
  

  

Abstract— Cell growth and division are stochastic processes 
that exhibit significant amount of cell-to-cell variation and 
randomness. In order to connect single cell division dynamics 
with overall cell population, stochastic population models are 
needed. We summarize the basic concepts, computational 
approaches and discuss simple applications of this modeling 
approach to understanding cancer cell population growth as 
well as population fluctuations in experiments. 

I. INTRODUCTION TO STOCHASTIC POPULATION MODELS  

One of the simplest experiments is to grow a clonal 
population of cancer cells, starting with a single cell. 
Assuming there are no nutrient and space limitations, each 
cell will undergo a round of symmetric cell division, 
produces 2 daughter cells and in the process increases the cell 
population by 1.  Careful measurements, however, show that 
the time between each round of cell division is not a constant, 
but exhibit significant amount of variation [1]. For example, 
Fig. 1 shows the collected cell cycle time distribution (also 
known as waiting time distribution for cell division) for 
human dermal fibroblast (HDF) cells. We see that there is a 
significant portion of cells that divide at 30hrs, fully 10hrs 
longer than the average division time of 20hr. Some cells also 
divide significantly faster.  Quantitatively, this means that if 
we started from a single cell and counted the cell population, 
N, after time t, we would obtain a different N each time we 
perform the identical experiment. We can perform the 
experiment many times and build a statistical distribution of 
cell population P(N,t). This distribution contains information 
about underlying events such as cell division and death. 
Modeling such a population distribution is the subject of this 
chapter.  

There are many reasons why stochastic population 
dynamics is important in cancer. First, no tumors are alike, 
and even with genetically identical cells. The simple fact that 
cell division is stochastic suggests that tumor size will vary. 
Second, in a tumor environment, cell division and death 
depend on many factors, including phenotype of the cell. 
There is competition as well as cooperation between cells. 
Therefore the cell population distribution can be complex, 
and perhaps only rare parts of the distribution will lead to 
metastasis and cancer progression. These questions cannot be 
addressed without stochastic population models. 

To illustrate how to apply stochastic models to population 
growth, we revisit the cell population growth problem in the 
first paragraph. Let us consider how the distribution of cell 
number can change in time. Here we will assume Markovian 
dynamics, namely that cells do not have memory about the 
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environment long ago, and only grow according to the 
current condition. (Note that Markovian dynamics does not 
mean that there are no population correlations in time. This 
still can happen because it takes finite time for distributions 
to evolve.) In this limit, the cell number distribution at t+Δt is 
P(N, t +Δt) = u(N −1)P(N −1, t)+ (1−uN )P(N, t) , where u is 
the probability of a cell division to occur in Δt. u(N-1) is the 
total probability of N-1 cells to increase to N cells in Δt, since 
the division event can occur for any of the N-1 cells. 
P(N,t+Δt) increases when one of N-1 cell divides and give 
rise to N cells (first term). (1-uN) is the probability of no cells 
divided in time Δt (second term). From here, we can obtain 
the so called Master equation by subtracting both sides by 
P(N,t) and dividing by Δt. We obtain a differential equation 
of the form: 

∂P(N, t)
∂t

= k(N −1)P(N −1, t)− kNP(N, t)    (1) 

where k=u/Δt is the rate of cell division. This simple 
equation allows us to compute the cell number distribution 
over time. It is worth noting that even for this very simple 
example, the results show a large variation in the number of 
cells, as illustrated in Fig. 1. Here, k=1 and we see that there 
is substantial probability to observe N=100 at t=3, even 
though the average number of cells is close to 15. 

 
Fig. 1. (A) A simple cell growth experiment where each cell undergoes 
symmetric cell division. The division time is a stochastic variable. (B) 
Measured distribution of cell division time for HDF cells. The average is 
close to 20hr, but the variation is large. (C) The number of cells in a single 
stochastic simulation. The cell number increases stochastically. (D) After 
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simulating many growth trajectories, the cell number distribution shows that 
there can be a wide variation in the number of cells. 

From the distribution P(N,t), we can obtain all the 
relevant statistical information. For instance, the average cell 

population is just N(t) = N ⋅P(N, t)
N=1

∞

∑ . The mean squared 

variation is δN 2 = N 2 − N 2
= (N − N )2P(N, t)

N=1

∞

∑ . The 

average population and the variation in population can be 
measured experimentally, and the data can be used to extract 
parameters such as the cell division rate, k. 

 Going beyond the simple cell growth example, the same 
stochastic population framework can be used to examine 
more interesting scenarios where results maybe surprising. 
For example, in realistic conditions, there are cell division 
and cell death. Division and death decisions can also depend 
on conditions of the cell population such as the population 
composition or the total population [2]. For example, when 
space or nutrients becomes limiting, the cell division rate 
may slow down as the population increases. Thus, k would 
depend on N, e.g., k = k0 −γN . In this situation the 
population can reach a steady state, where there is a cell 
number distribution that does not change with time. Although 
microscopically, there continues to be cell division and cell 
death.  

The scenario becomes more interesting when there are 
several different types of cells that compete, or cooperate in a 
tumor environment. These interactions between different cell 
types can introduce complexity and unexpected behavior. In 
these case, we need to consider more complicated 
distributions, P(N,M,t), where N is the number of cell type 1, 
and M is the number of cell type 2. One can then write down 
Master equations like in Eq. 1 and consider dynamics of the 
population joint distribution. Here, stochastic population 
models may predict that multiple compositions of cell 
populations may exist for the same environment [3]. In an 
experiment, one may observe abrupt transitions between 
these different types of population in a random manner. 
Within the stochastic framework, there are also situations 
where the population may reach a ‘critical point’ where the 
population variation becomes very large and δN 2  diverges 
[4]. These stochastic population phenomena may have 
significant implications for cancer, and the mechanisms and 
consequences are still being examined. 

 It is also important to contrast the results from stochastic 
population models with models that consider the average 
population only. For example, for the simple cell division 
problem in Fig. 1, the equivalent average population model is 
dn/dt=kn, where n = N(t) . The average population model 
can be derived from the Master equation [5]. One can show 
that as n increases, the population variation becomes small 
when compared with the average. However, strictly speaking 
when the average population is small, the evolution of the 
average population depends on the population variation as 
well as higher order moments of the full distribution P(N,t). 
Therefore, when the population is small, the average 

population model in fact fails, and the stochastic population 
model is a more precise way of describing population change. 

II. STOCHASTIC SIMULATIONS FOR POPULATION MODELS 

For complex populations with several cell types and 
multiple dependences in cell division and cell death, the full 
Master equation may be too complex to solve using 
traditional methods. An alternative approach is to use 
stochastic simulation methods based on random generation 
of cell division and cell death events [6]. For the simplest 
problem discussed in Fig. 1, we can randomly pick a time of 
cell division according to the measured division time 
distribution. If there are N identical cells, then each cell may 
undergo replication according to the division time 
distribution. In this way, we can ‘simulate’ the growing 
population. To include other events such as cell death, or 
phenotypic change, multiple events must be randomly 
sampled according to their waiting time distributions. For 
exponential waiting time distributions, i.e., ρi (τ )∝ e

−kiτ , 
where i labels the type of event (death, division, or 
phenotypic change), we can chose a random number, r, and 
compare with exp(− kiΔτ )

i
∑  where Δτ  is a predefined 

small time increment. If r ≤ exp(− kiΔτ )
i
∑ , then an event 

will occur during the time increment. The identity of the 
event is determined by another random number compared 
with the relative weight of individual rate parameters 
ki / ki

i
∑ . By successively incrementing time and generating 

random numbers, we can generate stochastic ‘trajectories’ of 
cell populations over time. By performing the simulation 
many times, we can collect statistics from the trajectories 
and obtain the population distributions for the problem at 
hand. Therefore, the simulation approach is a direct test of 
the underlying assumptions on the cell division rate, cell 
death rate and any other rate parameters in the problem.  

III. QUICK GUIDE TO THE METHODS 

To implement stochastic population models, one 
typically assumes a waiting time distribution for all 
the stochastic events (division, death, phenotypic 
transformation, etc) in the problem.  Commonly, 
exponential waiting time distributions are assumed, 
which implies that rates of stochastic events, ki , are 
constants in time. Note that ki  can still depend on the 
current population N, or environmental variables. The 
other typical assumption is that the system is 
Markovian, i.e., all events occur according to the 
current population or environment of the system and 
there is no memory of past system state. It is useful to 
note that for typical eukaryotic cell division, the 
waiting time distribution is not exponential and 
therefore violate the first assumption.  
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A. Equations 
The equations used in stochastic populations models are 

different versions of the Master equation in Eq. 1. These 
equations can be complex, depending on the growth 
mechanism. For example, if cell division slows down as the 
population increases, k = k0 −γN , then Eq. 1 becomes: 

∂P(N, t)
∂t

= (k0 −γN )(N −1)P(N −1, t)− (k0 −γN )NP(N, t)  

Master equations can be solved using matrix methods. 
Stochastic simulation should produce the same P(N,t) as the 
Master equation. 

B.  Type of settings in which these methods are useful 
Stochastic population models are useful for examining 

underlying mechanisms that generate the cell population 
composition observe in experiments. By ‘mechanism’, we 
mean how cells control cell division, cell death, and 
phenotypic transformation events, and how environmental 
conditions influence these events. An example of such 
control is decreasing cell division rate with increasing cell 
population (when cells entering into a quiescent state). Here, 
this mechanism implies that k = k0 −γN . In complex tumor 
environments, there are multiple influences on cell division 
and death, and these influences are critical for determining 
cell population over time. Stochastic population models are 
also essential for understanding variations in cell populations 
seen in population dynamics. 
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