
  

 

  

Abstract—Systemic chemotherapy is one of the main anti-
cancer treatments used for most kinds of clinically diagnosed 
tumors. However, the efficacy of these drugs can be hampered 
by the physical attributes of the tumor tissue that can impede 
the transport of therapeutic agents to tumor cells in sufficient 
quantities. As a result, drugs that work well in vitro often fail at 
clinical trials when confronted with the complexities of 
interstitial transport within the tumor microenvironment. The 
microPD model that we developed is used to investigate the 
penetration of drug molecules through the tumor tissue and 
influenced by the physical and metabolic properties of tumor 
microenvironment, and how it affects drug efficacy and the 
emergence of drug resistance.  

I. INTRODUCTION TO MICRO- PHARMACODYNAMICS  

The complexity of tumor microenvironment, both physical 
(interstitial fluid pressure, tissue cellular architecture, fibril 
composition, or extracellular matrix stiffness) and metabolic 
(oxygen, glucose, lactate, acidic pH, or growth factors levels) 
results in various physiological barriers to the transport of 
drugs or imaging agents into the tumor tissue [1-3]. The 
classical models of pharmacokinetics and pharmacodynamics 
(PK/PD) represent tissues and organs as homogeneous well-
mixed compartments. However, both normal and tumor 
tissues are heterogeneous in their structure and response to 
metabolites and treatments. We present here a biomechanical 
model (called microPD; the microenvironment-influenced 
pharmaco-dynamics model) of the interstitial transport of 
both metabolites and drugs, and their role in tumor growth 
and its response to treatments.   

II. ILLUSTRATIVE RESULTS OF MICROPD APPLICATIONS 

The microPD model has been initially developed to test the 
role of tumor tissue architecture, which is defined by its 
porosity (the amount of void space between the cells) and 
cellular density (the number of cells per a given volume), in 
the interstitial transport of therapeutic or imaging agents [4]. 
We have shown that the typical measure of transport 
phenomena, the Peclet number (a ratio of the advective to 
diffusive transport, where advection is due to the fluid flow, 
and diffusion is driven by a drug gradient), is not indicative 
of the dominant transport mode for the moderate Peclet 
values. In these cases, the interstitial transport can be either 
advection- or diffusion-dominated depending on the tumor 
tissue architecture; that is, whether it is composed of small or 
large cells. Here, we discuss the applications of the microPD 
model to projects that were part of either the ICBP or PSOC 
grants, or have bridged both projects scopes. 
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Figure 1.  Oxygen and active TH-302 distributions in simulated tumors 
calibrated to MiaPaCa-2 tissue histology. Adapted from [5]. 

A. Enhancing the efficacy of HAPs (PSOC) 
We used the microPD model, after its calibration to the 
properties of the MiaPaCa-2 pancreatic cancer cells, to 
formulate a hypothesis about how the exogenous pyruvate (a 
metabolic modifier shown to increase oxygen uptake in 
cells) could enhance the efficacy of the TH-302 hypoxia-
activated pro-drug (HAP) [5]. We showed that within a 
patch of tissue with the normoxia–hypoxia border (N-HB) 
stabilized at a distance of 110 µm from the vasculature, the 
bolus injection of both pyruvate and TH-302 leads to the 
decrease in tissue oxygenation by 30% (the N-HB shifts left 
to a distance of 76 µm) in 10 min after injection. As a result, 
the region of the inter-tumoral hypoxia, and thus the region 
of activation of the HAPs is increased three-fold resulting in 
an elevated cell death (88% increase when compared to TH-
302 alone) in 30 min after injection (Figure 1). This model is 
now being used to design optimal schedules of combined 
therapies that utilize three or more therapeutic compounds. 
As the behavior of HAPs is complex, it is beyond intuition 
how to determine the right dosage and the right order of 
drugs applied in combination to maximize the efficacy of 
TH-302. Our model provides a means to examine multiple 
scheduling options before testing them in a laboratory.  

B. Predicting the effects of cell-cycle targeted drugs (ICBP) 
A version of the microPD model has been used to develop an 
in silico analogue of the 2D cell colony culture technique. 
The model is quantitatively calibrated to fit data from lung 
adenocarcinoma PC9 cells treated with different levels of 
erlotinib [6]. By exploring the model parameter space, we 
proposed three hypotheses on how cell migratory, quiescent 
and proliferative properties change if cells are exposed to 
different drug concentrations (Figure 2). However, in in vitro 
experiments, all cells in a single well are typically exposed to 
a uniform concentration of the drug, and the cell response to 
different drug concentrations is measured by varying drug 
levels among different wells. By contrast, tumor cells 
growing within the tissue can be exposed to concentrations 
that vary both in time and in space. 
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Figure 2.  A parameter space of the microPD-cell culture  model with three 
hypothetical cases of cell motility and quiescence modified in response to  
varied drug concentrations. Adapted from [7]. 

To bring in vitro data to an in vivo context we applied the 
microPD-tissue scale model in which drug is supplied from a 
non-uniform vasculature leading to a drug-gradient build-up 
over time. Therefore, in a single computer simulation, tumor 
cells are exposed to different drug levels depending on their 
location, and a single cell can be exposed to varied drug 
levels at different time points. Our results show that for the 
three proposed scenarios of cell phenotypic evolution, the 
final configurations of in vivo-like simulations differ in both 
cell age distributions and cell cycle phase distributions [7]. 
An extension of this model has been applied to investigate 
how the efficacy of cell-cycle checkpoint inhibitors is 
affected by the formation of tight tumor clusters versus 
sparse tumor colonies both in 2D and 3D cultures [8]. 

C. Microenvironmental niches & drug resistance (WhAM!) 
The approaches developed in the two previous projects were 
applied to investigate how complex gradients of metabolites 
and drugs, which result from a chaotic tumor vasculature, 
form specific microenvironmental niches that promote the 
emergence of anti-cancer drug resistance [9]. Our simulations 
show (Figure 3) that the spatial regions characterized by 
either low-drug/sufficient oxygen (low D) or low-drug/low-
oxygen (H & low D) levels have a significant impact on the 
transient and long-term tumor behavior when drug resistance 
occurs as a result of drug action (acquired resistance).  

III. QUICK GUIDE TO THE MATHEMATICAL METHODS 

The microPD model uses a combination of the classic fluid–
structure interaction method of the regularized Stokeslets 
[10], the lattice-free agent-based model of individual cells 
[9], and the diffusion–advection–reaction equations for the 
kinetics of all metabolites and drugs.  

Figure 3.  (a) Microenvironmental niches of low drug level (low D) or low 
drug & hypoxia level (H & low D) resulting in spatial evolution of a 
population of drug resistant tumor cells (i-vi). Adapted from [9]. 

In this model, we explicitly consider the cellular and vascular 
architecture of the tumor tissue, the interstitial fluid flow, and 
the concentrations of both metabolites and drug molecules.  

A. Equations 
The Stokes equations (Figure 4a,b) are used due to small 
Reynolds numbers associated with the physical problems 
under investigation. The regularized forces applied to the 
vasculature and cell boundaries create the physiologically 
relevant interstitial fluid flow. The interactions between 
individual cells are defined using linear repulsive Hookean 
springs (Figure 4c), and cell motion is governed by a 
Newtonian equation (Figure 4d). The kinetics of all 
metabolites and drugs includes the diffusive and advective 
motions, the cellular uptake and the transition from an 
inactive to activated state (Figure 4e-g).  

B.  Type of settings in which these methods are useful 
The presented model enables investigations of the behavior 
of individual cells, and their interactions with one another 
and with the surrounding microenvironment. Both the 
mechanical and chemical clues sensed by the cells can be 
included in the model, as well as multiple cellular types and 
the many metabolite concentrations. Many intracellular 
properties, including the cell cycle or heterogeneous cell 
sensitivity to the surrounding metabolic landscape and drug 
concentrations can be also incorporated in the model. The 
microPD model can be used to represent the in vitro cell 
cultures and the in vivo tumor tissues, and is an ideal 
computational tool to bridge the different (in vivo, in vitro, or 
ex vitro) experimental scales.   

Figure 4.  Model equations: (a-b) regularized Stokeslets; (c) Hookean 
repulsive springs; (d) Newtonian cell motion; (e-f) diffusion-advection-
reaction kinetics. Adapted from [5] and [9]. 
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