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The recently introduced Kallisto[1] pseudoaligner has radically simplified the quantification of
transcripts in RNA-sequencing experiments. However, as with all computational advances, re-
producibility across experiments requires attention to detail. The elegant approach of Kallisto
reduces dependencies, but we noted differences in quantification between versions of Kallisto, and
both upstream preparation and downstream interpretation benefit from an environment that en-
forces a requirement for equivalent processing when comparing groups of samples. Therefore, we
created the Arkas[3] and TxDbLite[4] R packages to meet these needs and to ease cloud-scale
deployment of the above. TxDbLite extracts structured information directly from source FASTA
files with per-contig metadata, while Arkas enforces versioning of the derived indices and anno-
tations, to ensure tight coupling of inputs and outputs while minimizing external dependencies.
The two packages are combined in Illumina’s BaseSpace cloud computing environment to of-
fer a massively parallel and distributed quantification step for power users, loosely coupled to
biologically informative downstream analyses via gene set analysis (with special focus on Reac-
tome annotations for ENSEMBL transcriptomes). Previous work (e.g. Soneson et al., 2016[34])
has revealed that filtering transcriptomes to exclude lowly-expressed isoforms can improve sta-
tistical power, while more-complete transcriptome assemblies improve sensitivity in detecting
differential transcript usage. Based on earlier work by Bourgon et al., 2010[11], we included
this type of filtering for both gene- and transcript-level analyses within Arkas. For reproducible
and versioned downstream analysis of results, we focused our efforts on ENSEMBL and Reac-
tome[2] integration within the qusage[19] framework, adapted to take advantage of the parallel
and distributed environment in Illumina’s BaseSpace cloud platform. We show that quantifica-
tion and interpretation of repetitive sequence element transcription is eased in both basic and
clinical studies by just-in-time annotation and visualization. The option to retain pseudoBAM
output for structural variant detection and annotation, while not insignificant in its demand for
computation and storage, nonetheless provides a middle ground between de novo transcriptome
assembly and routine quantification, while consuming a fraction of the resources used by popular
fusion detection pipelines and providing options to quantify gene fusions with known breakpoints
without reassembly. Finally, we describe common use cases where investigators are better served
by cloud-based computing platforms such as BaseSpace due to inherent efficiencies of scale and
enlightened common self-interest. Our experiences suggest a common reference point for methods
development, evaluation, and experimental interpretation.
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1 Introduction

The scale and complexity of sequencing data in molecular biology has exploded in the 15 years following
completion of the Human Genome Project[36]. Furthermore, as a dizzying array of *-Seq protocols
have been developed to open new avenues of investigation, a much broader cross-section of biologists,
physicians, and computer scientists have come to work with biological sequence data. The nature of
gene regulation (or, perhaps more appropriately, transcription regulation), along with its relevance
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to development and disease, has undergone massive shifts propelled by novel approaches, such as
the discovery of evolutionarily conserved non-coding RNA by enrichment analysis of DNA[35] and
isoform-dependent switching of protein interactions. Sometimes lost within this excitement, however,
is the reality that biological interpretation these results can be highly dependent upon both their
extraction and annotation. A rapid, memory-efficient approach to estimate abundance of both known
and putative transcripts substantially broadens the scope of experiments feasible for a non-specialized
laboratory and of methodological work deemed worthwhile given the pace of innovations. Recent work
on the Kallisto pseudoaligner, among other k -mer based approaches, has resulted in exactly such an
approach.

In order to leverage this advance for our own needs, which have included the quantification of
repetitive element transcription in clinical trials, the comparison of hundreds of pediatric malignancies
with their adult counterparts, and the analysis of single-cell RNA sequencing benchmarks, we first
created an R package (Arkas) which automates the construction of composite transcriptomes from
multiple sources, along with their digestion into a lightweight analysis environment. Further work
led us to automate the extraction of genomic and functional annotations directly from FASTA contig
comments, eliding sometimes-unreliable dependencies on services such as Biomart. Finally, in a nod
to enlightened self-interest and mutual benefit, we collaborated with Illumina to deploy the resulting
pipeline within their BaseSpace cloud computing platform, largely to avoid internal bureaucratic
inertia and increase uptake of the resulting tools. The underlying packages are freely available with
extensive use-case vignettes on GitHub, are in preparation for Bioconductor submission and review,
and available in beta for review upon request, pending full public BaseSpace deployment.

High-performance computing (HPC) based bioinformatic workflows have three main subfamilies:
in-house computational packages, virtual-machines, and cloud based computational environments.
The in-house approaches are substantially less expensive when raw hardware is in constant use and
dedicated support is available, but internal dependencies can limit reproducibility of computational
experiments. Specifically, superuser access needed to deploy container-based, succinct code encapsu-
lations (often referred to as ”microservices” elsewhere) can run afoul of normal permissions, and the
maintenance of a broadly usable set of libraries across nodes for diverse users can lead to shared object
code linking dynamically to different libraries under different user environments. Virtual machines
(VMs) have similar issues related to maintenance, as a heavyweight machine image is required for
each instance, though the consequences of privelege escalation are decreased.

By contrast, modern cloud-based approaches to distributed and parallel computing are forced
by necessity to offer a lowest-common-denominator platform with high availability to the broadest
possible user base. Platform-as-a-service approaches take this one step further, offering controlled de-
ployment and fault tolerance across potentially unreliable instances provided by third parties (Amazon
Elastic Compute Cloud(EC2), in the case of BaseSpace) and enforcing a standard for encapsulation of
developers’ services (Docker, in the case of BaseSpace). Within this framework, the user or developer
cedes some control of the platform and interface, in exchange for the platform provider handling the
details of workflow distribution and execution. In our recent experience, this has provided the best
compromise of usability and reproducibility when dealing with users of widely varying skill levels, and
the lightweight-container approach exemplified by Docker leads to a more rapid pace of development
and deployment than is possible with VMs. Combined with versioning of deployments, it is feasible
for a user to reconstruct results from an earlier point in time, while simultaneously re-evaluating the
generated data under state-of-the-art implementations.

Several recent high impact publications have used cloud-computing work flows such as CloudBio-
linux, CloudMap, and Mercury over AWS EC2 [27]. CloudBio-linux software is centered around
comparative genomics, phylogenomics, transcriptomics, proteomics, and evolutionary genomics stud-
ies using Perl scripts [27]. Although offered with limited scalability, the CloudMap software allows
scientists to detect genetic variations over a field of virtual machines operating in parallel [27]. For
comparative genomic analysis, the Mercury [28] workflow can be deployed within Amazon EC2 through
instantiated virtual machines but is limited to BWA and produces a variant call file (VCF) without

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 20, 2016. ; https://doi.org/10.1101/031435doi: bioRxiv preprint 

http://dspace.mit.edu/openaccess-disseminate/1721.1/58204
http://www.cell.com/cell/abstract/S0092-8674(16)30043-5
https://pachterlab.github.io/kallisto/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.docker.com/
https://doi.org/10.1101/031435
http://creativecommons.org/licenses/by-nc-nd/4.0/


considerations of pathway analysis or comparative gene set enrichment analyses. The effectiveness for
conducting genomic research is greatly influenced by the choice of computational environment.

The majority of RNA-Seq analysis pipelines consist of read preparation steps, followed by com-
putationally expensive alignment against a reference genome (which itself is not representative of the
generating spliced sequences in the source analyte). Software for calculating transcript abundance
and assembly can surpass 30 hours of computational time [1]. When known or putative transcripts
of defined sequence are the primary interest, Kallisto[1] and colleagues have shown that near-optimal
RNAseq transcript quantification is achievable in minutes minutes on a standard laptop. After veri-
fying these numbers on our own laptops, we became interested in a massively parallel yet easy-to-use
approach that would allow us to perform the same task on arbitrary datasets, and reliably interpret
the output from colleagues doing the same. In collaboration with Illumina, we found that the freely
available BaseSpace platform was already well suited for this purpose, with automated ingestion of
SRA datasets as well as newly produced data from core facilities using recent Illumina sequencers.
The design of our framework emphasizes loose coupling of components and tight coupling of refer-
ence transcriptome annotations; nonetheless, we find that the ease of use and massive parallelization
provided by BaseSpace has made it our default execution environment.

We encapsulated the resulting packages, along with Kallisto itself, in Docker containers that per-
form transcript abundance quantification; a loosely coupled second step of the Arkas work-flow im-
plements rapid set enrichment analysis over Illumina’s BaseSpace Platform.

The BaseSpace Platform utilizes AWS cc2 8x-large instances by default, each with access to eight
64-bit CPU cores and virtual storage of over 3 terabytes. Published applications on BaseSpace can
allocate up to 100 such nodes, distributing analyses such that many samples can be processed simulta-
neously, in parallel. Direct imports of existing experiments from SRA, along with default availability
of experimenters’ own reads, fosters a critical environment for independent replication and reanalysis
of published data.

A second bottleneck in bioinformatic workflows, hinted at above, arises from the frequent transfer
and copying of source data across local networks and/or the internet. With a standardized deployment
platform, it becomes easier to move executable code to the environment of the target data, rather than
transferring massive datasets into the environment where the executable workflows were developed.
For example, an experiment from SRA with reads totaling 141.3GB is reduced to summary quantifi-
cations totaling 1.63GB (nearly two orders of magnitude) and a report of less than 10MB (a further
two orders of magnitude), for a total reduction in size exceeding 4 orders of magnitude with little or
no loss of user-visible information. Moreover, the untouched original data is never discarded unless
the user explicitly demands it, something which can rarely be said of local compute environments,
and the location of original sources is always traceable, again in contrast to local HPC.

2 Materials

2.1 Kallisto

Kallisto [1] quantifies transcript abundance from input RNA-Seq reads by using a process known as
pseudoalignment which identifies the read-transcript compatibility matrix. The compatibility matrix
is formed by counting the number of reads with the matching alignment; the equivalence class matrix
has a much smaller dimension compared to matrices formed by transcripts and read coverage. Com-
putational speed is gained by performing the Expectation Maximization [31] (EM) algorithm over a
smaller matrix.

2.2 Arkas

Arkas[3] is a BioConductor package that automates the index caching, annotation, and quantification
associated with running the Kallisto pseudoaligner integrated within the BioConductor environment.
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Arkas can process raw reads into transcript- and pathway-level results within BioConductor or in
Illuminas BaseSpace cloud platform.

Arkas[3] reduces the computational steps required to quantify and annotate large numbers of
samples against large catalogs of transcriptomes. Arkas calls Kallisto[1] for on-the-fly transcriptome
indexing and quantification recursively for numerous sample directories. For RNA-Seq projects with
many sequenced samples, Arkas encapsulates expensive transcript quantification preparatory rou-
tines, while uniformly preparing Kallisto [1] execution commands within a versionized environment
encouraging reproducible protocols.

Arkas [3] integrates quality control analysis for experiments that include Ambion spike-in controls
defined from the External RNA Control Consortium [30][29]. Arkas includes erccdashboard [15], a
BioConductor package for analyzing data sequenced with ERCC (Ambion) spike-ins. We designed
a function titled ‘erccAnalysis‘ which produces Receiver Operator Characteristic (ROC) Curves by
preparing differential expression testing results for spike-in analysis.

Arkas imports the data structure from SummarizedExperiment[16] and creates a sub-class titled
KallistoExperiment which preserves the S4 structure and is convenient for handling assays, phenotypic
and genomic data. KallistoExperiment includes GenomicRanges[32], preserving the ability to han-
dle genomic annotations and alignments, supporting efficient methods for analyzing high-throughput
sequencing data. The KallistoExperiment sub-class serves as a general purpose container for stor-
ing feature genomic intervals and pseudoalignment quantification results against a reference genome
called by Kallisto [1]. By default KallistoExperiment couples assay data such as the estimated counts,
effective length, estimated median absolute deviation, and transcript per million count where each
assay data is generated by a Kallisto [1] run; the stored feature data is a GRanges object from Ge-
nomicRanges[32], storing transcript length, GC content, and genomic intervals. Arkas[3] is a portable
work-flow that includes a routine ‘SEtoKE‘ which casts a SummarizedExperiment [16] object into a
KallistoExperiment object handy for general pathway analysis, transcript- and/or gene-wise analysis.

Given a KallistoExperiment, downstream enrichment analysis of bundle-aggregated transcript
abundance estimates are performed using QuSage [19] imported from BioConductor. For gene-set
enrichment analysis, Qusage [19] calculates the variance inflation factor which corrects the inter-gene
correlation that results in high Type 1 errors using pooled, or non-pooled variances between sample
groups. We’ve customized the Qusage [19] algorithm accelerating its computational speed improving
its performance on average by 1.34X (Figure 5)(Table 6) 5. We improved QuSage’s [19] performance
using RcppArmadillo[20] modifying only the calculations for the statistics defined for Welch’s test for
unequal variances between sample groups; the shrinkage of the pooled variances is performed using
the CAMERA algorithm within limma[17].

Arkas’[3] accelerated enrichment analysis is useful for analyzing large gene-sets from Molecular
Signatures DataBase MSigDB [21] Reactome [9], and/or other signature gene sets simultaneously.

Pathway enrichment analysis can be performed from the BaseSpace cloud system downstream
from parallel differential expression analysis. BaseSpace Cloud Platform offers Advaita among one of
the many published computational software publicly available. Advaita offers an extensive pathway
analysis software available within the BaseSpace environment, so we’ve customized Arkas’ routine
‘geneWiseAnalysis.R’ to output differential expression formatted for downstream importing into Ad-
vaita.

2.3 TxDbLite

The choice of catalog, the type of quantification performed, and the methods used to assess differences
can profoundly influence the results of sequencing analysis. Ensembl reference genomes are provided
to GENCODE as a merged database from Havana’s manually curated annotations with Ensembl’s
automatic curated coordinates. AceView, UCSC, RefSeq, and GENCODE have approximately twenty
thousand protein coding genes, however AceView and GENCODE have a greater number of protein
coding transcripts in their databases. RefSeq and UCSC references have less than 60,000 protein cod-
ing transcripts, whereas GENCODE has 140,066 protein coding loci. AceView has 160,000 protein
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coding transcripts, but this database is not manually curated [6]. The database selected for pro-
tein coding transcripts can influence the amount of annotation information returned when querying
gene/transcript level databases.

Although previously overlooked, non-coding RNAs have been shown to share features and alternate
splice variants with mRNA revealing that non-coding RNAs play a central role in metastasis, cell
growth and cell invasion [24]. Non-coding transcripts have been shown to be functional and are
associated with cancer prognosis; proving the importance of studying ncRNA transcripts.

Each non-coding database is curated at different frequencies with varying amounts of non-coding
RNA enteries that influences that mapping rate. GENCODE Non-coding loci annotations contain
9640 loci, UCSC with 6056 and 4888 in RefSeq [6]; GENCODE annotations have the greatest number
of lncRNA, protein and non-coding transcripts, and highest average transcripts per gene, with 91043
transcripts unique to GENCODE absent for UCSC and RefSeq databases [6]. Ensembl and Ace-
View annotate more genes in comparison to RefSeq and UCSC, and return higher gene and isoform
expression labeling improving differential expression analyses [7]. Ensembl achieves conspicuously
higher mapping rates than RefSeq, and has been shown to annotate larger portions of specific genes
and transcripts that RefSeq leaves unannotated [7]. Ensembl/GENCODE annotations are manually
curated and updated more frequently than AceView. Further Ensembl has been shown to detect
differentially expressed genes that is approximately equivalent to AceView [7].

Although Repetitive elements comprise over two-thirds of the human genome, repeat elements
were considered non-functional and were not studied closely. Alu (Arthrobacter luteus) elements are
a subfamily of repetitive elements that are roughly 300 base pairs long making up 11 % of the human
genome [25]. Alu elements are the most abundant retro-transposable element, shown to increase ge-
nomic diversity impacting the evolution of primates and contributing to human genetic diseases [25].
Alu elements have been shown to influence genomic diversity through genetic instability. Regarding
breast and ovarian tumorigenesis, the infamous BRCA1 and BRCA2 genes associated with surviv-
ability and prognosis contain genomic regions with very high densities of repetitive DNA elements
[26].

Our understanding of biology is deepened when investigating expression of transcripts that include
a merged transcriptome of coding, non-coding, and repetitive elements from data bases frequently
curated. A complete transcriptome achieves higher mapping rates over larger catalogs of transcript
families. We present TxDbLite[4] a fast genomic ranges annotation package that is included within
the Arkas workflow that annotates non-coding, and repetitive elements on-the-fly downstream of
transcript quantification steps.

TxDbLite [4] is a minimalist annotation package generator, designed to extract annotations from
FASTA files. The underlying assumption is that users want to quantify transcript-level RNA ex-
pression, may or may not have a GTF file for each transcriptome, and would like to extract as
much information as possible about the transcripts from what they do have. This in turn allows
the Arkas[3] package to automatically determine what transcriptomes a dataset came from, whether
those are already known to the package, and how to generate certain types of annotation for specific
transcriptomes from Ensembl, RepBase, and ERCC (spike-in controls from Ambion).

3 Methods

3.1 Arkas

Illumina sequencers generate demultiplexed FASTQ files; Arkas [3] programmatically orders file in-
puts as required by Kallisto into sets of demultiplexed reads. The routine ’runKallisto’[3] pairs the
corresponding demultiplexed reads, builds and caches an index consisting of External RNA Control
Consortium (ERCC), non-coding RNA, and coding RNA, & RepBase repeatome transcripts. Quan-
tification is issued against the transcriptome per-sample abundance, and individual quantified samples
are merged into a single KallistoExperiment from the ’mergeKallisto’[3] routine. The merged Kallis-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 20, 2016. ; https://doi.org/10.1101/031435doi: bioRxiv preprint 

https://github.com/RamsinghLab/TxDbLite
https://github.com/RamsinghLab/arkas
https://github.com/RamsinghLab/arkas/blob/master/R/runKallisto.R
https://github.com/RamsinghLab/arkas/blob/master/R/mergeKallisto.R
https://doi.org/10.1101/031435
http://creativecommons.org/licenses/by-nc-nd/4.0/


toExperiment identifies genes from ‘collapseBundles‘[3] method which collapses the merged bundles of
transcripts by the respective gene ID contained in the FASTA reference, and discards any transcript
that had less than one count across all samples. The total count for a successfully collapsed transcript
bundle is aggregated from individual transcripts within bundles that passed the filtering criteria. The
collapsed bundles are annotated using routines ‘annotateFeatures’[3].

Standard approaches to modeling transcript-level differences in abundance rely upon having sub-
stantial numbers of replicates per condition. One of the novel features of Kallisto [1], implemented by
Harold Pimentel (reference), is fast bootstrap sampling at the transcript level within the expectation-
maximization algorithm. Arkas implements hooks to quantify the impact of this uncertainty in repeat
elements and spike-in controls, where compositional analysis tools in the R environment [10] are
pressed into service. Computational analysis with additive log-contrast formulations has long been
standard in geology and other fields. We are exploring its use as a within-bundle method to quantify
the most prominent isoform-centric impacts in an expression analysis.

After obtaining bundled transcript aggregated counts labeled by the any arbitrary FASTA refer-
ence, a Gene-wise analysis was performed. The gene level analysis is invoked from ‘geneWiseAnaly-
sis’[3] which imports limma[17] ) and edgeR [18] to normalize library sizes fitting an arbitrary marginal
contrast, then propagates the resulting signed log10(p) values through clustered and un-clustered
pathway enrichment analyses.

As previously, if the user has provided a grouping factor or design matrix, marginal significance for
individual pathways and overall perturbation is assessed. Arkas discards transcripts and/or bundles
with few reads (default 1) to improve statistical power [11].

3.2 BaseSpace

Arkas is currently written as a virtualized operating system, which can run on the BaseSpace platform
generating the Kallisto pseudoaligned files. Arkas-BaseSpace can import SRA files and quantify
transcript abundance.

3.3 TxDbLite

Gene annotation is performed from user-selected bundled transcriptomes (ERCC, Ensembl, and/or
RepBase) simultaneously merging annotated samples into one R object: KallistoExperiment. We
currently support reference databases for Homo sapiens and Mouse (NCBI). Routines such as ’anno-
tateBundles’ annotate transcriptomes from databases for example External RNA Control Consortium
(ERCC), non-coding RNA, coding RNA, & RepBase repeatomes.

The design structure of Arkas versionizes the Kallisto [1] reference index to enforce that the Kallisto
software versions are identical amidst merged KallistoExperiment data containers prior downstream
analysis. Enforcing reference versions and Kallisto [1] versions prevents errors when comparing ex-
periments. When the KallistoExperiment is generated, the Kallisto [1] version is stored within a data
slot and can be accessed using the command ‘kallistoVersion(KallistoExperiment)’. Before kallisto
quantified data can be merged, Arkas first checks the Kallisto [1] index name and version from the
run info.json file and enforces matching version.

3.4 Quality Control Using ERCC-SpikeIns (Ambion)

Arkas workflow integrates the BioConductor package ‘erccdashboard’ [15] which tests for quality,
and false positive rates. If the library preparation includes ERCC-Spike Ins, Arkas will generate
useful receiver operator characteristic plots, average ERCC Spike Amount volume, comparison plots
of ERCC volume Amount and normalized ERCC counts. Arkas method ‘erccAnalysis’ also includes
Normalized Spike In Amount against Percent Differences, and most significantly ‘erccAnalysis’ plots
FPR vs. TPR (Figures 2, 3, 4) 2, 3 4
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Standard Deviation of percent differences between v.0.42.3
Kallisto v.0.42.3 Estimated Counts Effective Length Estimated MAD
Run1 0 0 0
Run2 0 0 0
Run3 0 0 0
Run4 0 0 0
Run5 0 0 0
Run6 0 0 0
Run7 0 0 0
Run8 0 0 0
Run9 0 0 0
Run10 0 0 0

Table 1: Variation of v.0.42.3

Standard Deviation of percent differences between v.0.42.1 and v.0.42.3
Kallisto v.0.42.3
and v.0.42.1

Estimated Counts Effective Length Estimated MAD TPM

Run1 419.7398 23.49247 74.54197 423.5493

Table 2: Standard Deviation of Percent Error 0.42.1 and 0.42.3

4 Results

4.1 Data Variance

Arkas enforces matching Kallisto versions in order run and merge Kallisto quantified data [1]. In
order to show the importance of enforcing the same Kallisto version, we’ve repeatedly ran Kallisto
on the same 6 samples, quantifying transcripts against two different Kallisto versions and measured
the percent differences and standard deviation between these runs [1]. We ran Kallisto quantifica-
tion once with Kallisto version 0.42.1, and 10 times with version 0.42.3 merging each run into a
KallistoExperiment and storing the 11 runs into a list of Kallisto experiments [1].

We then analyzed the percent difference for each gene across all samples and calculated the stan-
dard deviation of version 0.42.3 of the 10 Kallisto runs generated by Arkas [1]. We randomly selected
a KallistoExperiment v.0.42.3 from our KallistoExperiment list, and calculated the percent difference
between each of the other 9 KallistoExperiments of the same version across all samples. The table 1
(Table 1) shows the standard deviation of the percent differences of the raw values such as estimated
counts, effective length, and estimated median absolute deviation. Kallisto data quantified against the
reference generated by the same kallisto version is 0 within the same version 0.42.3 for every transcript
across all samples.

However, we compared the merged kallisto data of estimate raw abundance counts, effective length,
estimated median absolute deviation, and transcript per million values between version 0.42.1 and a
randomly selected KallistoExperiment data container generated by kallisto version 0.42.3. Table
2 (Table 2) shows that there exists large standard deviations of the percent differences calculated
between each gene expression across all samples. This shows the importance of enforcing uniform
versions.

We plotted the errors between Kallisto versions, and fit each of the calculated percent differences
to a normally distributed data set generated by the mean and standard deviation of the percent
differences of each assay data [1]. The QQ plots show that the errors are some-what normal (Figure
1); thus we confidently create default settings which prevent the public from analyzing or sharing data
from different versions.
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Figure 1: Quantile Plots of Percent Difference between v.0.42.3 and v.0.42.1
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System Runtime for creating KallistoExperiment (secs)

user system elapsed
23.551 1.032 19.107

Table 3: Arkas Run Time KallistoExperiment

System Runtime for full Annotation of a merged KallistoExperiment (secs)

user system elapsed
2.336 0.064 2.397

Table 4: Automated Annotation Run Time

4.2 Annotation of Coding, non-Coding, and Repeat Elements

The annotations were performed with a run time of 2.336 seconds (Table 4) on a merged Kallisto [1]
sample directory creating a KallistoExperiment class with feature data containing a GenomicRanges
[32] object with 213782 ranges and 9 metadata columns. After the sample directories container raw
fastq files were quantified using Arkas, the Arkas routine ‘mergeKallisto’ was performed against 6
quantified samples. The system runtime for creating a merged KallistoExperiment class for 6 samples
was 23.551 seconds (Table 3).

4.3 ERCC-Analysis

The results for ERCC analysis includes 5 plots generated by Arkas’ method ‘erccAnalysis’, and the
plots are saved calling ‘saveArkasPlots’. The Ercc plots figure 2, 3 4 titled ERCC Counts, Ercc
Differences, and TPR vs FPR and Dispersion plots (Figures 2,3,4).

4.4 QuSage Acceleration Analysis

For testing a competitive revision of QuSage [19], we used the dataset from a study by Huang Y et al.
(GEOID: GSE30550) which examines the expression of 17 patients before and 77 hours after exposure
to the in uenza virus. This expression set was selected because it was described in the QuSage vignette
[19]; so we selected the matching enrichment gene set and expression set used in QuSage BioConductor
vignette [19], and developed accelerated computational performance while ensuring accuracy.

The calculations for Welch’s Approximation, such as standard deviation and degrees of freedom,
where performed by Armadillo C++ libraries seamlessly integrated into the R environment using
RcppArmadillo [20]. The gained computational speed was achieved from altering the following QuSage
functions ‘calcVIF.R’, ‘makeComparisons.R’, and ‘calculateIndividualExpressions.R’ [19]. We ensured
that each of the C++ scripts had at most machine error precision between QuSage [19] defaults and
the altered RcppArmadillo [20] libraries.

5 Discussion

Many research publications include a written methodology section with varying degrees of detail and
an included supplemental section; this is done as a symbol for attempting validation. Reproducible
research is defined as a link between the global research community, defined as the set of all mem-
bers and associated writings therein, to unique members of the global data environment, the set of
all archived, published, clinical, sequencing and other experimental data. The aim for practicing
transparent research methodologies is to clearly define associations with every research experiment
minimizing opaqueness between the analytical findings, clinical studies, and utilized methods. As
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Number of annotated genes expressed in Annotated KallistoExperiment

Anntotated Gene Total Num
IG C gene 52
IG D gene 64
IG J gene 24
IG LV gene 0
IG V gene 250
TR C gene 32
TR J gene 93
TR V gene 162
TR D gene 5
IG C pseudogene 11
IG J pseudogene 6
IG V pseudogene 283
TR V pseudogene 43
TR J pseudogene 4
Mt rRNAv 2
Mt tRNA 22
miRNA 4554
misc RNA 0
rRNA 565
snRNA 2036
snoRNA 1019
ribozyme 8
sRNA 20
scaRNA 51
Mt tRNA pseudogene 0
tRNA pseudogene 0
snoRNA pseudogene 0
snRNA pseudogene 0
scRNA pseudogene 0
rRNA pseudogene 0
misc RNA pseudogene 0
miRNA pseudogene 0
TEC 0
nonsense mediate decay 0
protein coding 156188
processed transcript 3361
non coding 0
ambiguous orf 0
sense intronic 1001
sense overlapping 337
antisense 10447
pseudogene 18502
retrotransposed 0
SINE 72
other repeat 108
LINE 136
LTR element 531
DNA element 269

Table 5: Summary of Genes Annotated from an Experiment
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defaultSage <− qusage(eset, labels, contrast, geneSets, var.equal = FALSE)

mySage <− qusageArm(eset, labels, contrast, geneSets, var.equal = FALSE)

Time [milliseconds]

(a) qusage in Armadillo

Figure 5: computational microbenchmark

QuSage microbenchmark in milliseconds
name min lq mean median uq max neval
defaultQuSage 165.867 173.216 203.527 214.319 220.555 335.380 1000
armaQuSage 119.325 128.087 151.597 136.478 174.955 275.659 1000

Table 6: Qusage and Armadillo Benchmarks
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for clinical studies, re-generating an experimental environment has a very low success rate [33] where
non-validated preclinical experiments spawned developments of best practices for critical experiments.
Re-creating a clinical study has many challenges including an experimental design that has a broad
focus applicability, the difficult nature of a disease, complexity of cell-line models between mouse and
human that creates an inability to capture human tumor environment, and limited power through
small enrollments during the patient selection process [33]. Confirming preclinical data is difficult,
however the class of re-validated experiments each contain carefully selected reagents, diligently tested
controls for various levels of an experiment, and, most significantly, a complete description of the en-
tire data set. Original data sets are frequently not reported in the final paper and usually removed
during the revision process. Experimental validation is dependent on the skillful performance of an
experiment, and an earnest distribution of the analytic methodology which should contain most, if
not all, raw and resultant data sets.

With recent developments for virtualized operating systems, developing best practices for bioinfor-
matic confirmations of experimental methodologies is much more straightforward in contrast to dupli-
cating clinical trials’ experimental data for drug-development. Data validations can be improved if the
local developmental and data sets are distributed. Recent advancements of technology, such as Docker
allow for local software environments to be preserved using a virtual operating system. Docker allows
users to build layers of read/write access files creating a portable operating system which controls
exhaustively software versions, data, and systematically preserves one’s complete software environ-
ment. Conserving a researcher’s developmental environment advances analytical reproducibility if the
workflow is publicly distributed. We suggest a global distributive practice for scholarly publications
that regularly includes the virtualized operating system containing all raw analytical data, derived
results, and computational software. Currently Docker, compiled sfotware, usually through CMake,
and virtual machines are being utilized showing a trend moving toward a global distributive practice
linking written methodologies, and supplemental data, to the utilized computational environment.

Comparing Docker as a distributive practice to virtual machines seems roughly equivalent. Dis-
tributed virtual machines are easy to download and the environment allows for re-generating resultant
calculations. However, this is limited if the research community advances the basic requirements for
written methodologies and begins to adopt a large scale virtualized distribution converging to an
archive of method environments which would make hosting complete virtual machines impractical
or impossible. Whereas archiving Docker containers merely requires a written file as a few bytes in
size. If an archive were constructed as a Methods-Analytical-Omnibus, where each research article
would link to a distributed methods enviroment, an archive of virtual machines for the entire research
community is impossible. However, an archive of Dockerfiles, each containing a few bytes, is quite
realistic.

Novel bioinformatic software is often distributed as cross-platform flexible build process indepen-
dent of compiler which reaches Apple, Windows and Linux users. The scope of novel analytical code
is not to manage, nor preserve, computational environments but to have environment independent
source code as transportable executables. Docker however does manage operating systems, and the
scope for research best practices does include gathering sets of source executables into a single collec-
tion, of minimum space, and maximum flexibility that virtual machines can not compete; Docker can
provide the ability for the research community to simultaneously advance publication requirements
and develop the future computational frameworks in cloud.

Another gained advantage for using Docker as the machine manifesting the practice of reproducible
research methods is due to the trend of well-branded organizations such as Illumina’s BaseSpace
platform, Google Genomics, or SevenBridges, which all offer bioinformatic computational software
structures using Docker as the principle framework. Cloud computational environments offer many
advantages over local high-performance in-house computer clusters which systematically structure
reproducible methodologies and democratizes medical science. Cloud computational ecosystems pre-
serve an entire developmental environment using the Docker infrastructure improving bioinformatic
validation. Containerized cloud applications are instances of the global distributive effort and are
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favorable compared to local in-house computational pipelines because they offer rapid access to nu-
merous public workflows, easy interfacing to archived read databases, and accelerate the upholding
process of raw data. The Google Genomics Cloud has begun to make first steps with integrat-
ing cloud infrastructure with the Broad Institute, whereas Illumina’s BaseSpace platform has been
hosting novel computational applications since its launch. Google Genomics recently announced a
collaboration with the Broad’s software, Genome Analysis Tool Kit (GATK) and now hosts GATK
(https://cloud.google.com/genomics/gatk) containerized using Docker. The Docker infrastructure is
also utilized by Seven Bridges and Illumina’s BaseSpace Platform and each application is containerized
by Docker. For researchers uninterested in designing an exhaustive cloud application, methodology
writings can instead publicize containerized workflows with much less effort by providing the Dock-
erfile which containerizes the corresponding methodology. Scholarly publications that choose only a
written method section passively make validation gestures, which is arguably inadequate in compar-
ison to the rising trend or well-branded organizations. We envision a future where published works
will share conserved analytic environments, instantiated cloud software accessed by web-distributed
methodologies, and/or large databases organizing multitudes of Dockerfiles, with accession numbers,
thus strengthening links between raw sequencing data, analytical results, and utilized software.

Cloud computational software does not only wish to crystallize research methods into a pristine
pool of transparent methodologies, the other objective is to match the rate of production of high qual-
ity analytical results to the rate of production of public data, which reaches hundreds of Petabytes
annually. Dr. Atul Butte also observed that with endless public data, the traditional method for
practicing science has inverted; no longer does a scientist formulate a question and then experimen-
tally measure observations which test the hypothesis. In the modern area, empirical observations are
being made an an unbounded rate, the challenge now is formulating the proper question. Given a
near-infinite amount of observations, what is the phenomena that is being revealed? Cloud compu-
tational software can accelerate the production of hypotheses by increasing the flexibility of scientific
exploration from its efficiency gained by the removal of file transferring and formatting bottle-necks.

Many bioinformaticians have noted a rising trend in biotechnology predicting that open data, and
open cloud centers, will democratize research efforts into a more inclusive practice. With the presence
of cloud interfacing applications such as Illumina’s BaseSpace Command Line Interface, DNA-Nexus,
SevenBridges, and Google Genomics, becoming more popular, cloud environments pioneer the effort
for achieving standardized bioinformatic protocols and democratizing research efforts.

Democraticization of big-data efforts has some possible negative consequences. Accessing, net-
working, and integrating software applications for distributing data as a public effort requires mas-
sive amounts of specialized technicians to maintain and develop cloud centers that many research
institutions are migrating toward. Currently, it is fairly common for research centers to employ high-
performance computer clusters which store laboratory software and data locally; cloud computing
clusters are beginning to offer clear advantages compared with local ”closed” computer clusters. Col-
laborations are becoming a more common practice for large research efforts, and sequencing databases
have been distributing data globally, making cloud storage more efficient. This implies that services
from cloud centers will most likely be offered by a very few elite organizations because the large
scale of cloud services will prevent incentives for smaller companies and Moore’s Law will shorten
profits of newer technologies. Chris Anderson’s text ”The Long Tail” proves that modern economic
growth is controlled not by supply, but by the consumer demand as a function of the offerings from
“gateway portals” which control accessibility for consumption, moderating and directing consumers
toward alternative selections [37]. With regard to recent changes relating to media consumption and
e-commerce, democratization allows independent alternative selections more exposure equalizing prof-
its for lower ranked selections ”at the tail”. However, it may be possible that the abundant amount of
data distributed over storage archives, which stimulates an economically abundant environment, could
shift into a fiercely controlled economic environment of scarcity. For bioinformatics, it is very likely
that few elite organizations will provide services to cloud computing environments acting as a gateway
which directs the global research community toward a narrow set of well-established, standardized,
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computational applications; thus if a ”gold-standard” is reached for computational applications the
range of alternative selections could remain non-existent which could diminish the future of bioinfor-
maticians directing them to small garages instead of the technocratic places such as the Silicon Valley
motivated not be from a spirit of entrepreneurialism but from a lack of funding. If this holds true, then
this implies that the field of applied biostatistics could become completely automated which in turn
would reduce the need for analysts polarizing applied research into two pure domains: pure biology
and pure mathematics. For instance, limma based differential expression analysis is fully automated
over the Gene-Expression-Omnibus’ website where all archived reads can be analyzed using limma
and GEO2R software and can be piped into Advaita’s fully automated pathway analysis guide. Au-
tomative downstream analyses is not without its drawbacks; most computational software is highly
specialized for niche groups with a mathematical framework constructed by specialized assumptions,
this would enforce a need for the existence of diverse array of computational developments, and thus
a large community of developers. Although the automation of analytical results seems unavoidable,
the benefits seem to outweigh the negative consequences.

6 Conclusion

Arkas integrates the Kallisto [1] pseudoalingment algorithm into the BioConductor ecosystem that
can implement large scale parallel ultra-fast transcript abundance quantification over the BaseSpace
Platform. We reduce a computational bottleneck freeing inefficiencies from utilizing ultra-fast tran-
script abundance calculations while simultaneously connecting an accelerated quantification software
to the Sequencing Read Archive. Thus we remove a second bottleneck occurred by reducing the ne-
cessity of database downloading; instead we encourage users to download aggregated analysis results.
We also expand the range of common sequencing protocols to include an improved gene-set enrich-
ment algorithm, Qusage [19] and allow for exporting into an exhaustive pathway analysis platform,
Advaita, over the AWS field in parallel. We encapsulate building annotations libraries for arbitrary
fasta files using custom software TxDbLite [4] which may annotate coding, non-coding RNA, with
a self generated repeatome that includes genomic repetitive elements such as ALUs , SINEs and/or
retro-transposons.
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