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ABSTRACT 

The observation that variants regulating gene expression (expression quantitative trait loci, 
eQTL) are at a high frequency among SNPs associated with complex traits has made the 
genome-wide characterization of gene expression an important tool in genetic mapping studies 
of such traits. As part of a study to identify genetic loci contributing to bipolar disorder and a 
wide range of BP-related quantitative traits in members of 26 pedigrees from Costa Rica and 
Colombia, we measured gene expression in lymphoblastoid cell lines derived from 786 pedigree 
members. The study design enabled us to comprehensively reconstruct the genetic regulatory 
network in these families, provide estimates of heritability, identify eQTL, evaluate missing 
heritability for the eQTL, and quantify the number of different alleles contributing to any given 
locus.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2015. ; https://doi.org/10.1101/031427doi: bioRxiv preprint 

https://doi.org/10.1101/031427
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 2	

INTRODUCTION 

Dozens of investigations have now shown that the identification of local eQTL may play a 

crucial role in delineating the causal variant(s) contributing to genetic associations observed for 

complex disorders or quantitative traits. While it may be particularly informative to evaluate, 

for a given trait, eQTL specific to tissues implicated in the manifestation of that trait, this 

strategy may be infeasible for human brain related traits, such as psychiatric disorders and their 

endophenotypes. In this study we report the results of gene expression in lymphoblastoid cell 

lines (LCL) for 786 genotyped members of Costa Rican and Colombian pedigrees investigated 

for severe bipolar disorder (BP1) and quantitative phenotypes from the domains of 

temperament, neurocognition, neuroanatomy, sleep, and circadian activity (Fears et al. 2014; 

Pagani et al., in press). We selected LCL for ease of study and on the basis of the increasing 

evidence that a substantial proportion of local genetic regulation is conserved across tissues 

(Ding et al. 2010; Nica et al. 2011; Flutre et al. 2013). Studying LCLs has enabled at least a partial 

reconstruction of the specific regulatory network of these families, allowing us to identify those 

components that might show differences from the general population. We study the genetic 

regulation of expression in these pedigrees at a multiscale level: we estimate heritability, 

evaluate the relative importance of local vs. distal genomic variation, identify variants with 

regulatory effects, and analyze the role of multiple associated SNPs in the same region. By 

capitalizing on known pedigree structure, as well as extensive genotyping, we can compare 

different methodologies for heritability estimation. The most interesting element of regulatory 

networks for our purpose is the localization of SNPs with regulatory effects (eSNPs): these 

variants are candidates for association to the BP1 endophenotypes measured in our sample. To 

control the rate of false discoveries of eSNPs, we adopt a novel hierarchical testing procedure 

that leads to the analysis of expression quantitative trait loci (eQTL) data in a stage-wise manner 

with increasing levels of detail. 

METHODS 

Sample collection 
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The study subjects are members of 26 Costa Rican and Colombian pedigrees ascertained from 

local hospitals and clinics based on multiple individuals affected with BP1.  Descriptions of 

pedigrees and ascertainment procedures are provided in Fears et al. (2014).  Written informed 

consent was obtained from each participant, and institutional review boards at participating 

sites approved all study procedures. 

RNA Extraction and Measurement of Gene Expression 

Lymphoblastoid cell lines (LCLs) were established at two sites, and RNA was extracted from 

these cell lines and its expression quantified using Illumina Human HT-12 v4.0 Expression 

BeadChips. Expression values were background corrected, quantile normalized, log2 

transformed, and corrected for major known batch effects. The outcome of these procedures is 

what we refer to as ‘probe expression’ for all subsequent analyses. After quality control filters, 

the 34,030 probes included in the final set were uniquely aligned to hg19, contained no common 

SNPs (as defined in dbSNP 137 or 138), queried 24,385 unique genes, and their expression was 

detected in at least one individual.  For a detailed description of the processing steps used at 

each site and the RNA quantification, normalization, and quality control procedures, see the 

supplementary note. 

DNA Extraction, Genotyping, and Subject Inclusion Criteria 

DNA was extracted from blood or LCLs using standard protocols. Illumina Omni 2.5 chips 

were used for genotyping, in three batches. A subset of samples was repeated in each batch to 

enable concordance checks. A total of 2,026,257 SNPs were polymorphic and passed all QC 

procedures, including the evaluation of call rate, testing for Hardy Weinberg equilibrium, and 

Mendelian error. A total of 1,024,051 autosomal SNPs with MAF of at least 10% were selected 

for use in the subsequent association analysis. After excluding married-ins with no descendants 

in the study and cases of possible contamination, the analyzed sample contains 786 individuals 

with both genotype and gene expression data. (See supplementary note for details.) 

Adjustment for factors affecting global gene expression 
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In order to adjust for both known and unknown factors affecting global gene expression, all 

association and heritability analyses include age, sex and batch as covariates, in addition to a set 

of PEER factors to adjust for latent determinants of global gene expression (Stegle et al. 2012). 

We chose to include 20 PEER factors on the basis of the proportion of global gene expression 

explained, and found that these PEER factors were strongly correlated with batch, but not with 

family groupings, suggesting that they are in fact correcting for technical artifacts. 

Relationship between Gene Expression Levels and BP1 

We focus here on two categories of related individuals: those with a clinical diagnosis of BP1 vs. 

those with no history of BP1. We would like to note that the subjects with no history of BP1 are 

not necessarily healthy controls; they are included in the sample because they are related to a 

BP1 subject and may have a range of other non-BP1 diagnoses. To identify genes with 

differential expression in the BP1 vs. non-BP1 individuals accounting for the correlation 

induced by relatedness, we used a variance components approach, as implemented in Mendel 

(Lange et al. 2013). Specifically, we computed p-values for the association of BP1 to gene 

expression by fitting a variance components model with additive genetic and environmental 

components and BP1 status as predictor, as well as additional covariates corresponding to age, 

sex, batch and PEER factors. To correct for the multiplicity of tests, we applied the Benjamini-

Hochberg (BH) procedure (Benjamini and Hochberg 1995) to control the false discovery rate 

(FDR) to the 5% level.  

Local vs. Distal Genetic Regulation. 

The eQTL literature documents a distinction between cis vs. trans regulation, although the 

precise definition of these is sometimes elusive. Following the suggestion of Albert and 

Kruglyak (2015), we adopt the terminology “local” and “distal” regulation to distinguish the 

situations where genetic variants and the genes whose expression they regulate are nearby or 

far away in the genome, without any assumption on the mechanisms of this regulation. 

Operationally, we define “local” associations as those between SNPs and probes where the SNP 
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is located within 1Mb of either end of the probe, and “distal” as all other probe-SNP 

associations, including those across different chromosomes.  

Heritability of Gene Expression 

For each probe, we estimated the heritability of gene expression using two approaches: a 

variance components model relying on known family relationships as implemented in Mendel 

(Lange et al. 2013), and a variance decomposition based on observed genotypic similarities 

among individuals as implemented in GCTA (Yang et al. 2011). Both analyses included age, sex, 

batch and PEER factors as covariates. In our primary GCTA analysis, we utilized a genetic 

relatedness matrix (GRM) based on the full set of genome-wide SNPs. This allowed us to 

calculate the ratio of genetic variability over total phenotypic variability for each probe. We then 

compared the estimates obtained using Mendel and GCTA. To determine which probes were 

significantly heritable, we relied on the likelihood ratio test implemented in GCTA to obtain p-

values for the significance of the genetic variance component.  

As a secondary analysis, we used GCTA to refine the variance decomposition of probe 

expression to obtain estimates of the proportion of probe heritability due to local regulation. 

Specifically, we utilized the multiple GRM option in GCTA with two GRMs specified: one 

based on the set of SNPs within 1Mb of the probe of interest (whenever a sufficient number of 

SNPs was present), and one based on all SNPs genome-wide (a reasonable stand-in for 

relatedness based on distal SNPs). This strategy allowed us to partition the heritability into local 

vs. global components and calculate the ratio of local genetic variability to total variability. 

With regards to interpretation of the resulting estimates, we note that the goal of GCTA is to 

estimate the additive effects of the genotyped SNPs, rather than a true estimate of heritability. 

Yang et al. (2011) therefore recommend excluding related subjects since including these will 

bias the estimate of the proportion of variance explained by common variants upward due to 

factors such as shared environment or rare variants passed down within a family. Since we 

include related subjects, our GCTA results will be inflated relative to those for unrelated 

subjects, and therefore are more similar to the family-based heritability estimates.  
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Computation of SNP-probe association p-values 

We computed association p-values for each SNP-probe pair using the pedigree GWAS option in 

Mendel including additive genetic and environmental variance components (Lange et al. 2013; 

Zhou et al. 2014). The Mendel implementation relies on a score test to greatly increase the speed 

of computation of association p-values in mixed models. For the most promising SNP-probe 

pairs, a standard likelihood ratio test (LRT) is conducted, and effect sizes are derived. In our 

analysis, we included age, sex, batch and PEER factors as covariates. We performed the LRT for 

the 100 most significant local and 100 most significant distal SNPs for each probe, with the score 

test used for the remaining SNP-probe pairs. 

Multiplicity adjustment and identification of significant results 

Our hierarchical testing approach is based on the selective procedure by Benjamini and 

Bogomolov (2014) whose effectiveness in genetic association studies for multiple phenotypes 

has been explored in Peterson et al. (2015a). We rely on the software implementation provided 

in the TreeQTL R package (Peterson et al. 2015b). The testing procedure is designed to take into 

account that local regulation is more common than distal (the hypotheses in these two classes 

are tested separately) and that SNPs with distal effects are likely to affect the expression of more 

than one probe. While the possibility of identifying variants involved in the local regulation of 

each probe depends on the sample size and the signal strength, it is quite reasonable to expect 

that the expression of every gene could be affected by appropriate sequence variation in the 

genomic region surrounding it. In contrast, one expects that only a small portion of the 

genotyped variants have any regulatory role. Both to capitalize on this heterogeneity and 

because our ultimate interest is to identify genetic variants that have phenotypic effects, we 

apply a multiscale testing strategy to first identify SNPs that have regulatory effects (eSNPs). 

We control the FDR in these discoveries at a target level of 0.05 with the Benjamini-Yekutieli 

(2001) procedure, a conservative approach which is robust to dependence among the test 

statistics and therefore appropriate given linkage disequilibrium among the SNPs. In a second 

stage we investigate which specific probes are influenced by these eSNPs. We control the 

expected average proportion of false SNP-probe associations across the selected SNPs at a target 
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0.05 level with the Benjamini Bogomolov (BB) method (Benjamini and Bogomolov 2014), which 

has been shown in Peterson et al. (2015a) to control the relevant error rates under the typical 

dependency structure of multi-trait GWAS. 

Genomic characteristics of eSNPs 

We studied the position of local eSNPs relative to the transcription start site (TSS) of the gene 

queried by the probe to which they were associated. TSS information was derived from the 

UCSC Genome Browser (http://genome.ucsc.edu/). We investigated the distal eSNPs by 

assessing their overlap with local eSNPs and by comparing their locations with the annotations 

derived by the Roadmap Epigenomics Project (http://egg2.wustl.edu/roadmap/web_portal/) for 

LCLs using ChIP-Seq and DNAse-Seq (Roadmap Epigenomics Consortium 2015). 

Cross-study comparisons 

Cross-study comparisons are hampered by many factors including changes in annotation 

resulting in different gene symbols, changes in SNP names, and the use of different versions of 

the human physical map.  We downloaded results from eQTL analysis of blood or LCL from 

the seeQTL database (http://www.bios.unc.edu/research/genomic_software/seeQTL/), including 

results from Zeller et al. (2010), Wright et al. (2014), and a meta-analysis of HapMap LCLs, and 

also obtained results of Westra et al. (2013) for associations with FDR less than 50%. We used 

official gene symbols to compare results across studies. 

eSNP effect sizes, and percentage of heritability explained 

For each probe associated to some of the discovered eSNPs, we constructed a multivariate linear 

mixed model relating expression to the genotypes at significant SNPs, local or distal. Using the 

variance components model implemented in Mendel, a fixed effect was estimated for age, sex, 

batch, the PEER factors, and each of the genetic variants, while a random effect was used to 

capture family structure. We then calculated the proportion of variance explained in this model 

by the collection of local eSNPs and distal eSNPs and compared it with the local and global 

heritability estimates obtained using the partitioning approach of GCTA.  
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To account for the fact that linkage disequilibrium may lead to the identification of a number of 

neighboring SNPs as associated to the same probe - even when the underlying association is 

effectively captured by one SNP alone - we performed model selection to determine the number 

of SNPs that might reasonably correspond to independent signals. Specifically, after 

transforming the data to obtain independent observations (using the appropriate variance 

covariance matrix determined from the mixed model analysis in Mendel), for each probe we 

carried out stepwise forward selection, relying on the BIC criteria, and using residual 

expression (adjusted for covariates) as the response and the eSNPs associated to the probe as 

the pool of predictors. This procedure gave us an estimate of the number of independent eSNPs 

affecting each probe, as well as the value of the percentage of variance explained (the adjusted r2 

value) for the resulting multivariate linear model. For comparison, we also obtained the 

percentage of variance explained (the r2 value) for the univariate linear model using the most 

strongly associated eSNP (local or distal) as the only predictor. We then computed the ratio of 

the r2 for each model to the heritability previously estimated using the variance components 

model in Mendel. 

RESULTS 

Relationship between Gene Expression Levels and BP1 

We did not detect statistically significant differences between the residual mean expression for 

BP1 subjects (n=193) and their non-BP1 relatives (n=593) after correcting for multiple 

comparisons. One probe had p<5e-05: ILMN_1805371 on chromosome 19 at 8.5Mb (querying 

the expression of ARMCX3 on chromosome X, p=1.65e-05). However, no comparisons were 

significant at an FDR threshold of 5%. Since BP1 status was not associated with changes in gene 

expression, we did not explicitly adjust for BP1 status in the remaining analysis. 

Heritability of Gene Expression 

The distribution of heritability estimates across all 34,040 probes obtained using Mendel, shown 

at left in Figure 1, had median 0.10 (mean=0.03). Estimates of the heritability of gene expression 

based on kinship obtained using Mendel correlated well with estimates of the proportion of 
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phenotypic variation due to genome-wide SNPs obtained using GCTA (r=0.99), suggesting 

agreement between the known pedigree structure and levels of genetic similarity in the subjects 

(Supplementary Figure 1); the estimates from Mendel tended to be slightly larger than those 

from GCTA, however. The median proportion of variance explained by genome-wide SNPs as 

computed by GCTA was 0.09 (mean=0.03). The likelihood ratio test for the significance of the 

genetic variance component in GCTA resulted in 11,911 rejections (35%) at p<0.05; 9,977 

rejections (29%) at FDR threshold 0.05; and 4,126 rejections (12%) applying the Bonferroni 

correction to target FWER 0.05. The median proportion of variance in gene expression explained 

by genome-wide SNPs among probes satisfying FDR<0.05 was 0.21 (range 0.07-1.00).  

Among the 9,977 significantly heritable probes (FDR<0.05), 9,649 had a sufficient number of 

SNPs in the local region to obtain a GRM usable for partitioning; for these probes, a median of 

33% of the total genetic variance was attributed to local genetic variation (mean=39%). The 

distribution of the proportion of total genetic variance attributed to local genetic variation for 

these probes is shown at right in Figure 1. Probes with a low proportion of genetic variance 

attributed to local genetic variation (<10%) have a significantly smaller number of local SNPs 

than those with a larger proportion (one-sided t-test p<2.2e-16) and are associated to a 

significantly higher number of distal eSNPs (one-sided t-test p=1.1e-5), suggesting that both a 

failure to measure relevant local SNPs and the effects of distal regulation may explain the 

fraction of heritable probes found to have a low local proportion of genetic variance. 

eSNP discoveries  

Controlling the FDR of eSNP discoveries at a 5% level, we identify 139,668 local eSNPs and 

11,016 distal eSNPs. Controlling the expected value of the average proportion of false 

discoveries for probe-SNP association across the discovered eSNPs to 5% as well results in the 

identification of 305,635 local probe-SNP pair associations and 22,304 distal probe-SNP pair 

associations. There are 10,065 distinct probes involved in these associations (9,645 in local 

regulation and 1,081 in distal, with an overlap of 661).  
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We now consider some of the characteristics of the discovered eSNPs. In keeping with current 

understanding of the mechanisms of local regulation, 72% of the local eSNPs are upstream from 

the gene they putatively regulate, and 15% of these are within 100kb upstream from the 

transcription start site (TSS). The distribution of local eSNPs by distance from the TSS, 

calculated as the TSS position of the queried gene minus the SNP position for each SNP-probe 

pair discovered, shows that the discoveries are most concentrated closest to the TSS (at left in 

Figure 2). Among the discovered distal eSNPs, 50% also appear to act as local regulators, a 

phenomenon that has been noted before (e.g. Westra et al. 2013; Bryois et al. 2014). On average, 

distal eSNPs affect 2.0 probes (median=1.0), or 1.8 genes; the distribution of the number of genes 

controlled by distal eSNPs is shown at center in Figure 2. Utilizing the annotations from the 

Epigenomics Roadmap, we found that 27% of distal eSNPs fall within narrow peaks (which 

reflect point sources such as transcription factors or chromatin marks associated with 

transcription start sites) and 38% fall within broad domains (which cover extended areas 

associated with many other types of histone modifications), indicating that a substantial portion 

of distal eSNPs are located within functional genomic regions. The most strongly associated 

local eSNP to each probe with local associations had an average effect size of magnitude 0.12; 

the comparable average for the distal setting was 0.21. The distributions of effect sizes for local 

and distal regulation are shown at right in Figure 2: the appreciable difference in effect sizes is 

likely due to the ``winner’s curse’’ phenomenon given the large number of distal hypotheses. A 

more precise investigation of the percentage of variance explained by local and distal eSNPs is 

given in a later section. For a comparison of the number of discoveries under different error 

controlling strategies and their characteristics, see Supplementary Table 1 and Supplementary 

Figure 2. 

Cross-study comparison of discovered eSNPs 

To compare our discovered local eSNPs with those of other studies, we rely on the named genes 

they appear to regulate. This allows us to implicitly account both for the effect of linkage 

disequilibrium and the different genotypes available. Considering first local association and 

matching on gene name, our study and published studies had 14,174 gene names in common; 
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6,456 have significant local associations in our work, and 7,755 have local associations with 

p<0.0001 in the published studies.  Of the 6,456 genes we find significant and on which we have 

available data in other studies, 4,790 are significant in other studies (430 are significant in one 

other study, 1,354 are significant in two other studies, 1,182 are significant in 3 other studies and 

1,194 are significant in all 4 studies examined). 

Examination of distal associations in our work and published studies indicates 10,002 gene 

names in common; 409 have significant distal associations in our work, and 528 genes have 

distal associations with p<5e-08 in the published studies. Of the 409 genes we find significant 

and on which we have data available in other studies, 63 are significant in other studies (17 in 

one other study, 24 in two studies, 16 in three studies, and 6 in all four studies examined). Only 

34 of these 63 genes identified as being significantly affected by distal variants in our study 

were also identified as having significant distal associations in published work to SNPs on the 

same chromosome as ours; and 23 of these 34 genes involved associations to SNPs <2Mb apart 

in our study compared to the published studies (Supplementary Table 2). 

We examined whether the same SNPs were involved in distal associations in multiple studies, 

without specifying that the associations were to the same genes.  We considered this question 

matching both on SNP name and on SNP position, requiring that the SNPs were selected as 

eSNPs in our work at FDR 5% and had associations in published studies at p<5e-08.  We found 

33 SNPs on six chromosomes to have distal associations to one or more genes in both our study 

and in published studies (p<5e-08); however the distal associations were to different genes 

(Supplementary Table 3). 

There are only ten distal associations significant in our work (controlling the expected average 

proportion of false associations involving the selected eSNPs to 5%) and in published studies 

(p<5e-08) that involve the same SNP and same gene:  (1) LIMS1 on chromosome 2 at ~10.9Mb is 

associated to five SNPs on chromosome 6, at 32.4-32.7Mb (rs13192471, rs3129934, rs3763313, 

rs9268877, rs9272219) in our work and in Westra et al.; (2) three probes in DUSP22 on 

chromosome 6 at ~0.35Mb are associated to one SNP on chromosome 16 at ~35Mb (rs12447240) 

and is also associated to this gene in Zeller et al.; (3) OR2AG1 on chromosome 11 at ~6.8Mb is 
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associated to one SNP on chromosome 21 at 34.6Mb (rs1131964) in both our study and Zeller et 

al.; (4) TSSC4 on chromosome 11 at ~2.4Mb is associated to one SNP on chromosome 6 at 

~31.2Mb (rs3131018) in both our study and Westra et al.; (5) NOMO1 on chromosome 16 at 

~14.9Mb is associated to one SNP on chromosome 16 at ~16.3Mb (rs4780600) in both our study 

and in Zeller et al.; (6) and lastly RTF1 on chromosome 15 at ~41.7Mb is associated to one SNP 

on chromosome 17 at 2.5Mb (rs8081803) in both our work and Zeller et al. 

The sparser concordance of reconstructed distal vs. local regulation in the cross-study 

comparison is not surprising: the power to detect distal effects is considerably smaller in all 

studies, while the impact of confounders stronger. Two additional reasons might explain this 

difference. On the one hand, our methodology to identify distal eSNPs has larger power to 

discover multiple genes regulated by the same variant. On the other hand, some of our unique 

findings might be due to the ascertainment of the subjects, who are members of families 

carrying genes predisposing to BP1 and/or to extreme values of BP1-related quantitative traits . 

Proportion of heritability explained by eSNPs 

To examine the explanatory power of the discovered eSNPs, we focus on the probes that they 

affect. Of the 10,065 probes associated to any eSNPs, 7,036 were significantly heritable at an FDR 

of 5% (6,770 with local associations, 903 with distal associations, and 637 with both). Among the 

non-heritable probes with eSNP associations, 94% had only local associations, suggesting that 

these discoveries reflect the less stringent multiplicity control for the discovery of local 

associations. When the eSNPs for each of the 7,036 heritable probes were included as fixed 

effects in a variance components model of the probe expression, the genetic variance component 

was estimated to be 0 for 1,448 (21%) of the probes, indicating that for these probes, the eSNPs 

capture essentially all of the genetic component of variation in probe expression. The 

distribution of the proportion of genetic variance due to the selected eSNPs (estimated as 1 - the 

ratio of the genetic variance component when eSNPs are included as fixed effects to the genetic 

variance component when eSNPs are not included) is shown in Figure 3, assuming values less 

than 0 (12%) are exactly 0. The median proportion for the set of probes with only local, only 

distal, or both types of associations is 0.44, 0.52, and 0.97, respectively, demonstrating that the 
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eSNPs do explain a substantial proportion of the heritability of gene expression, particularly for 

probes with both significant local and significant distal associations. The distributions of the 

local and total genetic proportions of variance under partitioning using GCTA for probes with 

only local, only distal, or both types of associations (Supplementary Figure 3) demonstrates that 

probes with local associations do in fact have larger proportions of variance due to local effects 

vs. probes not associated to any local SNPs. 

To understand the number of independent signals represented by the eSNPs, we obtained the 

results from model selection using eSNPs as the pool of possible predictors, focusing again on 

the set of 7,036 significantly heritable probes with associations to any eSNPs. For this set, the 

median number of eSNPs with significant marginal association was 24 (mean 42.4), with 470 

probes (6.7%) associated to only one eSNP. The distribution of the number of eSNPs included in 

the best multivariate linear model had a median of 2 (mean 3.1), with 5,212 probes (74%) 

associated to multiple eSNPs. The large discrepancy in the number of associated SNPs 

underscores the fact that a substantial proportion of the pairwise SNP-probe associations is due 

to linkage disequilibrium among neighboring SNPs. At the same time, it is interesting that the 

selected linear model includes multiple SNPs for 74% of the probes considered: this observation 

can be interpreted as the result of multiple variants with regulatory effects, but also as a sign 

that the causal variant is not typed and multiple typed SNPs allow a better reconstruction of the 

associated haplotype. 

To gain insight into the explanatory power of the univariate vs. multivariate models, we 

assessed the percentage of total phenotypic variance explained by the most significantly 

associated SNP and by the selected multivariate linear model. The distribution of the percentage 

of variance explained for the most significantly associated SNP (Figure 4) has a median of 3.7%, 

a bit lower than results from Zeller et al. (2010) (median=7.7%). The median value of r2 increases 

from 3.7% in the univariate model to 7.4% for the best multivariate model (Figure 4). To 

understand how much heritability was captured by the linear models involving the eSNPs, we 

also computed the ratio of the percentage of variance explained for the univariate and 

multivariate models to the probe heritability estimated using the variance components model. 
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This ratio has median 15% for most significantly associated SNP and 30% for the best 

multivariate model. 

DISCUSSION 

The eQTL study of LCL expression in subjects from extended families segregating for BP1 

allows us to tackle questions of general interest as well as possibly identifying regulatory 

variants specific to this sample. Taking advantage of the pedigree information, we can provide 

estimates of heritability of the expression traits, as well as compare the results of different 

estimating procedures, relying on theoretical kinship coefficients or on empirical correlations 

between observed genotypes. Our results suggest that variation in expression values is heritable 

and that, at least in samples including related individuals, relying on theoretical kinship 

coefficients or on realized genotype correlation for estimation of heritability leads to similar 

results. 

Previous studies have obtained a wide range of estimates of the heritability of gene expression, 

likely due at least in part to the variety of designs that they have employed and tissues 

evaluated. Our heritability estimates (18% of probes had heritability > 0.2) are  larger than those 

reported by Stranger et al. (2007), who found, in a study of LCL expression in trios from 

different populations,  that 10% and 13% out of 47,294 probes had heritability > 0.2 in Europeans 

and Yorubans, respectively. In a study of peripheral blood expression in 654 complete twin 

pairs (1,308 subjects), Wright et al. (2014) report 4.2% of 18.4K genes to be significantly heritable 

at FDR<5%, and mean heritability of these significantly heritable probes was 0.15.  

On the other hand, our heritability estimates are much smaller than those of Göring et al. (2007), 

who studied lymphocyte expression in large extended families (1,240 subjects in 30 families).  

They found that 85% of 19,648 probes were significantly heritable at FDR<5%, and median 

heritability over all probes was 0.23. Grundberg et al. (2012), who studied 856 female twin pairs, 

obtained similarly high values, estimating that the average heritability of expression in LCL of 

23,596 probes is 0.21.  Considering only the 17% of probes with cis eQTL at FDR<1%, they found 

average heritability to be 0.25.  
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We found that the strategy used for normalization of gene expression had a large impact on the 

final heritability estimates. Specifically, we observed that normalization of gene expression 

within pedigrees (following the method described in Kim et al. 2007) inflated estimates of 

heritability substantially over those obtained using global normalization across all subjects, 

resulting in values more comparable to those of Göring et al. (2007) and Grundberg et al. (2012). 

Given that the expression levels of individual genes might be expected to differ across 

pedigrees, but that global differences are likely due to technical or batch effects, we concluded 

that the heritability values obtained using within-pedigree normalization were artificially high. 

Variance decomposition approaches suggest that 29% of the genetic variance is due to local 

regulation. In the majority of probes under local regulation in our sample, more than one typed 

SNP is required to account for expression variation. This finding can be interpreted as the result 

of heterogeneity, but also could reflect un-typed causal variants that are tracked by more than 

one typed SNP.  

In the effort to control the rate of false discovery among actually reported results (SNPs with 

apparent regulatory effects), we adopted a hierarchical multiple comparison controlling 

procedure that is specifically targeted to eQTL studies. It takes into account differences in local 

and distal regulation, the likelihood that a variant with distal effects might influence the 

expression of multiple probes, and the dependence between tests for association involving 

neighboring SNPs. Our major finding is the identification of eSNPs: variants that regulate gene 

expression. Our results compare favorably with those of more traditional approaches 

controlling FDR for the entire collection of SNP-probe associations: our local eSNPs are closer to 

the TSS, and our distal eSNPs regulate more genes. 

A question of general interest is how the list of eSNPs we have obtained relates to the genetic 

underpinnings of the numerous phenotypes available in these pedigrees. Given that the 

architecture of these traits is more complex than gene expression, and given our limited sample 

size, gene mapping is more successful for these traits when relying on a linkage approach rather 

than an association one. The lack of a substantial number of significant SNP associations for 

these traits makes it impossible to evaluate if eSNPs are enriched in this group. Linkage regions, 
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on the other hand, are wide enough that contrasting the percentage of eSNPs within them and 

outside them is also rather uninformative. The knowledge we acquired by studying the genetic 

regulatory network within these pedigrees, instead, can be used to inform our mapping studies: 

eSNPs might receive a higher prior probability of association, or be assigned a larger portion of 

the allowed global error rate when using a weighted approach to testing. We will report 

elsewhere on the results of these investigations. 

REFERENCES 

 
F. W. Albert and L. Kruglyak, “The role of regulatory variation in complex traits and disease,” 
Nature Reviews Genetics, vol. 16, pp. 197–212, 2015. 

Y. Benjamini and M. Bogomolov, “Selective inference on multiple families of hypotheses,” 
Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 76, no. 1, pp. 297–
318, 2014.  

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful 
approach to multiple testing,” Journal of the Royal Statistical Society. Series B (Methodological), 
vol. 57, no. 1, pp.  289–300, 1995. 

Y. Benjamini and D. Yekutieli, “The control of the false discovery rate in multiple testing under 
dependency,” Ann. Statist., vol. 29, no. 4, pp. 1165–1188, 2001.  

J. Bryois, A. Buil, D. M. Evans, J. P. Kemp, S. B. Montgomery, D. F. Conrad, K. M. Ho, S. Ring, 
M. Hurles, P. Deloukas, G. D. Smith, and E. T. Dermitzakis, “Cis and trans effects of human 
genomic variants on gene expression,” PLOS Genet., vol. 10, no. 7, e1004461, 2014. 

J. Ding, J. E. Gudjonsson, L. Liang, P. E. Stuart, Y. Li, W. Chen, M. Weichenthal, E. Ellinghaus, 
A. Franke, W. Cookson, R. P. Nair, J. T. Elder, G. R. Abecasis, "Gene expression in skin and 
lymphoblastoid cells: Refined statistical method reveals extensive overlap in cis-eQTL signals," 
Am. J. Hum. Genet., vol. 87, no. 6, pp. 779–789, 2010. 

S. C. Fears, S. K. Service, B. Kremeyer, C. Araya, X. Araya, J. Bejarano, M. Ramirez, G. 
Castrillón, J. Gomez-Franco, M. C. Lopez, G. Montoya, P. Montoya, I. Aldana, T. M. Teshiba, Z. 
Abaryan, N. B. Al-Sharif, M. Ericson, M. Jalbrzikowski, J. J. Luykx, L. Navarro, T. A. Tishler, L. 
Altshuler, G. Bartzokis, J. Escobar, D. C. Glahn, J. Ospina-Duque, N. Risch, A. Ruiz-Linares, P. 
M. Thompson, R. M. Cantor, C. Lopez-Jaramillo, G. Macaya, J. Molina, V. I. Reus, C. Sabatti, N. 
B. Freimer, and C. E. Bearden, “Multisystem component phenotypes of bipolar disorder for 
genetic investigations of extended pedigrees,” JAMA Psych., vol. 71, no. 4, pp. 375–387, 2014. 
doi: 10.1001/jamapsychiatry.2013.4100. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2015. ; https://doi.org/10.1101/031427doi: bioRxiv preprint 

https://doi.org/10.1101/031427
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 17	

T. Flutre, X. Wen, J. Pritchard, and M. Stephens, "A statistical framework for joint eQTL analysis 
in multiple tissues," PLoS Genetics, vol. 9, no. 5, p. e1003486, 2013. 

H. H. Göring, J. E. Curran, M. P. Johnson, T. D. Dyer, J. Charlesworth, S. A. Cole, J. B. Jowett, 
Lawrence, J. Abraham, D. L. Rainwater, A. G. Comuzzie, M. C. Mahaney, L. Almasy, J. W. 
MacCluer, A. H. Kissebah, G. R. Collier, E. K. Moses, and J. Blangero, “Discovery of expression 
QTLs using large-scale transcriptional profiling in human lymphocytes,” Nat. Genet., vol. 39, 
no. 10, 1208–1216, 2007. 

E. Grundberg, K. S. Small, A. K. Hedman, A. C. Nica, A. Buil, S. Keildson, J. T. Bell, T. P. Yang, 
E. Meduri, A. Barrett, J. Nisbett, M. Sekowska, A. Wilk, S. Y. Shin, D. Glass, M. Travers, J. L. 
Min, S. Ring, K. Ho, G. Thorleifsson, A. Kong, U. Thorsteindottir, C. Ainali, A. S. Dimas, N. 
Hassanali, C. Ingle, D. Knowles, M. Krestyaninova, C. E. Lowe, P. Di Meglio, S. B. Montgomery, 
L. Parts, S. Potter, G. Surdulescu, L. Tsaprouni, S. Tsoka, V. Bataille, R. Durbin, F. O. Nestle, S. 
O’Rahilly, N. Soranzo, C. M. Lindgren, K. T. Zondervan, K. R. Ahmadi, E. E. Schadt, K. 
Stefansson, G. D. Smith, M. I. McCarthy, P. Deloukas, E. T. Dermitzakis, and T. D. Spector, 
“Mapping cis- and trans-regulatory effects across multiple tissues in twins,” Nat. Genet., vol. 44, 
pp. 1084–1089, 2012. PMID: 22941192.  

W. E. Johnson, C. Li, and A. Rabinovic, “Adjusting batch effects in microarray expression data 
using empirical Bayes methods,” Biostatistics, vol. 8, no. 1, pp. 118–127, 2007. 

Y. Kim, B. Q. Doan, P. Duggal, J. E. Bailey-Wilson, “Normalization of microarray expression 
data using within-pedigree pool and its effect on linkage analysis,” BMC Proceedings, vol. 1, 
suppl. I, p. S152, 2007. 

K. Lange, J. C. Papp, J. S. Sinsheimer, R. Sripracha, H. Zhou, and E. S. Sobel, “Mendel: the Swiss 
army knife of genetic analysis programs,” Bioinformatics, vol. 29, no. 12, pp. 1568–1570, 2013. 

A. C. Nica, L. Parts, D. Glass, J. Nisbet, A. Barrett, M. Sekowska, M. Travers, S. Potter, E. 
Grundberg, K. Small, A. K. Hedman, V. Bataille, J. Tzenova Bell, G. Surdulescu, A. S. Dimas, C. 
Ingle, F. O. Nestle, P. di Meglio, J. L. Min, A. Wilk, C. J. Hammond, N. Hassanali, T. P. Yang, S. 
B. Montgomery, S. O’Rahilly, C. M. Lindgren, K. T. Zondervan, N. Soranzo, I. Barroso, R. 
Durbin, K. Ahmadi, P. Deloukas, M. I. McCarthy, E. T. Dermitzakis, and T. D. Spector, “The 
architecture of gene regulatory variation across multiple human tissues: the MuTHER study,” 
PLoS Genet., vol. 7, no. 2, p. e1002003, 2011. PMID: 21304890.  

L. Pagani, P. St. Clair, T. Teshiba, S. Service, S. Fears, C. Araya, X. Araya, J. Bejarano, M. 
Ramirez, G. Castrillon, J. Gomez-Makhinson, M. Lopez, G. Montoya, P. Montoya, I. Aldana, L. 
Navarro, D. Freimer, B. Safaie, L. Keung, K. Greenspan, K. Chou, J. Escobar, J. Ospina-Duque, B. 
Kremeyer, A. Ruiz, R. Cantor, C. López-Jaramillo, G. Macaya, J. Molina, V. Reus, C. Sabatti, C. 
Bearden, J. Takahashi, and N. Freimer, “Genetic contributions to circadian rhythm and sleep 
phenotypes in pedigrees segregating for severe bipolar disorder,” in press in Proceedings of the 
National Academy of Sciences, 2015. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2015. ; https://doi.org/10.1101/031427doi: bioRxiv preprint 

https://doi.org/10.1101/031427
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 18	

C. Peterson, M. Bogomolov, Y. Benjamini, and C. Sabatti, “Many phenotypes without many 
false discoveries: error controlling strategies for multi-trait association studies,” 
http://arxiv.org/abs/1504.00701, 2015a. Accepted to Genetic Epidemiology. 

C. Peterson, M. Bogomolov, Y. Benjamini, and C. Sabatti, “TreeQTL: hierarchical error control 
for eQTL findings,” http://dx.doi.org/10.1101/021170, 2015b. 

J. E. Powell, A. K. Henders, A. F. McRae, M. J. Wright, N. G. Martin, E. T. Dermitzakis, G. W. 
Montgomery, and P. M. Visscher, “Genetic control of gene expression in whole blood and 
lymphoblastoid cell lines is largely independent,” Genome Research, vol. 22, no. 3, pp. 456–466, 
2012. 

Roadmap Epigenomics Consortium, A. Kundaje, W. Meuleman, J. Ernst, M. Bilenky, A. Yen, A. 
Heravi-Moussavi, P. Kheradpour, Z. Zhang, J. Wang, M. J. Ziller, V. Amin, J. W. Whitaker, M. D. 
Schultz, L. D. Ward, A. Sarkar, G. Quon, R. S. Sandstrom, M. L. Eaton, Y. Wu, A. R. Pfenning, X. 
Wang, et al., “Integrative analysis of 111 reference human epigenomes,” Nature, vol. 518, pp. 
317–330, 2014. 

W. Shi, A. Oshlack, and G. K. Smyth, “Optimizing the noise versus bias trade-off for Illumina 
Whole Genome Expression BeadChips,” Nucleic Acids Research, vol. 38, no. 22, e204, 2010. 

O. Stegle, L. Parts, M. Piipari, J. Winn, and R. Durbin, “Using probabilistic estimation of 
expression residuals (PEER) to obtain increased power and interpretability of gene expression 
analyses,” Nature Protocols, vol. 7, no. 3, pp. 500–507, 2012. 

B. E. Stranger, A. C. Nica, M. S. Forrest, A. Dimas, C. P. Bird, C. Beazley, C. E. Ingle, et al., 
"Population genomics of human gene expression," Nat. Genet., vol. 39, no. 10, pp. 1217–1224, 
2007. 

H. Westra, M. J. Peters, T. Esko, H. Yaghootkar, C. Schurmann, J. Kettunen, M. W. Christiansen, 
et al., “Systematic identification of trans eQTLs as putative drivers of known disease 
associations,” Nature Genetics, vol. 45, no. 10, pp. 1238–1243, 2013. 

F. A. Wright, P. F. Sullivan, A. I. Brooks, F. Zou, W. Sun, K. Xia, V. Madar, et al., “Heritability 
and genomics of gene expression in peripheral blood,” Nature Genetics, vol. 46, no. 5, pp. 430–
437, 2014. 

K. Xia, A. A. Shabalin, S. Huang, V. Madar, Y. Zhou, W. Wang, F. Zou, W. Sun, P. F. Sullivan, 
and F. A. Wright, “seeQTL: a searchable database for human eQTLs,” Bioinformatics, vol. 28, 
no. 3, pp. 451–452, 2012. 

J. Yang, S. H. Lee, M. E. Goddard, and P. M. Visscher, “GCTA: a tool for genome-wide complex 
trait analysis,” Am. J. Hum. Genet., vol. 88, no. 1, pp. 76–82, 2011. 

T. Zeller, P. Wild, S. Szymczak, M. Rotival, A. Schillert, R. Castagne, S. Maouche, et al., 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2015. ; https://doi.org/10.1101/031427doi: bioRxiv preprint 

https://doi.org/10.1101/031427
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 19	

“Genetics and beyond–the transcriptome of human monocytes and disease susceptibility,” PloS 
One, vol. 5, no. 5, p. e10693, 2010. 

H. Zhou, J. Zhou, E. M. Sobel, and K. Lange, “Fast genome-wide pedigree quantitative trait loci 
analysis using MENDEL,” BMC Proceedings, vol. 8, suppl. 1, S93, 2014. 

SUPPLEMENTARY NOTE 

	

RNA Extraction and Measurement of Gene Expression 

Lymphoblastoid cell lines (LCLs) were established at two sites: RUCDR Infinite Biologics 

[N=549] and UCLA [N=237]; RNA was extracted from the cell lines at both sites. Peripheral 

blood mononuclear cells (PBMCs) were separated from venous blood (which had been 

preserved with an anticoagulating reagent, typically ACD), using either Nycoprep (RUCDR) or 

Ficoll-Paque PLUS (UCLA) as the separation medium. Both sites used a standard protocol to 

transform freshly separated or frozen PBMCs, employing media containing Epstein Barr virus 

(EBV) and the mitogen phytohemagglutinin (PHA). After the culture became established, both 

sites pelleted cells by centrifugation at 300g for 10 minutes and immediately lyzed them with 

RLT buffer containing beta-mercaptoethanol, mixed them briefly, and stored them at -80° C 

until the RNA extraction. 

Both RUCDR and UCLA extracted RNA from the cultured cells with an RNeasy 96 kit (Qiagen, 

Venlo, Netherlands), employing either a Qiagen BioRobot Universal System (RUCDR) or a 

manual procedure (UCLA) using up to 5x105 cells (RUCDR) or 106 cells (UCLA) as the starting 

material. To quantify RNA yield, we used a Quant-iT RiboGreen (Invitrogen, Waltham, MA) 

and measured RNA integrity number, reflective of sample quality, using a TapeStation (Agilent, 

Santa Clara, CA).  

To evaluate gene expression we amplified total RNA (100ng), labeled it using Ambion Total 

Prep-96 kits (Life Technologies, Grand Island, NY), and hybridized it on Illumina Human HT-

12 v4.0 Expression BeadChips (Illumina Inc., San Diego, CA). Arrays were scanned with an 

Illumina iScan confocal instrument. Each chip queries the expression of approximately 47,000 
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probes relative to 31,223 gene targets, as defined by the NCBI reference sequence (RefSeq) 

database. For these experiments we processed the 786 samples in nine batches (eight batches of 

between 90-95 samples and one batch of 44 samples). 

Data analysis was performed using R (www.r-project.org) and Bioconductor 

(www.bioconductor.org) packages. Expression values were background corrected, quantile 

normalized, and log2 transformed using the function necq (Shi et al. 2010). We corrected for the 

major known batch effects (RUCDR vs. UCLA LCL construction and RNA extraction) using 

ComBat (Johnson et al. 2007), including BP1 diagnosis, sex, and pedigree IDs as covariates.  

Gene expression quality control 

We filtered out 12,834 probes from the initial set of 47,009 probes because of not aligning to 

hg19 (n=522), not aligning uniquely (1,622), having one or more mismatches in the probe 

sequence (1,509), or spanning across one or more SNPs in dbSNP 137 or 138 (6,040). After these 

probes were removed, there were 99 genes interrogated by more than 1 probe where at least 

one of the probes involved mapped to different locations. Of the mismatching probes, the set 

with multiple alignments were filtered out (114). In addition, all probes were filtered out for the 

12 genes where the probes that map to different chromosomes did not have multiple alignments 

(31). Finally, 3,141 probes were filtered because they were not detected in at least one sample 

with an Illumina detection threshold <0.05, leaving 34,030 probes for analysis. 

Genotype quality control and filtering 

Genotype data were obtained for 856 subjects. A total of 2,026,257 SNPs were polymorphic and 

passed all QC procedures.  SNPs were excluded in the QC process due to discordance among 

the three batches in replicated individuals (8,280 SNPs), missing >5% of data (97,158 SNPs), 

gross violation of Hardy-Weinberg equilibrium (HWE, 79 SNPs), and presence of >4 Mendel 

errors among fully typed trios (2,976 SNPs). After excluding markers with >4 Mendel errors, the 

Mendel error rate among fully typed trios was 0.01%, and all further sporadic errors were set to 

missing in the entire trio. All allele frequency calculations, calculations of HWE, and estimates 
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of LD were performed using only unrelated (founder) individuals.  Association analyses used 

1,024,051 autosomal SNPs with MAF>10%. 

Screening of subjects 

Eighteen subjects were excluded from final analysis because of sample mix-up/contamination 

(12 subjects) or because they were married-in individuals whose children were not recruited 

into the study (6 subjects). Among the 838 subjects that passed SNP QC, genotyping 

completeness was good, averaging 99.78%. Only one subject had genotyping completeness 

<95%; as they were BP1 and they were missing only 5.7% of genotypes, we retained them for 

analysis.  There were 786 individuals with both genotype and gene expression data (193 BP1 

and 593 non-BP1). 
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Figure 1: Distribution of estimated heritability of probe expression obtained using Mendel for all

34,030 probes (left), and distribution of the proportion of total genetic variance attributed to local

genetic variation (right) for the 9,649 significantly heritable probes (FDR<0.05) where partitioning

using the multiple GRM approach in GCTA was possible.
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Figure 2: Characteristics of local and distal eSNPs. Position of local eSNPs relative to transcrip-

tion start site (TSS) of the gene queried by the associated probe (left). Number of genes controlled

by distal eSNPs (center), excluding SNP kgp22834062, which was associated to 129 genes. Effect

sizes of the most significant SNP for each probe with any local or distal associations (right).
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Figure 3: Proportion of genetic variance due to eSNPs (estimated as 1 - the ratio of the genetic
variance component when eSNPs are included as fixed effects to the genetic variance component
when eSNPs are not included) for the 7,036 heritable probes with local or distal associations,
assuming values less than 0 (12%) are exactly 0.
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Figure 4: Percentage of variance explained by the most strongly associated eSNP and by the best
set of eSNPs selected using multivariate model selection for the 7,036 heritable probes with local
or distal eAssociations.
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