
 1

An evaluation of transcriptome-based exon capture for frog phylogenomics across 1 

multiple scales of divergence (Class: Amphibia, Order: Anura) 2 

 3 

Daniel M. Portik1,2*, Lydia L. Smith1,2, and Ke Bi1,3 4 

 5 

1 Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA 6 

2 Department of Integrative Biology, University of California, 3060 Valley Life Sciences 7 

Building, Berkeley, CA 94720, USA 8 

3 Computational Genomics Resource Laboratory (CGRL), California Institute for 9 

Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA 10 

 11 

*Corresponding author: daniel.portik@berkeley.edu 12 

 13 

Keywords: Transcriptome-based exon capture, amphibians, genomics, phylogenomics 14 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2015. ; https://doi.org/10.1101/031468doi: bioRxiv preprint 

https://doi.org/10.1101/031468
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

Abstract 15 

Custom sequence capture experiments are becoming an efficient approach for gathering 16 

large sets of orthologous markers with targeted levels of informativeness in non-model 17 

organisms.  Transcriptome-based exon capture utilizes transcript sequences to design 18 

capture probes, often with the aid of a reference genome to identify intron-exon 19 

boundaries and exclude shorter exons (< 200 bp).  Here, we test an alternative approach 20 

that directly uses transcript sequences for probe design, which are often composed of 21 

multiple exons of varying lengths. Based on a selection of 1,260 orthologous transcripts, 22 

we conducted sequence captures across multiple phylogenetic scales for frogs, including 23 

species up to ~100 million years divergent from the focal group. After several 24 

conservative filtering steps, we recovered a large phylogenomic data set consisting of 25 

sequence alignments for 1,047 of the 1,260 transcriptome-based loci (~630,000 bp) and a 26 

large quantity of highly variable regions flanking the exons in transcripts (~70,000 bp).  27 

We recovered high numbers of both shorter (< 100 bp) and longer exons (> 200 bp), with 28 

no major reduction in coverage towards the ends of exons. We observed significant 29 

differences in the performance of blocking oligos for target enrichment and non-target 30 

depletion during captures, and observed differences in PCR duplication rates that can be 31 

attributed to the number of individuals pooled for capture reactions.  We explicitly tested 32 

the effects of phylogenetic distance on capture sensitivity, specificity, and missing data, 33 

and provide a baseline estimate of expectations for these metrics based on nuclear 34 

pairwise differences among samples.  We provide recommendations for transcriptome-35 

based exon capture design based on our results, and describe multiple pipelines for data 36 

assembly and analysis. 37 
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 38 

Introduction 39 

Using high throughput sequencing, there are now a variety of approaches available to 40 

generate large molecular data sets for the purpose of addressing population genetics or 41 

phylogenetics questions.  A majority of these approaches fall in the category of reduced 42 

representation sequencing, in which orthologous sets of markers from a subset of the 43 

genome are obtained across taxa or individuals.  A commonly used approach is RAD-seq, 44 

which targets anonymous loci adjacent to restriction enzyme sites (Miller et al. 2007), 45 

though the probability of obtaining orthologous sets of loci decreases as phylogenetic 46 

distance between samples increases (Rubin et al. 2012; Arnold et al. 2013).  Other 47 

approaches include more targeted selection of loci using DNA or RNA probes, such as 48 

ultra-conserved element (UCE) sequencing (Faircloth et al. 2012) and anchored hybrid 49 

enrichment (Lemmon et al. 2012).  Both approaches rely on short, highly conserved 50 

genomic regions for probe design and the subsequent capture of these targets for libraries 51 

with large insert sizes containing stretches of flanking sequences.  This allows the use of 52 

the same set of markers across distantly related taxa, but the function of these loci is 53 

generally unknown, and the levels of variation in flanking regions are not predictable.  54 

Other targeted sequence capture approaches allow more control over the level of 55 

variation of orthologous markers, including sequence capture using PCR-generated 56 

probes (SCPP) (Peñalba et al. 2014), and transcriptome-based exon capture (Bi et al. 57 

2012).  The latter approach uses transcriptome sequencing to identify protein-coding 58 

exons across populations or species, and is particularly useful for organisms for which no 59 

other genomic resources are readily available.   60 
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An important step before selecting markers derived from transcriptome sequences 61 

involves the identification of intron-exon boundaries to select longer exons, which 62 

requires the use of reference genomes (Bi et al. 2012; Bragg et al. 2015). Longer exons 63 

are preferred because they exceed the length of capture probes, allowing tiling, and for a 64 

given evolutionary rate they should have more informative sites compared to shorter 65 

exons.  The transcriptome sequences recovered are typically composed of multiple exons, 66 

often short in length, making probe design challenging.  The intron-exon identification 67 

step can be exceedingly difficult if the reference genome is too distantly related, and the 68 

direct use of transcriptome sequences for probe design is an alternative that has not been 69 

explored.  Although this alternative approach ignores the potential presence of intron-70 

exon boundaries, it offers an opportunity to capture exons of a variety of lengths along 71 

with their associated non-coding flanking regions.  The length of probes, level of 72 

divergence between probes and targets, length distribution of genomic library fragments, 73 

and the number of and lengths of exons in the transcript sequences are all important 74 

factors that could determine the success of this alternative approach.  75 

 There are several major challenges for designing a custom sequence capture 76 

experiment for a non-model organism, particularly if the experiment involves species 77 

with relatively large genome sizes, spans multiple phylogenetic scales, and involves the 78 

de novo generation of genetic resources for probe design.  In addition, wet-lab-specific 79 

decisions have the potential to significantly influence the outcome of sequence captures, 80 

including the number of genomic libraries to pool per capture reaction and the choice of 81 

genomic library blocking oligos.  Few studies have focused on the exploration of these 82 
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topics across a single experiment, yet the availability of baseline information can help 83 

inform these decisions and improve the success of sequence capture. 84 

 Across terrestrial vertebrates, amphibians exhibit the largest genome sizes.  The 85 

average genome size of frogs is 5.0 gigabases (Gb) (max = 13.1 Gb, n = 497), whereas 86 

the salamander genome averages 34.5 Gb (max = 117.9 Gb, n = 426) (Gregory 2015).  87 

These genome sizes are larger than those of birds (1.3 Gb, n =896), mammals (3.1 Gb, n 88 

= 777), and squamates (2.1 Gb, n = 344) (Gregory 2015), and the performance of targeted 89 

exon capture for amphibians remains largely unexplored (but see Hedtke et al. 2013; 90 

McCartney-Melstad et al. 2015).  Here, we examine the performance of transcriptome-91 

based exon capture for frogs across multiple phylogenetic scales.  The main focal group 92 

is the African frog family Hyperoliidae, consisting of 13 genera and 254 samples, which 93 

have an average genome size of 4.6 Gb (n = 11) (Gregory 2025). Our sampling also 94 

includes species from the sister family Arthroleptidae (7 genera, 7 samples), and a single 95 

representative from three more distantly related families (Brevicipitidae, Hemisotidae, 96 

Microhylidae).  Pairwise comparisons within Hyperoliidae do not exceed 10% nuclear 97 

divergence, and the hyperoliid genera shared a common ancestor approximately 56 98 

million years ago (Portik & Blackburn, in prep).  The family Hyperoliidae shares a 99 

common ancestor with Arthroleptidae approximately 77 Ma, with Hemisotidae and 100 

Brevicipitidae approximately 93 Ma, and with Microhylidae approximately 103 Ma, and 101 

uncorrected pairwise nuclear differences between hyperoliids and the outgroups 102 

approaches 20%.   103 

 We describe our methodological approach for generating and mining 104 

transcriptome resources, the selection of orthologous markers and probe design, choice of 105 
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blocking oligos in capture reactions, the pipeline for assembling and processing capture 106 

sequence data, and the overall results of our exon capture experiment.  Given the 107 

tremendous level of divergence between our focal group and available frog reference 108 

genomes (Xenopus laevis and X. tropicalis, minimum 150 million years divergent), we 109 

did not attempt to identify intron-exon boundaries to select longer exons.  Rather, we use 110 

transcriptome sequences directly for probe design. We evaluate our results given this 111 

approach, including characterizing the number of exons in transcript sequences, the 112 

lengths of these exons, our ability to recover exons and their flanking regions, and the 113 

effects of exon length on sequencing depth. The level of variation within the family 114 

Hyperoliidae and the inclusion of highly divergent outgroup taxa allows us to examine 115 

the effects of phylogenetic divergence on exon capture performance.  Specifically, we 116 

examine the relationship between phylogenetic distance on exon capture sensitivity, 117 

specificity, and the proportion of missing data in the final sequence alignments. We also 118 

examine the effects of library pool size during multiplexed captures on raw data yield, 119 

sequencing depth, and read duplication levels. 120 

 121 

Methods 122 

Transcriptome Sequencing and Analysis 123 

Four species of hyperoliids representing multiple divergent clades were chosen for 124 

transcriptome sequencing: Afrixalus paradorsalis (CAS 255487), Hyperolius balfouri 125 

(CAS 253644), Hyperolius riggenbachi (CAS 253658), and Kassina decorata (CAS 126 

253990). Whole RNA from a portion of liver sample preserved in RNA Later was 127 

extracted using the RNeasy Protect Mini Kit (Qiagen). Samples were evaluated using a 128 
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BioAnalyzer 2100 RNA Pico chip (Agilent), with RIN scores of 7.0, 7.0, 7.4, and 5.5, 129 

respectively.  Sequencing libraries were prepared using half reactions of the TruSeq RNA 130 

Library Preparation Kit V2 (Illumina), beginning with Poly-A selection for samples with 131 

high RIN scores (> 7.0) and Ribo-Zero Magnetic Gold (Epicentre) ribosomal RNA 132 

removal for samples with low RIN scores (< 7.0).  Libraries were pooled and sequenced 133 

on an Illumina HiSeq2500 with 100 bp paired-end reads. Transcriptomic data were 134 

cleaned following Singhal (2013).  Cleaned data were assembled using TRINITY (Grabherr 135 

et al. 2011) and annotated with Xenopus tropicalis (Ensembl) as a reference genome 136 

using reciprocal BLASTX (Altschul et al. 1997) and EXONERATE (Slater & Birney 2005).  137 

We then compared annotated transcripts from the four species to search for orthologs via 138 

BLAST (Altschul et al. 1990). We removed mitochondrial loci from the transcripts. We 139 

only kept transcripts with a GC between 40%-70% because extreme GC content causes a 140 

reduced capture efficiency for the targets (Bi et al. 2012).  Orthologous transcripts with a 141 

minimum length of 500 base pairs (bp) were identified across all four samples, resulting 142 

in the identification of 2,444 shared transcripts. Transcripts exceeding 850 bp were 143 

arbitrarily trimmed to this length for probe design, reflecting a trade-off decision between 144 

locus length and the total number of loci included in the experiment.  The average 145 

pairwise divergence across transcripts among all four samples ranged from 1.4% to 146 

25.9%.  147 

 148 

Availability of Transcriptome Tools.  All the bioinformatics pipelines for transcriptome 149 

data processing and annotation are available at https://github.com/CGRL-QB3-150 
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UCBerkeley/DenovoTranscriptome. Pipelines for marker development are available at 151 

https://github.com/CGRL-QB3-UCBerkeley/MarkerDevelopmentPylogenomics. 152 

 153 

Sequence-Capture Probe Design 154 

The orthologous transcripts were subjected to additional filtering steps before a final gene 155 

set was chosen.  The initial filtering step applied upper and lower limits on average 156 

transcript divergence, eliminating loci with low variation (< 5.0% average divergence) 157 

and exceptionally high variation (> 15.0% average divergence), resulting in the removal 158 

of 266 genes.  The remaining 2,178 genes were examined for repetitive elements, short 159 

repeats, and low complexity regions, which are problematic for probe design and capture.  160 

The four sets of transcripts per gene (totaling 8,712 sequences) were screened using the 161 

REPEATMASKER Web Server (Smit et al. 2015). This step resulted in the masking of 162 

repetitive elements or low complexity regions in 929 sequences, with 7,783 sequences 163 

passing the filters.  To be conservative, if any of the four transcripts for a gene contained 164 

masked sites, that gene was removed from the final marker set, which resulted in the 165 

removal of an additional 468 markers.  From this reduced set of 1,710 markers, 400 166 

markers with the highest divergence were selected (average divergence ranging from 167 

10.4% to 14.9%) followed by 860 randomly drawn markers from the remaining subset.  168 

This marker set was supplemented with five positive controls, which consisted of nuclear 169 

sequence data generated using Sanger sequencing for five loci: POMC (624 bp), RAG-1 170 

(777 bp), TYR (573 bp), FICD (524 bp), and KIAA2013 (540 bp).  The final marker set 171 

selected for probe design included 1,265 genes from four species and 5,060 individual 172 

sequences. 173 
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 The final filtered gene set was used to design a MYaits-3 custom bait library 174 

(MYcroarray), which consists of 60,060 unique probes per reaction and a total of 48 175 

capture reactions.  Following the manufacturers recommendation for capturing sequences 176 

of species greater than 5% divergent, 120mer baits were selected, rather than 100mer or 177 

80mer baits.  For each locus, we included a sequence from each of the four species; the 178 

5,060 sequences included for probe design totaled 3,983,022 bp, which is approximately 179 

995,700 bp for each full set of loci per species.  Following a 2x tiling scheme (every 60 180 

bp) resulted in 60,179 unique baits, therefore 119 probes were randomly dropped to 181 

achieve the probe limit.   182 

 183 

Genomic Library Preparation and Pooling 184 

Genomic DNA was extracted from 264 samples (254 ingroup samples, 10 outgroups) 185 

using a high-salt extraction method (modified from Aljanabi and Martinez 1997).  The 186 

DNA was quantified by Qubit DNA BR assay (Life Technologies) and 1700 ng total 187 

DNA was diluted in 110 μl of ultrapure H2O.  A Bioruptor UCD-200 (Diagenode) was 188 

used to sonicate the samples on a low setting for 15 minutes, using 30s on/30s off 189 

cycling.  For each sonicated sample, 4.5 μl of product was run on a 1% gel at 135V for 35 190 

min to ensure fragments were appropriately sized (100–500 bp, average 200–300 bp).  191 

Individual genomic libraries were prepared following Meyer and Kircher (2010), with 192 

slight modifications, including the use of at least 1600 ng total DNA for library 193 

preparation (rather than 500 ng) to remedy the possibility of decreased library diversity 194 

resulting from the larger genome size of frogs.  We used 7 cycles of post-adapter ligation 195 

PCR to enrich the libraries and incorporate a 7bp P7 index, allowing the combination of 196 
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up to 96 samples in the same sequencing lane.  The resulting 50 μl of amplified library 197 

product had an average concentration of 35 ng/μl measured by a Nanodrop 1000 198 

spectrophotometer (Thermo Scientific), producing an average yield of 1,750 ng total 199 

library DNA. 200 

 Samples were pooled for capture reactions according to phylogenetic relatedness 201 

as determined by 16S mtDNA data (Portik, unpublished data).  Typical pools contained 202 

5–6 genomic libraries, but ranged from 1–7 libraries.  All pools contained 1500 ng of 203 

total starting DNA, divided equally among the samples included in the pool.  204 

 205 

Sequence Capture Reactions 206 

MYbaits capture reactions were performed following the v2.3.1 manual with some 207 

modifications.  For each capture reaction library master mix, the pooled libraries were 208 

vacuum dried at 45°C for 70 min and re-suspended in ultrapure H2O, then combined with 209 

1.66 μl each of human, mouse, and chicken COT-1, and choice of blocking oligos.  The 210 

combined volume of water for DNA resuspension and volume of blocking 211 

oligonucleotides totaled 6.5 μl.  An initial three capture reactions were performed on the 212 

same library pool to assess the performance of three different types of oligonucleotide 213 

blockers designed to anneal to the library adapters during hybridization and prevent 214 

daisy-chaining.  These blockers consist of the universal blocking oligos (included with 215 

the MYbaits kit) which use inosine to block the 7bp index sequence, short blocking 216 

oligos which leave the index sequence unblocked, and xGEN blocking oligos (Integrated 217 

DNA Technologies), which use proprietary modifications to block the index.  Their 218 

performance was compared using qPCR analysis of amplified post-capture products, 219 
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examining enrichment of positive controls and depletion of negative controls.  The xGEN 220 

blocking oligos performed significantly better in these tests (see Results); we assumed 221 

this assessment was a good proxy for sequencing results and these blocking oligos were 222 

used for all subsequent capture reactions. 223 

Beyond the slight modifications to the hybridization reaction components 224 

discussed above, we followed the manufacturer’s protocol as written, and the 225 

hybridization reaction proceeded at 65°C for 27 hours.  Individual capture reactions were 226 

purified using streptavidin-coated magnetic beads and post-capture products were PCR 227 

amplified using four independent reactions of 14 cycles each. These reactions were 228 

resuspended in 12 μl of ultrapure H2O, and had an average concentration of 15 ng/μl, as 229 

measured by Nanodrop.  Purified PCR products from the same capture were combined 230 

and quantified using a BioAnalyzer 2100 DNA 1000 chip. The combined post-capture 231 

amplified products were on average 3.7 ng/μl (range of averages: 1.1–7.2 ng/μl) and the 232 

average product size was 398 bp (range of averages: 361–466 bp).  Results from Qubit 233 

assay were similar, with an average concentration of 4.5 ng/μl (range: 1.0–7.7 ng/μl) for 234 

combined post-capture amplified products. The combined post-capture libraries were 235 

grouped into three sets (totaling 74, 91, and 92 libraries), pooled in equimolar amounts, 236 

and sequenced on three lanes of an Illumina HiSeq2500 with 100 bp paired-end reads.  237 

 238 

Sequence Capture Data Processing  239 

Raw sequence data were cleaned following Singhal (2013) and Bi et al. (2012). In brief, 240 

raw fastq reads were filtered using TRIMMOMATIC (Bolger et al. 2014) and CUTADAPT 241 

(Martin 2011) to trim adapter contaminations and low quality reads. BOWTIE2 (Langmead 242 
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& Salzberg 2012) was used to align the data to Escherichia coli (NCBI: 48994873) to 243 

remove potential bacteria contamination. We eliminated exact duplicates as well as low 244 

complexity sequences using a custom script.  Overlapping paired reads were also merged 245 

using FLASH (Magoč & Salzberg) and COPE (Liu et al. 2012) to avoid inflated coverage 246 

estimate in the overlapping region. The resulting cleaned reads of each individual 247 

specimen were de novo assembled using ABYSS (Simpson et al. 2009). We first generated 248 

individual raw assemblies using a wide range k-mers (21, 31, 41, 51, 61 and 71) and then 249 

used CD-HIT-EST (Li & Godzik 2006), BLAT (Kent 2002), and CAP3 (Huang & Madan 250 

1999) to cluster and merge all raw assemblies into final, less-redundant assemblies. We 251 

used BLASTN (evalue cutoff  = 1e-10, similarity cutoff  = 70) to compare the 5,060 target 252 

sequences with the raw assemblies of each individual in order to identify the set of 253 

contigs that were associated with targets (in-target assemblies).  We also ran a self-254 

BLASTN (evalue cutoff =1e-20) to compare the assemblies against themselves to mask any 255 

regions from a contig that matched other regions from other contigs. For each matched 256 

contig we used EXONERATE (Slater & Birney 2005) to define protein-coding and flanking 257 

regions. We retained flanking sequences if they were within 500 bp of a coding region.  258 

Finally, all discrete contigs that were derived from the same reference transcript were 259 

joined together with Ns based on their relative BLAST hit positions to the reference. Most 260 

of the final in-target assemblies contain multiple contigs, and each includes both coding 261 

regions and flanking sequences if captured.   262 

Cleaned sequence data were then aligned to the resulting individual-specific in-263 

target assemblies using NOVOALIGN (Li & Durbin 2009) and we only retained reads that 264 

mapped uniquely to the reference.  We used Picard 265 
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(http://broadinstitute.github.io/picard/) and GATK (McKenna et al. 2010) to perform re-266 

alignment.  We finally used SAMTOOLS/BCFTOOLS (Li et al. 2009) to generate individual 267 

consensus sequences by calling genotypes and incorporate ambiguous sites in the in-268 

target assemblies.  We kept a consensus base only when the site depth is above 5X.  We 269 

masked sites within 5 bp window around an indel.  We also filtered out sites where more 270 

than two alleles were called.  We converted FASTQ to FASTA using seqtk 271 

(https://github.com/lh3/seqtk) and masked putative repetitive elements and short repeats 272 

using REPEATMASKER (Smit et al. 2015) with vertebrata metazoa as a database.  We 273 

removed markers if more than 80% of the bases were Ns. We then calculated read depth 274 

of each individual marker and filtered out loci if the depth fell outside 1st and 99th 275 

percentile of the statistics. We also eliminated markers if the individual heteozygosity fell 276 

outside the 99th percentile of the statistics. The final filtered assemblies of each individual 277 

specimen were aligned using MAFFT (KAtoh & Standley 2013). Alignments were then 278 

trimmed using TRIMAL (Capella-Gutierrez et al. 2009). We removed alignments if more 279 

than 30% missing data (Ns) are present in 30% of the samples. We also removed 280 

alignments if the proportion of shared polymorphic sites in any locus is greater than 20%.   281 

 282 

Availability of Sequence Capture Data Tools.  The bioinformatic pipelines of sequence 283 

capture data processing are available at https://github.com/CGRL-QB3-284 

UCBerkeley/denovoTargetCapturePhylogenomics.  285 

 286 

Sequence Capture Efficiency Evaluation 287 
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Sequencing Depth, Duplication Levels, and Pooling Sizes.  To evaluate capture 288 

efficiency, average per-base sequence depth, or coverage, was calculated separately for 289 

the exon sequences and for the flanking sequences of each sample. The coverage at each 290 

base pair site for either data set was inferred using the SAMTOOLS (Li et al. 2009). The per 291 

base pair coverage estimates for all sequences (exon or flanking) associated with each 292 

transcript (up to 1,260 genes) were averaged, resulting in a set of average coverage 293 

estimates across loci.  The resulting output of the set of average coverage estimates was 294 

used to infer the median, upper and lower quartiles, and range of coverage estimates 295 

using samples or genes as factors.  These calculations were performed and automated 296 

across samples using python scripts and the output was visualized in R.  Differences in 297 

the levels of coverage were examined using pooling size as a factor.  To control for 298 

differences in coverage possibly resulting from phylogenetic distance, comparisons were 299 

only made among pools of the ingroup genus Hyperolius (160 samples, 28 captures).  300 

Duplication refers to the number of non-unique sequencing reads, which were 301 

eliminated from our sequence capture data processing pipeline. The level of duplication 302 

among reads, expressed as a percentage, was estimated by dividing the number of 303 

duplicate reads by the total number of raw reads.  Differences in the levels of duplication 304 

were examined using pooling size as a factor, compared across the genus Hyperolius. The 305 

amount of raw data (in bases) was also compared across pool sizes using the genus 306 

Hyperolius. 307 

 308 

Sequence Capture Sensitivity.  Sensitivity refers to the percentage of bases of target 309 

sequences that are covered by at least one read, and here the target refers to the exons of 310 
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each gene.  To calculate this metric, the final in-target assemblies (including exons and 311 

flanking sequences) of each sample were compared to a set of transcript sequences used 312 

for probe design, from only one of the design species, using BLASTN with a evalue cutoff 313 

of 1e-10.  This was automated using custom scripts to produce output files of all blast hits 314 

for each sample.  For each output file, any overlapping base pair coordinates for blast hits 315 

within a locus were merged.  Following the merging of coordinates, the number of base 316 

pairs for all exon blast hits per locus was totaled, and was divided by the total length of 317 

the transcript sequence to calculate the sensitivity per transcript.  The total number of 318 

base pairs from all exon blast hits was divided by the total number of base pairs of all the 319 

transcript sequences, producing an overall estimate of sensitivity per sample.  320 

 321 

Sequence Capture Specificity.  Specificity is a metric that measures how many base pairs 322 

of cleaned reads are aligned to target sequences, expressed as a percentage.  In this 323 

experiment, the target sequences are represented in two ways: in-target assemblies (exons 324 

and their associated flanking sequences), and exons only.  For each sample, bam files 325 

were converted to sam file format using the SAMTOOLS view function and the total 326 

number of base pairs aligned within the exon sequences and flanking sequences were 327 

counted by parsing the bam files. To estimate base pairs aligned with transcript exon 328 

sequences only, the sample bam file was converted to sam format using the associated 329 

bed file containing base pair coordinates for exons only, and total aligned base pairs were 330 

calculated in the same manner.  The number of cleaned read base pairs was calculated 331 

from the summing the read lengths contained within cleaned reads files. 332 

 333 
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Exon Coverage Uniformity.  The uniformity of coverage across the length of exons was 334 

examined using both longer (> 200 bp) and shorter (61–100 bp) exons.  Exons matching 335 

these criteria were filtered out from bed files containing exon coordinates independently 336 

for each sample.  For longer exons, five bins of 10 bp increments were created for both 337 

the 5’ and 3’ ends, resulting in the generation of ten additional bed files per sample.  For 338 

shorter exons, three bins of 10 bp increments were created for both the 5’ and 3’ ends, 339 

resulting in the generation of six additional bed files per sample.  Each bed file was used 340 

to calculate the per base pair coverage for a specific end bin using SAMTOOLS.  These per 341 

base pair coverage values were averaged within exons, and all averages of exons for a 342 

particular bin were subsequently combined across 50 randomly chosen samples. The 343 

values across bins were visualized in R to assess the median, upper and lower quartiles, 344 

and range of coverage estimates. 345 

 346 

Effects of Phylogenetic Distance.  We sought to test the relationship between 347 

phylogenetic distances and several evaluation metrics to determine if Sanger sequence 348 

data have predictive power for exon capture success. Phylogenetic distance was 349 

calculated as the average of uncorrected pairwise differences between samples and the 350 

four design species.  These divergence estimates were calculated using the five positive 351 

controls (nuclear loci from Sanger sequencing). As this information would generally be 352 

available to researchers before designing such an experiment, these loci provide an a 353 

priori estimation of divergence across the focal group.  The effects of phylogenetic 354 

distances on capture specificity, sensitivity, and duplication were investigated using 355 

simple linear regressions.  The values for the above metrics were averaged for each 356 
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genus, providing values for a total of 23 genera for comparison.  Average phylogenetic 357 

distances ranged from 6.7–18.3%, representing divergences up to 103 million years old 358 

(Portik & Blackburn, in prep). 359 

 360 

Evaluation of Exon Phylogenetic Informativeness.  The resulting alignments of exon-only 361 

data and flanking region data were evaluated for taxon number, sequence length, 362 

percentage of missing data, and proportion of informative sites. These results were 363 

visualized in R, and the relationship between the number of informative sites and 364 

alignment length was investigated using a simple linear regression. The relationship 365 

between phylogenetic distance and missing data was also investigated using a simple 366 

linear regression.  The percentage of missing data was calculated from the final 367 

concatenated alignment of exon-only loci that passed multiple post-processing filters, 368 

including a minimum length of 90 bp, no more than 80% missing data per sequence in 369 

alignments, and no more than 30% total missing data across an alignment. These filters 370 

were enforced using a custom alignment refinement python script for all alignments. 371 

 372 

Availability of bioinformatics tools.  All custom python scripts for sequence capture 373 

performance evaluation are available on github (https://github.com/dportik/).  These 374 

include tools for automating the calculation of coverage, duplication, sensitivity, 375 

specificity, and coverage uniformity.  Additional scripts are available for evaluating and 376 

refining DNA sequence alignments. 377 

 378 

Results 379 
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Effects of Blocking oligos 380 

Quantitiative PCR reactions were performed for a positive control nuclear locus 381 

(KIAA2013) targeted by the hybridization probes and a negative control nuclear locus 382 

(49065) not targeted by the capture probes. All reactions were standardized for the same 383 

input amount of DNA (4ng). For the positive control, all post-capture curves show an 384 

expected leftward shift relative to the pre-capture, indicating that the concentration of 385 

copies of the KIAA2013 locus has increased significantly in the post-capture library 386 

pools. Of the three blocker types, the greatest change in enrichment is observed with the 387 

post-capture pool using xGen blocking oligos (11.9 cycle shift), rather than the universal 388 

blocking oligos or short blocking oligos (10.3 cycle shifts) (Fig. 1). For the negative 389 

control, all post-capture curves show an expected rightward shift relative to the pre-390 

capture, indicating that the concentration of copies of the 49065 locus has decreased in 391 

the post-capture library pools. However, the universal blocking oligos and short blocking 392 

oligos show only minor differences from the pre-capture library (1.9 and 1.0 cycle shifts 393 

respectively) (Fig. 1). In contrast, the post-capture pool using xGen blocking oligos has 394 

shifted considerably (10.3 cycle shift), indicating that non-target regions have been 395 

significantly depleted from the library pool (Fig. 1).  This is reflected in the post-capture 396 

library quantification, in which higher amounts of DNA were detected in the universal 397 

blocker reaction (23 ng/μL) and short blocker reaction (23.7 ng/μL), compared to the 398 

xGen reaction (14 ng/μL), indicating that more non-targeted sequences were accidentally 399 

captured during the hybridization. 400 

 401 

Sequence Capture Data 402 
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The average number of reads sequenced across the 264 samples is 2,422,484 (range: 403 

415,439–6,899,259 reads), and as we sequenced 100 bp paired-end reads, the average 404 

total base pair yield is 484.4 Mb (range: 83.0–1,379.8 Mb).  In addition to the removal of 405 

low complexity and low quality reads, the raw reads were filtered to remove exact 406 

duplicates, adapters, and bacteria contamination.  After these filtration steps, the average 407 

number of base pairs of cleaned reads was 331.9 Mb (range: 65.3–789.6 Mb); on average 408 

68% of the raw base pairs passed the quality control filters.   409 

 The assemblies were assigned to targeted transcripts, and the resulting in-target 410 

assemblies contained a mix of exon sequences and non-coding flanking sequences (Fig. 411 

2A).  The length of the in-target assemblies were often several thousand base pairs, much 412 

longer than the original targeted transcript sequences (which were maximally 850 bp), 413 

illustrating a significant amount of non-coding flanking sequence data associated with 414 

each exon was captured (Fig. 2A).  By trimming the flanking sequences, the concatenated 415 

exons closely match the original transcript sequence lengths (Fig. 2B).  Across all 416 

targeted loci and samples, the median number of exons per transcript is four, but ranged 417 

from a single exon to eleven exons per transcript (Fig. 3).  The average length of exons 418 

within transcripts recovered is 153 bp, but the data set revealed a wide range in sizes, 419 

from shorter exons (< 100 bp) to longer exons (> 600 bp) that cover the entire transcript 420 

sequence used (Fig. 4). 421 

 422 

Sequencing Depth and Duplication Levels 423 

The sequencing depths of merged contigs showed variation between loci and across 424 

samples, but the most pronounced differences in coverage occurred between the exon and 425 
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flanking regions (Fig. 2A).  The average sequencing depth across all exons for all 426 

samples averaged 142.4X (n = 1,372,603 exons), whereas the flanking regions averaged 427 

45.5X.  This result is consistent with expectations for transcriptome-based exon capture, 428 

as the probe design only considered exon regions.  Despite not specifically targeting these 429 

adjacent non-coding regions, this experiment clearly demonstrates non-coding regions 430 

can be captured and sequenced with sufficiently high coverage.  Because the estimates of 431 

sequencing depth only consider sites that are captured, relating coverage to phylogenetic 432 

distance is not a meaningful metric.  We did consider the effect of pooling size on 433 

coverage, but within a single genus that was the main focus of the experiment and for 434 

which capture results were very similar (genus Hyperolius).  A comparison of pool sizes 435 

(1–2, 4–7) revealed no significant differences in sequencing depth across all loci based on 436 

the student’s t-test (Fig. 5).  Similarly, there do not appear to be to be differences in raw 437 

data yield (in total base pairs) for different pool sizes (Fig. 5), though low sample sizes in 438 

smaller pools preclude rigorous testing. 439 

 The duplication levels among reads are an indicator of the diversity of sequences 440 

captured, with high duplication implying a less diverse post-capture library relative to 441 

post-capture libraries with lower duplication levels.  In general, a higher number of post-442 

capture PCR cycles are expected to produce higher levels of duplication among samples.  443 

In this experiment, all post-capture PCR reactions used the same number of cycles; 444 

therefore, our comparison of duplication levels is an indicator of post-capture sequence 445 

diversity rather than a methodological artifact. Levels of duplication were similar 446 

between the ingroup (average: 17.2%, range: 3.4%–37.9%) and outgroups (average: 447 

16.5%, range: 5.0%–24.8%).  We tested for a relationship between duplication level and 448 
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phylogenetic distance using a simple linear regression, and found the regression was not 449 

significant (F(1, 21) = 0.79, p = 0.38).  Though phylogenetic relatedness may not be a 450 

predictor of duplication levels, there is a clear pattern of differences in duplication levels 451 

across pooling sizes (Fig. 5).  Pools with a single individual or two individuals have 452 

much lower duplication levels (3.9% and 5.1%, respectively) than pools with four or 453 

more individuals (range of averages: 15.7%–19.0%) (Fig. 5).  Small samples sizes 454 

precluded statistical testing for these differences between smaller and larger pools, but 455 

these data indicate pooling size is much more likely to affect duplication levels than other 456 

factors such as phylogenetic distance.  We did not find significant differences in 457 

duplication levels between larger pools, and this strongly suggests pooling seven 458 

individuals did not negatively impact the resulting diversity of sequences captured among 459 

samples.  Additional replicate captures of larger pool sizes can help determine at which 460 

point captured sequence diversity is impacted and establish limitations in pooling sizes 461 

for successful capture. 462 

  463 

Exon Coverage Uniformity 464 

Using 50 random ingroup samples, sequencing depth values were calculated for the edges 465 

of exons in 10 base pair bins, with 5 bins included for longer exons (> 200 bp) and 3 bins 466 

included for shorter exons (61–100 bp).  At the 5’ and 3’ ends of longer exons, the 467 

average coverage is 117.2X and 124.0X, respectively (Fig. 6, Table 1).  These values 468 

increase slightly across bins towards the center, with both the 5’ and 3’ 41–50 bp bins 469 

having approximately 165X coverage (Fig. 6, Table 1).  The coverage values for edge 470 

bins of shorter exons were lower, but in general showed the same trend increasing 471 
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towards the center (Fig. 7, Table 2).  Here, the average coverage of the 5’ and 3’ ends is 472 

74.9X and 80.4X, respectively, with the most central bins (21–30 bp) exhibiting 83.7X 473 

and 86.2X coverage (Fig. 7, Table 2).  Together, these results indicate high uniformity in 474 

sequencing depth across the length of short exons, and demonstrate only a slight decrease 475 

in coverage towards the edges of longer exons. 476 

 477 

Sensitivity, Specificity, and the Effects of Phylogenetic Divergence 478 

We explored capture sensitivity, the percentage of bases of in-target assemblies that are 479 

covered by at least one read, across all samples in our experiment.  In general, sensitivity 480 

varied between genera but was relatively consistent within genera (Fig. 8A).  The average 481 

across all ingroup samples is 80.1% (range 52.1%–91.8%), whereas outgroup samples 482 

averaged 33.8% (range 20.7%–42.2%).  A simple linear regression was calculated to 483 

predict sensitivity (%) based on phylogenetic distance. A significant regression equation 484 

was found (F(1, 21) = 79.58, p < 0.001), with an adjusted R2 of 0.78 (Fig. 9). Sensitivity 485 

is equal to [108.19 + -4.57*(average pairwise divergence)] percent when pairwise 486 

divergence is measured as a percent; sensitivity decreased 4.57% for each percent 487 

increase of pairwise divergence. 488 

Specificity is a metric similar to sensitivity, but it measures the percentage of base 489 

pairs of cleaned reads that can be aligned to target sequences.  We investigated specificity 490 

using the in-target assemblies (exons and flanking regions) and exons only.  Specificity 491 

varied among genera (Fig. 8B), and across all ingroup samples averaged 60.2% (range 492 

32.0%–73.0%), whereas outgroup samples averaged 35.6% (range 15.0%–50.0%).  As 493 

expected, specificity of the exon only data set was lower, and ingroup genera exhibited 494 
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higher specificity (47.3%, range: 26.0%–65.0%) than outgroup genera (27.7%, range: 495 

13.0%–40.0%).  Using specificity results from the in-target assemblies, a simple linear 496 

regression was calculated to predict specificity (%) based on phylogenetic distance. A 497 

significant regression equation was found (F(1, 21) = 44.1, p < 0.001), with an adjusted 498 

R2 of 0.66 (Fig. 9). Specificity is equal to 83.99 + -3.26*(average pairwise divergence) 499 

percent when pairwise divergence is measured as a percent. Specificity decreased 3.26% 500 

for each percent increase of pairwise divergence. 501 

 502 

Sequence Alignments and Informativeness 503 

There were a total of 1,047 exon-only alignments and 287 flanking region alignments that 504 

passed all filtering criteria.  Together, the concatenated alignment of flanking and exon 505 

data totals 631,127 base pairs. 506 

For exon-only alignments, the average number of taxa included is 250, average 507 

per locus length is 536 bp, average level of missing data is 8.9%, and the average 508 

proportion of informative sites is 38.3%.  The concatenated alignment of the exon-only 509 

loci totals 561,180 base pairs.  The average proportion of missing data in the 510 

concatenated alignment for the ingroup samples is 10.7% (range 3%– 35%), and is 55.1% 511 

(range 43%– 74%) for the outgroup samples.  A simple linear regression was calculated 512 

to predict missing data levels in the final exon-only alignments, based on phylogenetic 513 

distance.  A significant regression equation was found (F(1, 21) = 96.78, p < 0.001), with 514 

an adjusted R2 of 0.81 (Fig. 9).  Missing data is equal to [-22.07 + 4.76*(average pairwise 515 

divergence)] percent when pairwise divergence is measured as a percent. Missing data 516 

increased 4.76 percent for each percent increase of pairwise divergence.  A simple linear 517 
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regression was also calculated to predict the number of informative sites in an exon-only 518 

locus based on the length of the locus. A significant regression equation was found (F(1, 519 

1045) = 5666, p < 0.001), with an adjusted R2 of 0.84 (Fig. 10). The number of 520 

informative sites is equal to [-1.89 + 0.38*(alignment length)]. Informative sites 521 

increased 0.38 base pairs for each base pair increase in alignment length (Fig. 10). 522 

For flanking region alignments, the average number of taxa included is 250, the 523 

average length is 243 bp, the average level of missing data is 12.4%, and the average 524 

proportion of informative sites is substantially higher than exon-only alignments at 525 

77.4%.  The concatenated alignment of the flanking-only loci totals 69,947 base pairs.  526 

The average proportion of missing data in the concatenated alignment for the ingroup 527 

samples is 15.4% (range 6%– 40%), and is 50.6% (range 42%– 68%) for the outgroup 528 

samples.  The non-coding flanking loci are generally more difficult to align, especially as 529 

phylogenetic distance increases.  For the purpose of this study, we performed alignments 530 

across all samples, which is likely to have contributed to lower quality alignments and 531 

failure to pass specific missing data filters.  We therefore emphasize if flanking sequence 532 

alignments are performed for the ingroup only, or even subclades of the ingroup, it 533 

should result in more and longer alignments recovered.   534 

 535 

Discussion 536 

We used a custom transcriptome-based exon capture, designed without the use of a 537 

reference genome, to successfully generate a large informative phylogenomic data set 538 

across divergent lineages of frogs.  We accomplished this using transcriptome sequences 539 

directly for probe design, resulting in the additional recovery of a significant amount of 540 
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highly variable non-coding sequence data. We generated sequence alignments for 1,047 541 

of the 1,260 transcriptome-based loci, with an average of 250 (of 264) taxa present per 542 

alignment. The combination of exon and flanking region data resulted in a concatenated 543 

alignment of 631,127 base pairs.  Based on the results of our experiment, we discuss the 544 

overall efficiency of capture, results of using transcript sequences for probe design, 545 

effects of phylogenetic distance, and recommendations for pooling size and blocking 546 

oligos.  547 

 The effects of blocking oligos are non-trivial, and have great potential to affect 548 

the capture efficiency (Fig. 1).  Although the enrichment of target loci is accomplished 549 

using short blockers, universal blockers, and xGen blockers, there are critical differences 550 

in the level of depletion of non-targeted loci among blockers.  The xGen blockers 551 

significantly outperformed the short blockers and universal blockers in the depletion of 552 

non-targets (Fig. 1).  The higher concentration of DNA in post-capture libraries of the 553 

universal and short blockers represents a large carry-over of non-targets, which ultimately 554 

translates to significant reductions in both sensitivity and specificity and increases in PCR 555 

duplication rates.  This is particularly important to consider for organisms with larger 556 

genome sizes, such as amphibians, which are likely to suffer from reductions in 557 

sensitivity and specificity and higher duplication rates based on genome size alone.  The 558 

cost of xGen blockers is significantly higher per reaction, but may ultimately reduce the 559 

amount of sequencing effort required to obtain high quality sequence data.  We therefore 560 

strongly recommend the testing of blocking oligos using a qPCR assay before conducting 561 

the main capture experiment, as the specificity, sensitivity, and duplication levels can be 562 

greatly improved with appropriate blocking oligos.  563 
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 A main question concerning sequence capture is simply how many individuals 564 

can be pooled in a reaction, which has important implications for reducing costs and 565 

increasing the sampling for a given project.  We tested a range of pool sizes (1–7 566 

samples) within the genus Hyperolius (160 samples, 28 captures) to determine the effects 567 

of pooling on raw data yield, sequencing depth, and duplication levels.  We found no 568 

differences in raw data yield or sequencing depth across pools, but our results indicate 569 

duplication levels vary across pooling sizes (Fig. 5).  We demonstrate duplication levels 570 

rose from 4–5% in 1–2 sample pools to an average of 15–19% in the 4–7 sample pools.  571 

These levels were acceptable for obtaining high quality sequence capture data for our 572 

experimental design. We did not detect a significant increase in duplication levels for 573 

pools of seven samples, suggesting the upper limit for sample pooling was not reached, 574 

though this topic requires additional investigation.  Although pooling size does affect 575 

PCR duplication levels, we again emphasize that these effects can be strongly 576 

exacerbated through the use of less efficient blocking oligos. 577 

 Phylogenetic distance has a predictable effect on capture sensitivity, specificity, 578 

and the proportion of missing data in the final sequence alignments.  As expected, more 579 

divergent species experienced drops in sensitivity and specificity, and their proportion of 580 

missing data increased (Fig. 9).  Though these results are intuitive, our findings our 581 

useful in at least two ways.  First, we demonstrate that for the most distant outgroup in 582 

our experiment (family Microhylidae), which shared a common ancestor with the probe 583 

design species 103 million years ago, we recovered 23% of the total exon sequence data 584 

(roughly 146,000 bp).  Our experiment was focused on sequence capture within a single 585 

family, but successful sequence capture occurred for highly divergent outgroup species, 586 
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albeit with a predictable reduction in efficiency.  Second, the regression equations 587 

relating capture efficiency metrics to average pairwise divergence can serve as a starting 588 

point for other researchers in determining the phylogenetic breadth of their capture 589 

experiments.  Our comparisons are made using nuclear sequence data generated prior to 590 

our experiment.  These empirical data, though based on frogs, allow an approximation of 591 

the effects of phylogenetic distance on metrics generally used to characterize capture 592 

efficiency, and can set realistic expectations for the overall success of sequence capture 593 

based on phylogeny.  This approximation requires Sanger sequencing only a small 594 

number of nuclear loci for a subset of the target group, information that should generally 595 

be acquired before beginning a large-scale capture experiment.   596 

Our experimental design used transcriptome sequences of four species from 597 

divergent ingroup clades to design capture probes, and we recovered high quality 598 

sequence data across the ingroup genera.  The use of four sets of sequences for each locus 599 

ultimately reduced the total number of loci that were included in our probe design, and 600 

the trade-off between number of loci and variability in probe design is important to 601 

consider for exon capture design.  Unfortunately we cannot assess whether probe sets 602 

from certain species were more efficient in capturing sequences, and it is unclear how 603 

using a single species would have affected the outcome of this experiment.  Using a 604 

single species for probe design in our case would have allowed for the inclusion of 605 

approximately 5,000 loci, rather than 1,260.  A possibility for reducing the number of 606 

design species is to reconstruct ancestral sequences for deeper nodes of the ingroup, and 607 

use these sequences for probe design.  Though there are many options for probe design, 608 
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our results demonstrate sampling multiple divergent ingroup species is a highly effective 609 

strategy for capture across larger phylogenetic scales. 610 

Our experiment tested the direct use of transcriptome sequences for probe design, 611 

thereby circumventing the use of reference genomes for identifying intron-exon 612 

boundaries to filter out short exons.  This approach was highly successful, and we 613 

recovered short and long exons with a high uniformity in coverage (Figs. 6, 7) as well as 614 

a large quantity of highly variable non-coding flanking regions.  The average size of 615 

individual exons (153 bp) within loci is close to predictions of average exon lengths 616 

across the genome of Xenopus laevis (~200 bp), and we found most of the 850 bp 617 

transcriptome sequences contained four exons (Figs. 3, 4).  We successfully captured 618 

large quantities of short exons (< 100 bp) (Fig. 4), a feature that may be appealing for 619 

researchers targeting short loci.  The probe design spanning intron-exon boundaries did 620 

not reduce coverage towards the ends of exons (Figs. 6, 7), and returned thousands of 621 

base pairs of non-coding flanking sequences per in-target assembly.  The resulting 622 

alignments of non-coding regions show high levels of variation, with an average 623 

proportion of 77% informative sites (compared to 38% of exon-only regions).  These 624 

flanking regions can be incorporated into population genetics or phylogenetic analyses, 625 

similar to UCE and anchored hybrid enrichment approaches.  Our pipeline allows 626 

alignments to be made with the full in-target assemblies, exon regions only, or flanking 627 

regions only, providing flexibility for decisions about sequence data analysis.   628 

Transcriptome-based exon capture is an effective method for producing large sets 629 

of orthologous markers with predictable levels of informativeness in non-model systems.  630 

This method can be applied to population level questions by sequencing transcriptomes 631 
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within a population, or applied to larger phylogenetic scales using the transcriptomes of 632 

divergent species.  As this approach and other types of sequence capture gain popularity, 633 

the reporting of empirical data can enhance the ability of researchers to choose the 634 

appropriate capture approach or aid in the design of custom sequence captures.  We have 635 

outlined our experimental design, including probe design from transcriptome sequences, 636 

as well as reaction-specific decisions about blockers and capture pooling schemes.  For 637 

this type of transcriptome-based exon capture, information about the number of exons in 638 

transcripts, their lengths, and the recovery of flanking sequences should be discussed.  639 

Finally, efforts to relate any of the above measures to phylogenetic distance would 640 

greatly benefit researchers planning a sequence capture experiment for non-model 641 

systems.   642 
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Figure 1. Quantitiative PCR plots for the positive control nuclear locus (KIAA2013) and 760 

the negative control nuclear locus (49065). Assessment of the relative success of the 761 

capture can be made by comparing the position of the curves of the library pool prior to 762 

capture (black) to the three curves produced by library pools after capture using different 763 

blocking oligo strategies (blue, green, red).  The largest cycle shifts in both enrichment 764 

and depletion occur using the xGen blocking oligos (red), with substantially better 765 

performance occurring for the depletion of non-targeted sequences.   766 

 767 

Figure 2.  An example sequencing depth (coverage) plot for (A) an in-target assembly 768 

and (B) exon-only contig of the same locus from one sample.  Exons matching the 769 

transcript sequence used for probe design are colored green and labeled (A–E, matching 770 

in both plots), and non-coding flanking regions are colored orange.  Both 50X and 10X 771 

coverage levels are indicated by dotted lines.  772 

 773 

Figure 3.  A frequency distribution for the number of exons detected in the fully 774 

assembled and merged contigs across all samples. The median number of exons per 775 

transcript is four. 776 

 777 

Figure 4.  A frequency distribution for the length of each exon detected within a fully 778 

assembled and merged contig, across all samples. The average length is 153 bp, and the 779 

median length is 132 bp. 780 

 781 
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Figure 5. Boxplots of pooling sizes and (A) duplication levels, (B) raw data yield, and (C) 782 

sequencing depth. The boxplots depict the median, upper and lower quartiles, and range 783 

for each metric. 784 

 785 

Figure 6. The average binned coverage of the edges of long exons (> 200 base pairs).  786 

Bins are in 10 base pair increments, with five bins on the 5’ and 3’ ends. Estimates are 787 

based on 50 randomly chosen ingroup samples. 788 

 789 

Figure 7. The average binned coverage of the edges of short exons (61–100 base pairs).  790 

Bins are in 10 base pair increments, with three bins on the 5’ and 3’ ends.  Estimates are 791 

based on 50 randomly chosen ingroup samples. 792 

 793 

Figure 8. Barplot of (A) sensitivity and (B) specificity, across all samples.  Labels A–K 794 

refer to ingroup genera denoted by green (A: Acanthixalus, B: Afrixalus, C: Cryptothylax, 795 

D: Heterixalus, E: Hyperolius, F: Kassina, G: Morerella, H: Opisthothylax, I: 796 

Paracassina, J: Phlyctimantis, K: Tachycnemis) and labels L–O refer to outgroups 797 

denoted by orange (L: Arthroleptidae, M: Brevicipitidae, N: Hemisotidae, O: 798 

Microhylidae). Yellow indicates the species used for transcriptome sequencing and probe 799 

design. 800 

 801 

Figure 9.  Plots of linear regressions of (A) missing data from the concatenated exon 802 

alignment, (B) sensitivity, and (C) specificity, using the average pairwise divergence 803 

from probe design species as the independent variable.    804 
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 805 

 806 

Figure 10.  Linear regression of alignment length and the number of informative sites.  807 

Each dot represents a unique exon-only alignment, for a total of 1,047 loci.  A significant 808 

regression equation was found (F(1, 1045) = 5666, p < 0.001), with an adjusted R2 of 809 

0.84. 810 
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