=1

ξh
2,c1
i u2i > 0 and

n∑
i=1

ξh
2,c2
i u2i < 0. (4)

Step 3: Density estimation

To estimate the distribution of ĥ2, we draw u1, . . . ,uN ∼ N (0n, In). We then estimate

the probability of ĥ2 = 0 or 1 as the proportion of u values for which the respective

Equations (3) hold. If the estimation for a certain ui is neither 0 or 1, it means the

derivative at 0 is positive and the derivative at 1 is negative. Therefore, we can perform a

binary search to find a smaller interval (c1, c2) in which Equation (4) holds. This can be

done until a small enough interval is found, at a specified resolution. In practice, we simply

evaluate all intervals in a specified grid (e.g., (0, 0.01), (0.01, 0.02), . . . , (0.99, 1)).

A useful feature of this approach is that, in order to estimate the probability of a boundary

estimate (e.g., ĥ2 = 0) or an interval estimate (e.g., 0 < ĥ2 < 0.01), we need not find the

maximum for each ui, instead only checking if Equations (3), (4) hold.

Confidence intervals for h2

We wish to build confidence intervals with a coverage probability of 1−α (e.g., 95%). The

distribution of ĥ2 depends solely on h2, so we may assume without loss of generality that

σ2p = 1 and β = 0p (see Appendix A.3). Our approach is based on the duality between

hypothesis testing and confidence intervals. For a fixed value h2, an acceptance region Ah2

is defined as the subset of values ĥ2 for which a test does not reject the null hypothesis
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that the phenotype is drawn from N (0,Vh2). The probability of the event Ah2 under

N (0,Vh2) should be ≥ 1 − α. This region may be indirectly derived from an actual

test (e.g., a generalized likelihood ratio test) or constructed explicitly. The corresponding

confidence interval, CH2 , for an estimate ĥ2 = H2 comprises of the set of parameter values

for which the estimated values are not rejected, namely:

CH2 =
{
h2
∣∣H2 ∈ Ah2

}
.

Since the distribution of ĥ2 is bounded and generally asymmetric, the choice of Ah2 is not

unique. It remains to determine Ah2 for every h2. We give here a general description of

the construction; in Appendix A.5, we give a full description of the method, along with

proofs.

Let cβ(h2) be the β-th quantile function of ĥ2, when the true heritability is h2. Since

the distribution is of a mixed type with discontinuity points, it may be the case that

Prh2(ĥ2 ∈ [0, cβ]) > β. Specifically, the probability of the interval [cα/2(h
2), c1−α/2(h

2)]

might be larger than (1 − α/2) − α/2 = 1 − α. We therefore divide our construction into

distinct cases.

If there is a range of values h2 ∈ [s, t] for which Prh2(ĥ2 ∈ [cα/2(h
2), c1−α/2(h

2)]) = 1− α,

we set

Ah2 =


[0, c1−α(h2)] if h2 ∈ [0, s)

[cα/2(h
2), c1−α/2(h

2)] if h2 ∈ [s, t]

[cα(h2), 1] if h2 ∈ (t, 1].

If no such range exists, but for every h2, either [0, c1−α(h2)] or [cα(h2), 1] have a probability
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of 1− α, then set

Ah2 =


[0, c1−α(h2)] if h2 ∈ [0, δ)

[cα(h2), 1] if h2 ∈ [δ, 1],

where δ is a point chosen so that the regions will have the required 1 − α probability.

Finally, if there exists a value of h2 for which neither [0, c1−α(h2)] or [cα(h2), 1] have a

probability of 1 − α, we employ randomized confidence intervals to achieve the required

accuracy (see Appendix A.5).

Benchmarks

We compared the computational costs of performing a parametric bootstrap procedure to

estimate the heritability estimator distribution, using ALBI, the aforementioned GCTA [35]

and pylmm [43], a fast and lightweight LMM solver for use in GWAS.

We generated the estimator distribution for h2 = 0.5 with these three methods. For pylmm

and GCTA, we generated 100 or 1000 random phenotypes, and estimated the heritability

for each phenotype using the respective programs’ estimation methods. Using the default

flags, GCTA did not converge for ∼7% of the samples. For ALBI, we estimated the

distributions at a precision of 0.01 and 0.001, using 100 or 1000 random samples.

Timing for all methods did not include calculation of eigenvalues and eigenvectors. Run-

ning times are reported for the GTEx, LURIC and NFBC datasets. Runs were aborted

after 8 hours. All programs were run on a 2.2GhZ, 64-bit Linux workstation with 64GB

RAM.
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Datasets

The GTEx dataset

The Genotype-Tissue Expression (GTEx) [32] study is a sample and data resource designed

to study the relationship among genetic variation, gene expression, and other molecular

phenotypes in multiple human tissues. It provides a collection of multiple different tissues

per donor, along with their genotypes. We use whole-genome data, collected by the Illumina

HumanOmni5M-Quad BeadChip. Prior to quality control (QC), the data consist of 191

sampled individuals and 4,276,680 SNPs. We apply the recommended QC [32], after which

185 individuals and 3,575,877 SNPs remain. For heritability estimation, we use whole-blood

gene expression profiles for 30,116 genes.

The LURIC dataset

The LUdwigshafen RIsk and Cardiovascular Health (LURIC) [33] study is a project con-

tributing to the identification and assessment of environmental and genetic factors for

cardiovascular diseases. The study consists of patients hospitalized for coronary angiogra-

phy between 1997 and 2000 at a tertiary care center in Southwestern Germany. Quality

control steps undertaken here include removing samples with < 95% call rate, SNPs with

< 98% call rate, minor allele frequency of < 1%, or Hardy–Weinberg equilibrium test p-

value of < 10−4. In addition, individuals for which the reported sex did not match the

genotype-inferred sex, as well as individuals whose genotypes were manually observed to

be outliers in an MDS plot, were removed. Moreover, from each pair of individuals with

relatedness of more than 0.1875, only one was reserved. From these, only individuals for

which lipid data were collected were used. This process resulted in 867 sampled individuals
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and 687, 262 SNPs. For heritability estimation, we use 102 lipid profiles.

The NFBC dataset

We analyze 5,236 individuals from the Northern Finland Birth Cohort (NFBC) data set,

which consists of genotypes at 331,476 genotyped SNPs and 10 phenotypes [36]. The 10

phenotypes are triglycerides (TG), high-density lipoproteins (HDL), low-density lipopro-

teins (LDL), glucose (GLU), insulin (INS), body mass index (BMI), C-reactive protein

(CRP) as a measure of inflammation, systolic blood pressure (SBP), diastolic blood pres-

sure (DBP), and height.

Discussion

We have presented ALBI, an efficient method for computing the distribution of the REML

estimator of heritability and for constructing accurate confidence intervals. We showed that

ALBI is significantly faster than standard parametric bootstrap approaches in computing

the true estimator distribution, which otherwise require the explicit construction of random

phenotypes and full estimation of heritability for each phenotype. In addition, unlike

current methods, ALBI allows the computation of the probability of heritability estimates

lying inside a specified interval (and particularly at the boundaries), without the need to

estimate the entire distribution.

One of the main limitations of the methods currently used for heritability estimation is

that the construction of CIs or standard errors is based on approximations that, as we have

shown here, often do not hold in practice, resulting in unreliable CIs. In contrast, the CIs

built by ALBI are accurate by construction, and ALBI can be used as an add-on to any of
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the current methods (e.g., GCTA [35], GEMMA [10]).

In addition, ALBI may be used as a practical approach to investigate the effect of various

kinship matrix operations on the usefulness of the heritability estimator. For example,

failing to exclude individuals with high relatedness introduces near-zero eigenvalues to the

kinship matrix, whose effect on the estimator distribution can be tested. Similarly, it is

possible to test if the common practice of adding the first PCs as fixed effects in the mixed

model improves the quality of the estimator. Moreover, while we theoretically expect larger

sample sizes to produce smaller CIs, the relationship between sample size and the shape

of the spectrum of the kinship matrix is intricate, and must be studied and validated for

each dataset individually, which may be done with ALBI.

We focused in this work on the estimation of heritability in the bounded interval [0, 1],

which is its natural domain. It is well known that the heritability estimator in this range is

biased due to the bounded parameter space (see Figure S1). Some software packages for the

estimation of heritability (e.g., GCTA) allow performing the optimization of the maximum

likelihood or REML in an unbounded region. The rationale there being that even though a

negative heritability is not meaningful, unbounded REML estimates are unbiased [38], and

confidence intervals can be used to test whether the heritability is greater than a certain

value, which is often the question of interest. However, this approach is problematic; a

more natural solution for this task is using a method such as ALBI to compute reliable CIs

for the bounded estimates. Furthermore, the domain is not well defined when the resulting

kinship matrix is not positive definite.

A promising direction for future research is improving the efficiency of ALBI further. Utiliz-

ing efficient interval searches and hashing schemes is expected to improve the time complex-

ity. Additionally, we note that at the core of the approximation is the estimation of the cu-

22

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2015. ; https://doi.org/10.1101/031492doi: bioRxiv preprint 

https://doi.org/10.1101/031492
http://creativecommons.org/licenses/by-nc-nd/4.0/


mulative distribution function (cdf) of a generalized chi-square random variable (for bound-

ary probabilities) or the joint distribution of two such variables (for non-boundary prob-

abilities). Various approximations for these cdfs are available in the context of quadratic

forms of normal variables [44], but to our knowledge, none apply to the generalized setting

we have presented here.

The method proposed here can be extended in several directions. As the distribution of the

heritability estimator is generally asymmetric and of mixed type, there are several ways to

define the acceptance regions that are used to determine the CIs. Each such choice comes

with its advantages and disadvantages, and it is possible that different choices may be more

suitable in different settings. Additionally, we focused here on CIs for ĥ2 only. In practice,

researchers may be interested in joint confidence regions for additional parameters, such

as one or more of the fixed effects.
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A Appendix

A.1 Estimation of the kinship matrix

We follow the procedure described in the GCTA software package [1]. Let Z be a standard-

ized genotype matrix with the i, j-th element zi,j = (gi,j − 2pj)/
√

2pj(1− pj), where gi,j

is the number of copies of the reference allele for the j-th SNP in the i-th sample, and pj

is the frequency of the reference allele, estimated from all non-missing SNPs. The i1, i2-th

element of the kinship matrix is:

Ki1,i2 =
1

|Si1,i2 |
∑

j∈Si1,i2

zi1,jzi2,j =
1

|Si1,i2 |
∑

j∈Si1,i2

(gi1,j − 2pj)(gi2,j − 2pj)

2pj(1− pj)

where Si1,i2 is the set of autosomal SNPs whose values are non-missing for both individuals

i1 and i2. When there are no missing values, it follows that K = 1
mZZT.

A.2 Estimating heritability, ML & REML

For the sake of completeness, we present the standard derivation of ML and REML esti-

mation [2–4].

A.2.1 Maximum likelihood estimation

Define σ2p = σ2g + σ2e and h2 = σ2g/σ
2
p. Up to additive and multiplicative constants, the

log-likelihood function is

`ML(h2, σ2p,β) ∝ −n log σ2p − log |Vh2 | −
(y −Xβ)T V−1

h2
(y −Xβ)

σ2p
,
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where Vh2 = h2K + (1− h2)In. Therefore, Cov[y] = σ2pVh2 . For a fixed h2, the values of

σ2p and β that maximize `ML can be derived analytically:

β̂(h2) = (XTV−1
h2

X)−1XTV−1
h2

y

σ̂2p(h
2) =

1

n
(y −Xβ̂(h2))TV−1

h2
(y −Xβ̂(h2))

The problem of maximizing `ML(h2, σ2p,β) therefore reduces to maximizing the profile

log-likelihood function `ML(h2, σ̂2p(h
2), β̂(h2)) over h2, which is, up to constants,

fML(h2) = − log |Vh2 | − n log
(
yTPT

h2V
−1
h2

Ph2y
)
,

where Ph2 = In −X(XTV−1
h2

X)−1XTV−1
h2

.

A.2.2 Restricted maximum likelihood estimation

REML (Restricted Maximum Likelihood) was introduced to take into account the loss in

degrees of freedom due to estimation of fixed effects [3, 5]. REML consists of maximizing

the likelihood function that is associated with n − p linearly independent contrasts. The

restricted log-likelihood function is, up to constants:

`REML(h2, σ2p,β) ∝ −(n− p) log σ2p − log |Vh2 | − log |XTV−1
h2

X| − (y −Xβ)T V−1
h2

(y −Xβ)

σ2p
,

where now

σ̂2p(h
2) =

1

n− p(y −Xβ̂(h2))TV−1
h2

(y −Xβ̂(h2)).
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A similar analysis gives a profile function of:

fREML(h2) = − log |Vh2 | − log |XTV−1
h2

X| − (n− p) log
(
yTPT

h2V
−1
h2

Ph2y
)

A.3 Invariance of heritability estimates

We prove an invariance property of the likelihood and restricted likelihood functions, which

enables us to focus solely on the estimator of h2 and disregard σ2p and β. For a fixed value

of h2, the estimation problem reduces to standard regression with a covariance matrix that

is known up to a scaling factor, σ2p. This leads to the generalized least squares solution for

β̂, as it is independent of scale. It can be easily shown that, for λ ∈ R and γ ∈ Rp:

`∗
(
h2, σ2p,β; y

)
= `∗

(
h2, γ2σ2p, λβ + γ;λy + Xγ

)
+
C

2
log(λ2) ,

where `∗ may be either `ML or `REML, and the constant C is n or n − p, respectively.

Therefore, for λ ∈ R and γ ∈ Rp:

ĥ2(y) = ĥ2(λy + Xγ)

λ2 · σ̂2p(y) = σ̂2p(λy + Xγ)

λ · β̂(y) + γ = β̂(λy + Xγ) .

(5)

If y is drawn from the distribution of Equation (2) with parameters (h2, 1,0p), then y′ =√
σ2py + Xβ follows the distribution with parameters (h2, σ2p,β). Therefore, from (5),

the joint distribution of (ĥ2, σ̂2p, β̂), for any fixed (h2, σ2p,β), is determined exactly by the

joint distribution of these estimators for (h2, 1,0p). An important conclusion is that the

distribution of ĥ2 depends only on h2. We may therefore limit our study to the ĥ2 estimator
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alone, in the special case of fixed σ2p = 1 and β = 0p.

A.4 The distribution of ĥ2

In [6], a necessary condition for estimating σ2g = 0 is derived, as the condition of the likeli-

hood function having a non-increasing derivative at σ2g = 0. In addition, they approximate

the probability of this event. We extend their work to derive a necessary condition for the

ML/REML estimator evaluating to a general ĥ2 = H2. We then use this result to estimate

the distribution of ĥ2.

A.4.1 Condition for estimating ĥ2 = H2, when 0 < H2 < 1

Let K = UDUT be the eigen-decomposition of K, where D is a diagonal matrix with

the eigenvalues d1, . . . , dn, and U is an orthonormal matrix with the eigenvectors as its

columns (If di ≤ 0 (due to numeric errors), we round di = 10−10 to make sure K is positive

definite). Let

Ah2,H2
= V

1/2
h2

PT
H2V

−1
H2(K− I)V−1

H2PH2V
1/2
h2

and

Bh2,H2
= V

1/2
h2

PT
H2V

−1
H2PH2V

1/2
h2
,

where PH2 is defined in Section A.2.1. Let w1, . . . , wn be the eigenvalues of KP0, where

P0 = Ph2
∣∣
h2=0

. Let pi be an indicator variable determining if the i-th eigenvalue of P0 is
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0. Define

Ch2,H2
= Ah2,H2 − 1

n

n∑
j=1

dj − 1

H2(dj − 1) + 1
·Bh2,H2

and

Dh2,H2
= Ah2,H2 − 1

n− p
n∑
j=1

pj(wj − 1)

H2(wj − 1) + 1
·Bh2,H2

.

In addition, let ψh
2,H2

i and ξh
2,H2

i be the eigenvalues of UCh2,H2
UT and UDh2,H2

UT ,

respectively, for i = 1, . . . , n. Finally, let u = UT (Vh2)−1/2 y. Then, the following

holds:

Proposition 1. For 0 < H2 < 1, a necessary condition for ĥ2 = H2 for y is:

n∑
i=1

ψh
2,H2

i u2i = 0 (for ML)

n∑
i=1

ξh
2,H2

i u2i = 0 (for REML)

Proof. A necessary condition for ĥ2 = H2 (when 0 < H2 < 1) being a global maximum for

f∗(h
2) (where f∗ is either fML or fREML) is ∂f∗

∂h2
(H2) = 0. We show that this is equivalent

to the equations above.

Utilizing Equations (7, 17) from [6], and applying the chain rule to convert these equations
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to be a function of h2 instead of σ2g/σ
2
e , we get:

∂

∂h2
log |Vh2 | =

n∑
j=1

dj − 1

h2(dj − 1) + 1

∂

∂h2
(
log |Vh2 |+ log |XTV−1

h2
X|
)

=
n∑
j=1

pj(wj − 1)

h2(wj − 1) + 1
.

It is straightforward to verify that

∂fML

∂h2
= n · y

TPT
h2V

−1
h2

(K− I)V−1
h2

Ph2y

yTPT
h2

V−1
h2

Ph2y
−

n∑
j=1

dj − 1

h2(dj − 1) + 1

∂fREML

∂h2
= (n− p) · y

TPT
h2V

−1
h2

(K− I)V−1
h2

Ph2y

yTPT
h2

V−1
h2

Ph2y
−

n∑
j=1

pj(wj − 1)

h2(wj − 1) + 1
.

Let ỹ = (Vh2)−1/2 y. Then, by equating the derivatives to 0, it follows that a necessary

condition for achieving a local maximum at H2 is

ỹT

Ah2,H2 − 1

n

n∑
j=1

dj − 1

H2(dj − 1) + 1
·Bh2,H2

 ỹ = ỹTCh2,H2
ỹ = 0 (for ML)

ỹT

Ah2,H2 − 1

n− p
n∑
j=1

pj(wj − 1)

H2(wj − 1) + 1
·Bh2,H2

 ỹ = ỹTDh2,H2
ỹ = 0 (for REML)

The eigenvalues of Ch2,H2
and Dh2,H2

are denoted by ψh
2,H2

i and ξh
2,H2

i , respectively

(i = 1, . . . , n). Let u = UT ỹ = UT (Vh2)−1/2 y. Then the conditions above are equivalent
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to:

n∑
i=1

ψh
2,H2

i u2i = 0 (for ML)

n∑
i=1

ξh
2,H2

i u2i = 0 (for REML)

A.4.2 Condition for estimating ĥ2 = 0 or ĥ2 = 1

The following proposition shows that at the boundaries, the equality in the condition from

Proposition 1 is replaced with an inequality.

Proposition 2. A necessary condition for ĥ2 = 0 is

n∑
i=1

ψh
2,0
i u2i ≤ 0 (for ML)

n∑
i=1

ξh
2,0
i u2i ≤ 0 (for REML)

Similarly, a necessary condition for ĥ2 = 1 is

n∑
i=1

ψh
2,1
i u2i ≥ 0 (for ML)

n∑
i=1

ξh
2,1
i u2i ≥ 0 (for REML)

Proof. For the case ĥ2 = 0, the requirement ∂f∗
∂h2

(H2) = 0 is replaced with ∂f∗
∂h2

(0) ≤ 0,

leading to the conditions above. Similarly, for the case ĥ2 = 1, the requirement is ∂f∗
∂h2

(1) ≥

0.
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A.4.3 Condition for ĥ2 falling in a given interval

For ĥ2 ∈ (0, 1), we will be estimating the distribution of ĥ2 at a specified resolution.

Therefore, we wish to know whether the estimate ĥ2 falls inside an interval (c1, c2). Using

the derivative, it is simple to give a sufficient condition for an interval to contain a local

maximum.

Proposition 3. A sufficient condition for the existence of a local maximum in (c1, c2) is

n∑
i=1

ψh
2,c1
i u2i > 0 and

n∑
i=1

ψh
2,c2
i u2i < 0

for ML estimation, and

n∑
i=1

ξh
2,c1
i u2i > 0 and

n∑
i=1

ξh
2,c2
i u2i < 0

for REML estimation.

Proof. If f
′
REML(c1) > 0 and f

′
REML(c2) < 0, then there exists at least one ĥ2 ∈ (c1, c2)

with f
′
REML(ĥ2) = 0 and f

′′
REML(c1) < 0. Therefore, a local maximum of fREML exists in

(c1, c2). The case for ML is identical.

A.4.4 Linear-time simple formula for a class of X-s

The derivations above hold for a general covariate matrix X. Here, we limit ourselves to

X-s whose columns are eigenvectors of K. Let p = (p1, . . . , pn) be an indicator vector

specifying if the i-th eigenvector of K is not a column of X. This is a generalization of

three common special cases:
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1. X = 0. Namely, there are no fixed effects. The requirement about X holds trivially.

Here, p = 1n.

2. Intercept. In many cases, X = 1n, an intercept vector (e.g., the default in GCTA).

Since each column of Z is standardized, ZT1n = 0m, so 1n is an eigenvector of K,

corresponding to an eigenvalue of 0. Since K is non-negative definite, this is the lowest

eigenvalue, i.e. dn = 0. In practice, this hold only approximately due to numerical

errors in computing the eigenvalues, but the approximation is good enough for this

analysis to be useful. Here, p = (

n−1︷ ︸︸ ︷
1, . . . , 1, 0)T .

3. First PCs. In addition to an intercept term, a common practice is adding to X the

q largest principal components, corresponding to the first q eigenvectors of K. Here,

p = (

q︷ ︸︸ ︷
0, . . . , 0,

n−q−1︷ ︸︸ ︷
1, . . . , 1, 0)T .

In these cases, it is possible to present a simpler formula.

Proposition 4. If the columns of X are eigenvectors of K, then

ψh
2,H2

i = pi ·
h2(di − 1) + 1

H2(di − 1) + 1

 di − 1

H2(di − 1) + 1
− 1

n

n∑
j=1

dj − 1

H2(dj − 1) + 1


ξh

2,H2

i = pi ·
h2(di − 1) + 1

H2(di − 1) + 1

 pi(di − 1)

H2(di − 1) + 1
− 1

n− p
n∑
j=1

pj(dj − 1)

H2(dj − 1) + 1

 .

Proof. Recall that K = UDUT is the eigen-decomposition of K, with the eigenvalues

d1, . . . , dn. It follows that Vh2 = U(h2D + (1 − h2)In)UT . Ph2 is the projection matrix

to the subspace orthogonal to the subspace spanned by the columns of X. Therefore,

Ph2 = U · diag(p) ·UT (and thus this definition of pi coincides with the one above).
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Recall also that

Ah2,H2
= V

1/2
h2

PT
H2V

−1
H2(K− I)V−1

H2PH2V
1/2
h2

Bh2,H2
= V

1/2
h2

PT
H2V

−1
H2PH2V

1/2
h2

and denote their respective eigenvalues ai and bi. Since all the matrices in these expressions

are diagonalizeable by U,

ai =
(h2(di − 1) + 1)(di − 1)p2i

(H2(di − 1) + 1)2

bi =
(h2(di − 1) + 1)p2i
H2(di − 1) + 1

.

It follows that

ψh
2,H2

i = ai −
1

n

n∑
j=1

dj − 1

H2(dj − 1) + 1
· bi

= pi ·
h2(di − 1) + 1

H2(di − 1) + 1

 di − 1

H2(di − 1) + 1
− 1

n

n∑
j=1

dj − 1

H2(dj − 1) + 1


ξh

2,H2

i = ai −
1

n− p
n∑
j=1

pj(wj − 1)

h2(wj − 1) + 1
· bi

= pi ·
h2(di − 1) + 1

H2(di − 1) + 1

 pi(di − 1)

H2(di − 1) + 1
− 1

n− p
n∑
j=1

pj(dj − 1)

H2(dj − 1) + 1

 ,

where we used p2i = pi and that the eigenvalues of KP0 are wj = djpj .

Once the eigenvalues of K are given, the calculation of ψh
2,H2

i and ξh
2,H2

i is performed in

O(n) complexity. This allows for a simple closed-form formula and fast evaluation of the

condition for maximality, even for large datasets.
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A.5 Construction of confidence intervals

We wish to build a set of confidence intervals with a coverage probability of 1 − α (e.g.,

95%). The distribution of ĥ2 depends solely on h2, so we may assume without loss of

generality that σ2p = 1,β = 0p (see A.3). Our approach to CI construction is based on the

duality between hypothesis testing and CIs (for a comprehensive treatment of this subject,

see [7]).

Let T (ĥ2;h20, α) be any test for the null hypothesis H0 : h2 = h20, which has size α (i.e.,

whose type-I error rate is no more than α), and which employs ĥ2 as its test statistic.

Let A(h20, α) be the acceptance region of this test, i.e., T (ĥ2;h20, α) does not reject H0

iff ĥ2 ∈ A(h20, α). Since the test is of size α, we know that, under the null, Prh20(ĥ2 ∈

A(h20, α)) ≥ 1− α. The CI (or, more generally, confidence set) C(ĥ2obs; 1− α) that is dual

to the test T (ĥ2;h20, α) simply comprises of all parameter values h2 not rejected by T when

observing the estimate value ĥ2obs, i.e., C(ĥ2obs; 1− α) = {h2 | ĥ2obs ∈ A(h2, α)}. From this

definition, we have that

Prh2(h2 ∈ C(ĥ2obs; 1− α)) = Prh2(ĥ2obs ∈ A(h2, α)) ≥ 1− α,

namely, C is a CI with coverage probability at least 1 − α. Moreover, if the acceptance

region has null probability 1− α exactly (i.e., its associated test is not conservative), then

the CI achieves coverage 1 − α accurately (otherwise, the CI is also conservative). In

the following, we simplify the notation for the CI to C(ĥ2), leaving the dependence on α

implicit. We describe a method to construct accurate acceptance regions, and therefore

confidence intervals, with coverage probability of 1− α.
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A.5.1 Preliminaries and Assumptions

Define:

p0(h
2) = Prh2(ĥ2 = 0)

pl(h
2) = Prh2(0 < ĥ2 ≤ h2)

pr(h
2) = Prh2(h2 < ĥ2 < 1)

p1(h
2) = Prh2(ĥ2 = 1).

To prove the accuracy of the CIs, we assume several natural properties of the distribution

of the estimators:

Assumption 1. The boundary probabilities p0(h
2) and p1(h

2) are monotone decreasing

and increasing functions of h2, respectively.

Figure 4 in the main text indicates that Assumption 1 holds in practice.

Assumption 2. The required confidence level is larger than the maximum of the boundary

probabilities; namely, 1− α > max(p0(0), p1(1)).

To see why Assumption 2 is reasonable, note that the largest boundary probabilities

p0(0), p1(1) are expected to be ∼0.5 asymptotically [8]. Indeed, similar values of ∼0.5−0.6

are also seen in practice (see Figure 4 in the main text). Meanwhile, 1− α is the required

confidence level, with 0.95 being a typical value.

For every h2 ∈ [0, 1], the open interval (0, 1) is mapped bijectively to (p0(h
2), 1 − p1(h2))
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by the CDF Fh2 . The quantile function cβ of ĥ2 is:

cβ(h2) =


0 if β ∈ [0, p0(h

2)]

F−1
h2

(β) if β ∈ (p0(h
2), 1− p1(h2))

1 if β ∈ [1− p1(h2), 1].

Note that since estimator distributions are discontinuous at the boundaries, it may be the

case that cβ(h2) does not obey Prh2([0, cβ(h2)]) = β.

Assumption 3. For every β, cβ(h2) is non-decreasing in h2.

It follows that

Prh2([0, cβ(h2)]) =


p0(h

2) if β ∈ [0, p0(h
2)]

β if β ∈ (p0(h
2), 1− p1(h2))

1 if β ∈ [1− p1(h2), 1].

Assumption 4. For all h2 ∈ [0, 1], h2 ≤ c1−α(h2) and h2 ≥ cα(h2).

While this may not hold if 1−α < p0(h
2), it holds in practice for all common values of 1−α

(e.g., 95%). Note that since by definition, c1−α(h2) ≤ c1−α/2(h2) and cα(h2) ≥ cα/2(h2), it

follows that h2 ≤ c1−α/2(h2) and h2 ≥ cα/2(h2).

A.5.2 Acceptance regions

A natural requirement of confidence intervals is that their lower and upper bounds be

monotone increasing functions of ĥ2. Equivalently, we require the lower and upper bounds

of the acceptance regions to be monotone increasing functions of h2. Therefore, acceptance
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regions for increasing values of h2 are naturally divided into three types: Regions with lower

bound 0; then, as the lower bound increases, possibly regions with both upper and lower

bounds between 0 and 1; and finally, regions with an upper bound of 1. Specifically, we

define the three types of regions to be:

A1
h2 = [0, c1−α(h2)]

A2
h2 = [cα/2(h

2), c1−α/2(h
2)]

A3
h2 = [cα(h2), 1].

The three types are defined so that Prh2(Aih2) ≥ 1 − α. It is possible that equality is

not obtained. For example, if p1(h
2) > α at a point h2, then c1−α(h2) = 1, and then

Prh2(A1
h2) = 1.

A.5.3 Choosing regions

We now define how to choose a region Ah2 for each value of h2 from these three types.

There are three requirements from this choice of regions that are desirable:

1. For the respective CIs to be accurate, Prh2(Ah2) must be equal to 1− α.

2. The true parameter value, h2, must be included in each region Ah2 .

3. As previously mentioned, the lower and upper bounds of the regions must remain

monotone functions of h2.

By construction, moving from smaller values of h2 to larger ones, we consecutively use re-

gions of type I, possibly of type II, and then type III. By definition, we choose a type I region
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for h2 = 0 and type III for h2 = 1. There are three scenarios we might encounter:

1. Type II is used. Suppose there is a range of values h2 ∈ [s, t] for which Prh2(A2
h2) =

1− α. Then, we pick s and t as the transition points, i.e.,

Ah2 =


A1
h2 = [0, c1−α(h2)] if h2 ∈ [0, s)

A2
h2 = [cα/2(h

2), c1−α/2(h
2)] if h2 ∈ [s, t]

A3
h2 = [cα(h2), 1] if h2 ∈ (t, 1]

This choice of transitions maintains the monotonicity of the lower and upper bounds of

the regions. To see this, note that within each of the parameter ranges, [0, s), (s, t) and

(t, 1], monotonicity is obeyed via Assumption 3. At the transition points, monotonicity is

maintained by definition of cβ, with c1−α(h2) ≤ c1−α/2(h
2) and cα/2(h

2) ≤ cα(h2). Also,

from Assumption 4, h2 ∈ Aih2 for i = 1, 2, 3. Therefore, h2 ∈ Ah2 holds for all h2. The

following proposition shows that the CI is accurate.

Proposition 5. Prh2(Ah2) = 1− α for all h2 (i.e. the CI is accurate).

Proof. If β > p0(0), then since p0 is monotone decreasing (Assumption 1), β > p0(h
2) for

all h2. Therefore, for such values of β, Prh2([0, cβ(h2)]) obtains only the values β (when

β < 1 − p1(h2), or equivalently, when h2 < p−11 (1 − β)) and 1 (when β ≥ 1 − p1(h2), or

equivalently, when h2 ≥ p−11 (1− β)).

Since 1 − α > p0(0) (Assumption 2), Prh2([0, c1−α(h2)]) = 1 − α iff h2 < p−11 (α) and 1

otherwise. Also, since 1 − α/2 > 1 − α > p0(0), similarly Prh2([0, c1−α/2(h
2)]) = 1 − α/2

iff h2 < p−11 (α/2) and 1 otherwise.

Since in the range h2 ∈ [s, t], Prh2([0, c1−α/2(h
2)]) = 1 − α/2, it follows from the above
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that t ≤ p−11 (α/2). Since p1 is monotone increasing (Assumption 1), it follows that t ≤

p−11 (α/2) ≤ p−11 (α). Therefore, in the range [0, s) ⊂ [0, t), the type I region A1
h2 has the

required probability, Prh2(A1
h2) = 1− α.

A similar argument holds for the other direction. If 1−β > p1(1), and since p1 is monotone

increasing, β < 1 − p1(h
2) for all h2. Therefore, Prh2([0, cβ(h2)]) equals p0(h

2) when

h2 < p−10 (β) and β when h2 ≥ p−10 (β).

Since in the range h2 ∈ [s, t], Prh2([0, cα/2(h
2)]) = α/2, then s ≥ p−10 (α/2). Since p0 is

monotone decreasing, p−10 (α) < p−10 (α/2) ≤ s < t. Therefore, in the range (t, 1], A3
h2 has

the required probability, Prh2(A3
h2) = 1 − α. Consequentially, Prh2(Ah2) = 1 − α for all

h2.

2. Type II is not used, but types I and III achieve accuracy. If there is no range

where Prh2(A2
h2) = 1−α, we turn to see if regions of either types I and III may have a proba-

bility of 1−α for all h2 ∈ [0, 1]. We have seen that Prh2(A1
h2) = Prh2([0, c1−α(h2)]) = 1−α iff

h2 < p−11 (α) and 1 otherwise. We have also shown that Prh2([0, cα(h2)]) equals p0(h
2) when

h2 < p−10 (α) and α when h2 ≥ p−10 (α). It follows that Prh2(A3
h2) = Prh2([cα(h2), 1]) = 1

when h2 < p−10 (α) and 1− α when h2 ≥ p−10 (α).

Therefore, if p−10 (α) < p−11 (α), there does not exists a value h2 for which neither A1
h2 nor

A3
h2 have the required probability of 1−α. We pick their average δ = (p−10 (α) + p−11 (α))/2

as the transition point, i.e.,

Ah2 =


A1
h2 = [0, c1−α(h2)] if h2 ∈ [0, δ)

A3
h2 = [cα(h2), 1] if h2 ∈ [δ, 1]
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Consequentially, Prh2(Ah2) = 1− α for all h2. Monotonicity of region bounds is trivial in

this case, and again, from Assumption 4, h2 ∈ Ah2 holds for all h2.

3. Type II is not used, and types I and III do not achieve accuracy. Finally,

if there is no range where Prh2(A2
h2) = 1 − α, and p−11 (α) ≤ p−10 (α), then in the range

h2 ∈ [p−11 (α), p−10 (α)], Prh2(A2
h2) = 1 for all three region types. In this case, we use

randomized confidence intervals [9] to achieve the exact required accuracy.

In this case, it is simpler to discuss the confidence intervals directly. Let

CH2 =


[0, U0] if H2 = 0[
arg minh2

{
h2|H2 ∈ A1

h2

}
, arg maxh2

{
h2|H2 ∈ A3

h2

}]
if H2 ∈ (0, 1)

[L1, 1] if H2 = 1

where U0 and L1 are random variables defining the upper bound of C0 and the lower bound

of C1, respectively. Let 1−u(h2) be the cdf of U0, and let l(h2) be the cdf of L1. It remains

to choose u, l that will be appropriately monotone and will give the required coverage. The

total coverage should obey:

1− α = 1− p0(h2)(1− u(h2))− p1(h2)(1− l(h2))⇒

α = (1− p0(h2))u(h2) + (1− p1(h2))l(h2).
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The requirement U0, L1 ∈ [p−11 (α), p−10 (α)] translates to:

u(h2) =


1 if h2 ∈ [0, p−11 (α))

monotone non-increasing if h2 ∈ [p−11 (α), p−10 (α)]

0 if h2 ∈ (p−10 (α), 1]

and

l(h2) =


0 if h2 ∈ [0, p−11 (α))

monotone non-decreasing if h2 ∈ [p−11 (α), p−10 (α)]

1 if h2 ∈ (p−10 (α), 1]

Inverting our viewpoint back to acceptance regions, the above is equivalent to choos-

ing Ah2 = A1
h2 when h2 < p−11 (α) and Ah2 = A3

h2 when h2 > p−10 (α). When h2 ∈

[p−11 (α), p−10 (α)], Ah2 = (0, 1) ∪ {0, 1}, with the boundary points 0 and 1 included with

probabilities u(h2) and l(h2) respectively.

When l(h2) = 1,

α = (1− p0(h2))u(h2) + (1− p1(h2))

u(h2) =
1− α− (1− p0(h2))

p0(h2)
= 1− α

p0(h2)
.

Similarly, when u(h2) = 1, l(h2) = 1− α
p1(h2)

.
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The particular form we choose for u and l is

u(h2) =


1 if h2 ∈ [0, δ)

1− α
p0(h2)

if h2 ∈ [δ, p−10 (α)]

0 if h2 ∈ (p−10 (α), 1]

and

l(h2) =


0 if h2 ∈ [0, p−11 (α))

1− α
p1(h2)

if h2 ∈ [p−11 (α), δ]

1 if h2 ∈ (δ, 1]

where δ = (p−10 (α) + p−11 (α))/2, as before.

A.6 Variance of estimators

The main method of calculating the variance of the estimator, applied by all widely used

LMM methods, employs the Fisher information matrix, or a variant of which, possi-

bly applying the delta method in addition [10]. The (expected) Fisher information ma-

trix of an estimator θ̂ is the matrix I(θ)i,j = E
[
− ∂
∂θiθj

`(θ; y)
]
. Asymptotically, un-

der certain regularity conditions,
√
n(θ̂ − θ)

d−→ N (0, I(θ)−1). According to the delta

method, the asymptotic distribution of a function f(θ) satisfies
√
n(f(θ̂) − f(θ))

d−→

N (0,∇f(θ)TI(θ)−1∇f(θ)).

GCTA uses the Average Information [11] (AI) matrix to calculate the variance of σ2g and

σ2e . The AI matrix is an average between the expected and the observed Fisher information
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matrices. For the REML method, this is the matrix:

J =
1

2
·

yTQKQKQy yTQKQQy

yTQQKQy yTQQQy

 ,

where Q = Σ−1 −Σ−1X
(
XTΣ−1XT

)−1
XTΣ−1, with Σ = σ2gK + σ2eI. Then, the delta

method is used to calculate the variance of ĥ2:

Var(ĥ2) = (σ̂2g + σ̂2e)
−4
(
σ̂2e −σ̂2g

)
J −1|σ2

g=σ̂
2
g ,σ

2
e=σ̂

2
e

 σ̂2e

−σ̂2g

 .

GEMMA instead applies the delta method on a closed-form formula of the ratio σ2g/σ
2
e [12].
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Figures and Tables
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Figure 1 Accuracy of CIs. The left panes depict the true coverage probability of
GCTA’s confidence intervals (CIs), based on the normal approximation, on the GTEx
and LURIC datasets. The right panes depict the coverage probabilities of the ALBI CIs.
The coverage probabilities are shown for CIs designed to have coverage probabilities of
70%, 80%, 90% and 95%. GCTA’s CIs are often far from the correct confidence level, while
ALBI’s achieve accurate coverage.
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Figure 2 Accuracy of standard errors. The ratio between the mean standard error
derived from GCTA, and the empirical standard deviation of the REML estimator ĥ2, as
a function of the true h2, for the studied datasets. The discrepancy is high, especially for
GTEx and LURIC, with ratios up to ×1.7.

50

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2015. ; https://doi.org/10.1101/031492doi: bioRxiv preprint 

https://doi.org/10.1101/031492
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 0.5 1

0

0.2

0.4

ĥ2

P
r(
ĥ
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ĥ
2
)

NFBC, h2 = 0.1

0 0.5 1

ĥ2
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Figure 3 Distributions of the heritability estimator. The density of ĥ2 for
h2 = 0.1, 0.5, 0.9 in the studied datasets, under the LMM. Since the distribution of ĥ2

is continuous in the open interval (0, 1), we divide this range into equally sized bins of a
fixed size (0.01), and instead estimate the probability mass function of a random variable
taking values in the set {0, (0, 0.01], (0.01, 0.02], . . . , (0.09, 1), 1}. Estimator distributions
are often far from being normal, hence the normal approximation seems highly question-
able.
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Figure 4 Probability of boundary heritability estimates. The probability of esti-
mating ĥ2 = 0 or 1, for all possible values of true underlying heritability values h2, for the
studied datasets. For GTEx and LURIC, the probability of ĥ2 = 0 (1) is high, especially
for small (large) values. For NFBC, this phenomenon is limited.
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Figure 5 Probability of zero heritability in CI. The probability of h2 = 0 being
included in the CI, as a function of the true value of h2, for the GTEx and LURIC datasets.
These probabilities are shown for GCTA’s CI and ALBI’s CI, designed to have a confidence
level of 95%. It can be seen that CIs derived from the normal approximation tend to include
h2 = 0 more than necessary.

Dataset ALBI (0.01) ALBI (0.001) pylmm GCTA

GTEx, 100 random samples 0.04 sec 0.27 sec 3.94 sec 1.05 min
LURIC, 100 random samples 0.12 sec 1.27 sec 5.7 sec 3.98 min
NFBC, 100 random samples 0.9 sec 7.93 sec 1.31 min > 8 hours

GTEx, 1000 random samples 0.27 sec 1.9 sec 37.9 sec 4.68 min
LURIC, 1000 random samples 0.73 sec 8.85 sec 54.15 sec 54.6 min
NFBC, 1000 random samples 7.42 sec 1.25 min 6.06 min > 1 day

Table 1 Benchmarks. Running times of ALBI vs. other brute-force methods. We com-
pare the computational costs of ALBI to that of pylmm [13] and GCTA [1] (see Methods).
We generated the estimator distribution for h2 = 0.5. For ALBI, we estimated the distri-
butions at a precision of 0.01 and 0.001, using 100 and 1,000 random samples. For pylmm
and GCTA, we generated 100 and 1,000 random phenotypes. GCTA did not converge for
∼7% of the random samples. Running times are reported for the datasets of GTEx (185
individuals), LURIC (867 individuals) and NFBC (5,236 individuals).
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Supplementary Figures and Tables

REML estimator bias

We evaluated the empirical bias of the REML estimator ĥ2 as a function of h2. It is evident

that the REML estimator may be biased (Figure S1). The bias is especially evident for

low and high true values of h2. This is also true for the estimator of σ2p (not shown).
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Figure S1 Bias of the heritability estimator.The bias of ĥ2 (defined as E(ĥ2)−h2),
for all possible values of true underlying heritability h2, for the studied datasets. The GTEx
and LURIC datasets create highly biased estimators, while for the NFBC the estimator is
mostly unbiased.
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