
  

  

Abstract— We present a mathematical model that captures 
the transitions among three experimentally observed estrogen-
sensitivity phenotypes in breast cancer cells.  Based on this 
model, a population-level model is created and used to explore 
the optimization of a therapeutic protocol 

I. INTRODUCTION  

Breast cancer is one of the most common cancers in 
women and approximately 70% of these cancers express the 
estrogen receptor (ERα). The growth of many of these 
cancers is driven by estrogen, which binds to ERα, a potent 
transcription factor, up-regulating proliferation. One form of 
endocrine therapy, aromatase inhibitors, reduces the 
biosynthesis of estrogen to shut down the estrogen receptor 
pathway and inhibit cell growth.  Unfortunately, in many 
cases cells deprived of estrogen will eventually become able 
to grow under the deprived conditions, thus becoming 
resistant to the drug.  Our interest is in understanding this 
transition to resistance and how to overcome it. 

When cells grown in physiological levels of estrogen are 
transitioned to a medium with low estrogen, some of the cells 
will die while others become quiescent, ultimately adapt, and 
begin growing again.  Similarly, if these growing cells are 
then transitioned to a medium with essentially no estrogen, 
some will die while others will ultimately begin to grow 
again.  These results lead us to consider three estrogen 
sensitivity states:  sensitive, hypersensitive, and independent. 
After hypothesizing a mechanism for these three sensitivity 
states, we built a simple stochastic mathematical model, 
based on an influence diagram drawn from the literature, to 
test the plausibility of our hypothesis.  Suitable 
parameterization enabled the model to reproduce the 
qualitative behavior of cells with regard to estrogen 
sensitivity [1]. 

To examine the implications of this model for therapy, we 
derived a population model from our single-cell model.  The 
population model accounts for the transitions of cells from 
one sensitivity state to another, as well as the growth and 
death rates of the cells in each state, as a function of the 
estrogen level.  This high level model enabled us to easily 
examine the effects of aromatase inhibitor therapy on the 
population (tumor) and to optimize the parameters of the 
protocol to minimize overall growth. 

II. RESULTS 
The cell-level model has only two dynamic variables: 

active estrogen receptor at the membrane (ERM), and 
activated growth factor receptors (GFR).  A potential 
landscape for the system is shown in Figure 1, where the 
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dynamics of the system 
can be visualized as a 
point on the landscape 
that always moves in 
the downhill direction. 
The system has four 
basins of attraction 
where ERMlow/GFRlow 
corresponds to the 
sensitive estrogen state, 
ERMhigh/GFRlow to the 
hypersensitive state, 
and GFRhigh to the 
independent states. 

The population model allowed us to study the effect of 
changing estrogen levels on the numbers of cells in each 
basin. We cyclically deprived the cells of estrogen for a 
period and then restored estrogen for a period. The 
parameters of the protocol are the treatment time and the 
break time.  Figure 2 shows the results of two different 
protocols.  Optimization of the protocol parameters shows 
that case (b) is actually optimal in terms of minimizing 
population growth. In this case, less overall treatment than in 
case (a) leads to better results.  With the parameters of our 
model we were not able to drive the number of cells to zero, 
but we could reach a state of no net growth. 

This work provides a framework for using dynamic 
modeling for therapy optimization.  Experimental 
quantification of the various transition, growth, and death 
rates will be necessary to determine what can realistically be 
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Figure 1:  Potential landscape for a 
specific concentration of estrogen. 

Figure 2:  Results for two treatment protocols showing estrogen 
concentration (top), percentage of estrogen sensitive and hypersensitive 
cells, proliferation index of the population (>0 indicates growth), and 
the total number of cells in the population. 
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expected of this intermittent therapy. 

III. QUICK GUIDE TO THE METHODS  
The model describing the different estrogen sensitivity 

states is a phenomenological model, as the detailed 
mechanisms are unknown. The three components of the 
model are E2ER, estrogen-bound estrogen receptor, ERM, 
active membrane-associated estrogen receptor, and GFR, 
active growth factor receptors. The equations governing the 
model are given by: 
𝑑𝐺𝐹𝑅
𝑑𝑡 = 𝛾!"# ∙ 𝐻 𝑊!"# − 𝐺𝐹𝑅 + 𝜁!"# 𝑡  

𝑑𝐸𝑅𝑀
𝑑𝑡 = 𝛾!"# ∙ 𝐻 𝑊!"# − 𝐸𝑅𝑀 + 𝜁!"# 𝑡  

𝐸2𝐸𝑅 = 𝐻(𝑊!!!") 

𝐻 𝑊 =
1

1 + 𝑒!!  

𝑊!"# =   𝜔!"# + 𝜔!"#,!!!" ∙ 𝐸2𝐸𝑅 + 𝜔!"#,!"# ∙ 𝐺𝐹𝑅 + 𝜔!"#,!"# ∙ 𝐸𝑅𝑀 

𝑊!"# =   𝜔!"# + 𝜔!"# ,!!!" ∙ 𝐸2𝐸𝑅 + 𝜔!"# ,!"# ∙ 𝐺𝐹𝑅 + 𝜔!"# ,!"# ∙ 𝐸𝑅𝑀 

𝑊!!!" =   𝜔!!!" + 𝜔!!!",!! ∙ 𝐸2 

The model uses a simplified framework suitable for 
modeling systems at a phenomenological level.  The 
framework, discussed in detail in [2], is based on soft-
Heaviside functions, H, with arguments that are linear in the 
variables.  The parameters of the model are the γ’s and ω’s.  
Since we are interested in stochastic transitions between 
steady states, we have added Gaussian white noise terms, 
ζ(t), to each equation.  We assume the noise terms have the 
same autocorrelation, 𝜁(𝑡)𝜁(𝑡!) = 2𝐷 ∙ 𝛿(𝑡 − 𝑡!), where D 
characterizes the magnitude of the random fluctuations. 

 To obtain an approximate potential landscape for 
visualizing our system we used ideas from [3].  Writing the 
above equations in vector form as 
!𝒙
!"
= 𝑭 𝒙 + 𝜻(𝑡) (1) 

the Fokker-Planck equation for the probability density, P(x,t), 
is given by 

𝜕𝑃 𝒙, 𝑡
𝜕𝑡

= −∇ ∙ 𝑱(𝒙, 𝑡) 

where J is the probability flux given by 

𝑱 𝒙, 𝑡 = 𝑭 𝒙 𝑃 𝒙, 𝑡 − 𝐷∇𝑃(𝒙, 𝑡). (2) 

Solving for the steady state probability, where ∇ ∙ 𝐉 = 0, 
allows us to solve (2) for F as 

𝑭 𝑥 = −𝐷∇𝑈 𝒙 + 𝑱!!(𝒙)/𝑃!!(𝒙), 

where 𝑈 𝒙 = −ln  (𝑃!! 𝒙 ) is the approximate potential 
landscape of the system, and the dynamics of the system 
cause it to move in the direction of the negative gradient of 
the potential. 

Similar to [4], we describe a population of cells by a 
vector, v, of length m = 4. The i’th entry of the vector is the 
number of cells in the region Ri surrounding the i’th steady 
state. The total number of cells in the population at time t is 
𝑁 t = 𝑣!(𝑡)!

!!! . The population vector v evolves 
according to the equation 𝑑𝑣 𝑑𝑡 = 𝐴 ∙ 𝑣 where A is an m×m 

transition rate matrix. The off-diagonal elements of A, Aij = 
kij, are the transition rates from region j to region i, and the 
diagonal elements are 𝐴!! = 𝑢! − 𝑘!"!!! , where ui is the 
proliferation rate of cells in region i. 

To estimate the transition rates kij among the different 
phenotypic regions of the dynamical system, we followed the 
approach in [5] based on applying the Wentzell-Freidlin 
theory [6] to Eq. (1) for the ‘small noise’ case. The key idea 
of this theory is that the most probable transition path from Rj 
at time 0 to Ri at time T, 𝜑!"∗ (𝑡) for 𝑡 ∈ [0,T], minimizes the 
action functional  

𝑆! 𝜑!" =
1
2

𝜑!" − 𝐹 𝜑!"
!
𝑑𝑡

!

!
 

over all possible paths. This optimal path is referred to as the 
minimum action path (MAP). We are interested in MAPs 
between fixed-point attractors (stable steady states) in regions 
R1-4. The MAPs connecting each pair of attractors were 
computed numerically by applying the minimum action 
method used in [7].  

The MAP 𝜑!"∗  is useful for our purposes because we find 
that kij, the transition rate from state Rj to state Ri, is related to 
𝑆! 𝜑!"∗  by the empirical equation  

𝑘!" = 𝛽 ∙ exp −𝛼 ∙ 𝑆! 𝜑!"∗
!

,           (3) 

where the parameters α, β and n are estimated by fitting Eq. 
(3) to the results of direct Monte Carlo simulations of the 
dynamic model (1). After these parameters are fit, future 
calculations for the kij, as the estrogen concentration changes, 
can be done deterministically by computing the MAP and 
using (3). 

While these methods have been applied to a specific 
problem in cancer therapy, they have much wider 
applicability.  The framework we used for modeling with 
ordinary differential equations has proven useful in many 
contexts, from modeling the cell cycle in yeast to examining 
the interaction between autophagy and apoptosis in 
mammalian cells. Also, the gradient landscape computation 
holds for any models of the form (1) of any dimension, but is 
probably most useful for visualizing models of dimension 2. 
Finally, the Wentzell-Freidlin theory can also be used for any 
models of the form (1).  
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