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Abstract

The constantly decreasing cost and increasing out-
put of current sequencing technologies enable large
scale metagenomic studies of microbial commu-
nities from diverse habitats. Therefore, fast and
accurate methods for taxonomic classification are
needed, which can operate on increasingly larger
datasets and reference databases. Recently, sev-
eral fast metagenomic classifiers have been de-
veloped, which are based on comparison of ge-
nomic k-mers. However, nucleotide comparison
using a fixed k-mer length often lacks the sensi-
tivity to overcome the evolutionary distance be-
tween sampled species and genomes in the ref-
erence database. Here, we present the novel
metagenome classifier Kaiju for fast assignment of
reads to taxa. Kaiju finds maximum exact matches
on the protein-level using the Borrows-Wheeler
transform, and can optionally allow amino acid
substitutions in the search using a greedy heuris-
tic. We show in a genome exclusion study that
Kaiju can classify more reads with higher sensi-
tivity and similar precision compared to fast k-
mer based classifiers, especially in genera that are
underrepresented in reference databases. We also
demonstrate that Kaiju classifies more than twice
as many reads in ten real metagenomes compared
to programs based on genomic k-mers. Kaiju can
process up to millions of reads per minute, and its
memory footprint is below 5 GB of RAM, allow-
ing the analysis on a standard PC. The program
is available under the GPL3 license at:
github.com/bioinformatics-centre/kaiju

*krogh@binf.ku.dk

Introduction

Using random DNA shotgun sequencing, it is pos-
sible to directly obtain total genomic DNA from an
environmental sample without the need for labora-
tory cultures. This “metagenomic” approach has
become a standard method for characterizing the
biodiversity, gene contents, and metabolic processes
of bacterial and archaeal communities and is used
on increasingly larger scales [20, 22, 21]. Due to de-
creasing costs of high-throughput sequencing and
the recent revelations of the importance of micro-
biomes for health and disease [12, 24], metagenomic
analyses are also likely to become part of routine
clinical diagnostics and detection of pathogens.

One of the major biological questions in metage-
nomics is the inference of the composition of a mi-
crobial community, ¢.e., the relative abundances
of the sampled organisms. Hence, given random
shotgun sequencing reads, the underlying compu-
tational problem is the assignment of individual
reads to taxa, usually by comparison to a reference
database. Traditionally, this task is solved by local
sequence alignment either on nucleotide level, when
comparing sequencing reads to a database of micro-
bial genomes, or on protein level when translating
reads to amino acid sequences and comparing to a
catalog of microbial genes. However, with increas-
ing volumes of microbial genome databases and se-
quencing output, computational methods need to
catch up, as traditional methods based on local se-
quence alignment are too slow in order to cope with
the increasing amount of data.

For the similar problem of mapping sequencing
reads to a reference genome, heuristic methods
achieve speed improvements of orders of magnitude
by using advanced index structures for fast identifi-
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cation and extension of short exact matches (seeds)
between query and a reference genome [7]. How-
ever, these mappers are not suited for classification
of metagenomic sequences, because they only work
on DNA in a usually semi-global alignment model
and assume near-identity of read sequences and ref-
erence genoie,

Thus, programs have been developed for fast taxo-
nomic classification of individual sequencing reads
by using hash-based index structures built from a
set of reference sequences, typically a database of
complete microbial genomes. To achieve a high
speed, these algorithms do not use traditional lo-
cal alignment methods, but rely on the identifica-
tion of k-mers, short exact matching substrings of
fixed length k, in order to compare two nucleotide
sequences. For the taxonomic assignment of reads,
these programs typically preprocess the reference
genomes by extracting all existing k-mers and stor-
ing them in the index for fast lookup. Then,
the k-mers contained in each sequencing read are
searched in this index and the read is assigned to
a taxon based on the matching genomes. Recent
programs following this paradigm are LMAT [2],
Kraken [25], and Clark [19]. For example, Kraken
builds an index from all k-mers found in the refer-
ence genomes and assigns each k-mer to the least
common ancestor of all species having that k-mer.
Then, during the search, Kraken matches the k-
mers found in the reads to this index and eventually
assigns the read to the taxon with most matching k-
mers by following a path from the root of the tree.
Clark on the other hand only uses discriminative
k-mers between sets of reference genomes belong-
ing to a pre-defined taxonomic rank, e.g., genus,
which are then used to classify reads to a node in
the taxonomic tree at that particular rank. While
this approach reduces the size of the index, it, how-
ever, prohibits the assignment of reads to higher
taxonomic levels in case of ambiguity and therefore
requires the user to build different indices for each
rank in the taxonomic tree.

These fast methods have so far been restricted to
classification at the DNA level where the fundamen-
tal requirement is a high sequence identity between
reads and the reference database, so that in the
minimal case at least one k-mer per read can be
found in the database. Therefore, these methods
work best for samples in which the majority of the
species have been previously sequenced and their
genomes are contained in the reference database

and when a classification at the deepest possible
level in the taxonomy is of importance. However in
many samples, no reference genomes are available
for a large fraction of the organisms. In such sam-
ples, a classification on the protein level is much
more sensitive, because protein sequences are more
conserved than the underlying DNA, and microbial
and viral genomes are typically densely packed with
protein-coding genes [3, 9].

Another general problem with metagenomic se-
quence comparison is a sampling bias in the phylo-
genetic distribution of available reference genomes.
On the one hand, certain model organisms or
pathogens, for example from human microbiomes,
are primary targets for microbial research and are
therefore over-represented in the genome databases.
On the other hand, species that were not possible
to culture in the laboratory are underrepresented,
which is a further challenge for the taxonomic clas-
sification of environmental samples, especially from
extreme environments. Additionally, the rate of
evolution is faster for microbes and especially for
viruses compared to eukaryotes due to higher repli-
cation rates. Thus, metagenomic studies continu-
ously find novel habitats where large fractions of the
sequence data remain unclassified or only show low
sequence similarities to the known species [17, 23].

For these reasons, there is a mneed for fast
metagenome classifiers, which are able to detect
evolutionary distant relatives of the species having
reference genomes, based on amino acid sequence
comparison. Several programs exist for seed-based
local alignment of protein sequences, like BlastP
and BlastX[1], or the faster methods using index
structures like RapSearch [26] and Diamond [4].
However, these alignment programs are generally
slower than the k-mer based methods [15], and they
report all alignments to the reference database,
which need to be analyzed further for taxonomic
classification.

Here we present Kaiju, a novel program for fast
taxonomic classification based on sequence compar-
ison to a reference database of microbial proteins.
We show that our approach is able to classify more
reads in real metagenomic data sets and evaluate
its performance in a benchmark study, which simu-
lates the classification of a novel genome taking the
sampling bias of reference databases into account.
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Figure 1: Genome exclusion benchmark: Genus-level sensitivity and precision for the five different types
of simulated reads. The x-axis denotes the number of genomes in the genus and the total number of
genomes in that category. For example, 212 of the measured 882 genomes belong to the 106 genera with
only two available genomes, and the data points show the mean sensitivity and precision across all 212
genomes in that category. Clark with k& = 20 is denoted by the dotted line.
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Results and Discussion

Kaiju translates metagenomic sequencing reads
into the six possible reading frames and searches for
the best matches of amino acid sequences in a given
database of annotated proteins from microbial ref-
erence genomes. The underlying sequence compari-
son algorithm uses the Borrows-Wheeler transform
of the protein database, which enables exact string
matching in time proportional to the length of the
query, to achieve a high classification speed.

In k-mer based methods, the size of k governs the
sensitivity and precision of the search. If k& is cho-
sen too large, no identical k-mers between read and
database might be found, especially for short or er-
roneous reads as well as for evolutionary distant se-
quences. If k is chosen too small, more false positive
matches will be found. Therefore, in order to not be
restricted by a prespecified k-mer size, Kaiju finds
maximum exact matches (MEMs) between reads
and database to achieve both a high sensitivity and
precision. Reads are directly assigned to species/
strain level, or in case of ambiguity, to higher level
nodes in the taxonomic tree. For example, if a read
contains an amino acid sequence, which is identi-
cal in two different species of the same genus, then
the read will be classified to this genus. Kaiju also
offers the possibility to extend matches by allow-
ing a certain number of amino acid substitutions at
the end of an exact match in a greedy heuristic ap-
proach using the BLOSUMG62 substitution matrix.
See Materials & Methods for a detailed description
of Kaiju’s algorithm.

Genome exclusion benchmark

Benchmarking a classifier’s accuracy can be done
by simulation studies, which, knowing the ground
truth about the simulated sequences, can assess the
sensitivity and precision of the classification. How-
ever, the benchmark protocol needs to reflect the
real obstacles in metagenomic studies, which do not
only include the bias and errors of the sequencing
technology, but also the microbial composition of
the sample at hand. Thus, we devised a simulation
benchmark, which emulates the often limited avail-
ability of reference genomes and its impact on the
classification performance when faced with a novel
strain or species found in the metagenomic sam-
ple. To this end, we created a reference database

of 2724 bacterial and archaeal genomes and se-
lected the subset of genomes belonging to genera,
which have at least two and most 10 genomes in
the database. For each of the 882 genomes in this
subset, we simulated four sets of Illumina and one
set of Roche/454 sequencing reads and created a
version of the reference database excluding that
genome. This stripped reference (now containing
2723 genomes) is then used to classify the simu-
lated reads and we measure the number of classified
reads, sensitivity and precision on genus as well as
phylum level (see Materials & Methods). The num-
ber of genomes per genus serves as an indicator for
the difficulty of the classification problem. For ex-
ample, it is much harder to assign a novel genome to
its genus when there is only one other genome of the
same genus already available in the database. On
the other hand, if there are ten genomes available
in a genus, it is typically much easier to classify the
reads from the excluded genome to its genus with
nine remaining genomes available.

We compared the performance of Kaiju to the two
k-mer based programs Kraken and Clark, which
performed best in speed and accuracy in a recent
benchmark study [15]. While Kraken uses a default
length of & = 31, the user can chose k in Clark
during database construction and values of k = 20
and k = 31 are recommended for highest sensitiv-
ity and highest precision respectively. Therefore we
chose values of £ = 20 and k& = 31 in Clark in or-
der to illustrate the influence of the choice of k on
the classification performance. Kaiju was run in
the fastest MEM mode (with minimum fragment
length m = 11) as well as in the heuristic Greedy
mode (with minimum score s = 65), allowing either
only one (Greedy-1) or up to five (Greedy-5) amino
acid substitutions during the search.

Genomes are binned into categories in the range 2
to 10 according to the total number of genomes in
the genus. Sensitivity and precision are calculated
as the mean across all genomes in each category for
each program and the five different types of simu-
lated reads. Figure 1 compares the genus-level sen-
sitivity and precision and Suppl. Fig. 1 shows the
mean percentage of classified reads for each genus
category.

As expected, all programs have the lowest percent-
age of classified reads and the lowest sensitivity in
those genera with only few available genomes and
highest sensitivity in genera with seven or more
genomes. Second, the read length is a major de-
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Figure 2: Sensitivity and precision averaged over all 882 measured genomes for the five types of reads.

terminant for sensitivity as there is a much higher
chance of finding a matching sequence to the ref-
erence database with increasing read length. Espe-
cially Kaiju gains a further increase of sensitivity
from longer reads, as the chance of an overlap to
a protein-coding region additionally increases with
read length. For example when looking at the Illu-
mina single-end 100nt reads, Greedy-5 achieves the
highest sensitivity of 29% of all programs in genera
with only two genomes, whereas Clark-k31 has the
lowest sensitivity of 16%. In contrast for Illumina
paired-end 250nt reads, Greedy-5 achieves 59%
sensitivity, whereas Clark-k31 only achieves 36%.
With increasing number of genomes per genus, the
difference between Greedy-5 and both Clark and
Kraken shrinks to a few percent, as the chance of
finding at least one k-mer per read increases with
more available reference genomes. Kaiju’s MEM
mode has lower sensitivity compared to Greedy
modes in all cases, because it only searches for exact
matches, which is especially visible in short reads.

Similarly, the precision of all programs is lowest in
genera with only two genomes and increases with
higher number of available genomes. However, the
differences between the programs is much smaller
compared to sensitivity, with Clark-k31 showing
the highest precision by a small margin in most
cases. When comparing Clark-k31 and Kraken-k31,
Clark has consistently a little bit lower sensitivity
and a bit higher precision than Kraken The dif-
ference between Clark-k20 and Clark-k31 nicely il-
lustrates the trade-off between sensitivity and pre-
cision depending on the k-mer size. Generally, the
loss in precision is consistently higher than the gain

in sensitivity when using k = 20.

Suppl. Fig. 2 shows the phylum-level sensitiv-
ity and precision. At this level, the difference
in sensitivity between Kaiju and Kraken is gen-
erally higher, because more reads are assigned to
ranks higher than genus by Kaiju’s LCA algorithm,
whereas Kraken’s weighted path algorithm usually
assigns reads to the lowest possible level. Again, the
increase in sensitivity with increasing read length is
higher in Kaiju compared to Kraken and Clark. For
example in genera with only two genomes, Greedy-
5 achieves between 41% (Illumina se-100nt) and
84% (Mlumina pe-250nt), whereas Clark achieves
between 17% and 44%. On phylum-level, all modes
of Kaiju achieve around 10% higher sensitivity than
Clark and Kraken even in the highest category with
genera containing 10 genomes.

Phylum-level precision is generally much higher (>
90%) for all methods and all read types compared
to genus-level, because the chance of false posi-
tive matches outside the correct phylum is lower.
Again, Clark-k20 consistently yields a much lower
precision compared to Clark-k31 and the other pro-
grams, however it also gains more sensitivity on
phylum-level classification compared to genus-level.
This can be attributed to the removal of k-mers
that are shared across genera for the genus-level
classification, which, however, can be used on the
phylum-level.

Figure 2 shows the mean genus-level and phylum-
level sensitivity and precision across all 882 mea-
sured genomes for the five different read types.
The biggest gap for sensitivity and precision be-
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tween the read types occurs for all programs be-
tween both paired-end and single-end 100nt and the
single-end 250nt Illumina reads. Highest sensitiv-
ity is achieved by Greedy-5, followed by Greedy-1,
MEM, Kraken, and Clark in the paired-end 250nt
reads. Precision is highest for Clark-k31 closely fol-
lowed by Kraken both on genus-level and phylum-
level. Especially in the 100nt reads, Kaiju’s pre-
cision is lower, but the gain in sensitivity remains
higher than the loss in precision. For the 250nt
reads and longer, Kaiju’s precision is marginally
lower than Kraken and Clark-k31, while sensitivity
is much higher. Clark-k20 shows lowest precision
in all read types compared to the other programs
both on genus and phylum levels.

In this analysis, we used cutoff values of minimum
required match length m = 11 in Kaiju’'s MEM
mode and minimum required match score s = 65 in
the Greedy modes. Suppl. Fig. 3 shows the trade-
off between sensitivity and precision of the classifi-
cation depending on the choice of m or s. Similar
to the choice of k in Clark, the sensitivity is highest
and precision is lowest for small cutoff values. In-
creasing the cutoffs results in lower sensitivity but
higher precision. However, the increase in sensitiv-
ity between m = 11 and m = 12 is higher than
the loss in precision in all datasets both on genus
as well as phylum-level. Similarly in the Greedy
modes, s = 65 also yields higher gain in sensitivity
than loss in precision.

Real metagenomes

In order to assess how many reads can actually be
classified in real metagenomic datasets, we arbitrar-
ily selected ten datasets from different microbiomes,
which were sequenced using various different HT'S
instruments. The two datasets from human saliva
and vagina samples were already used in [19]. The
other eight samples are derived from human and
cat gut, a freshwater lake, the Amazon river plume
and Baltic sea, xeric desert soil and from two biore-
actors, which were inoculated with microbes from
Wadden Sea sediment and compost environments.
Suppl. Tab. 1 lists metadata and accession num-
bers for the datasets. The same database compris-
ing 2724 genomes from our exclusion benchmark
serves as a reference database. We classified the
ten datasets using Kraken (k = 31) and Kaiju in
MEM and Greedy-5 modes with more conserva-
tive cutoff values of m = 12 and s = 70 respec-

tively, which showed on average a similar precision
as Kraken across the five types of reads in our exclu-
sion benchmark, see Suppl. Fig. 3. We also mapped
the four human and cat samples to their respective
host genomes using BWA [14], and the percentage
of mapped reads was at most 2%.

Figure 3 shows the percentage of classified reads
from each dataset for MEM, Greedy-5, and Kraken,
as well as the overlap and combined percentage of
Greedy-5 and Kraken. Generally, Kaiju’s MEM
mode classifies between 13.1% (Human Vagina)
and 48.8% (Bioreactor Sediment) more reads than
Kraken, which is further increased to 17.8% and
56.6% in Kaiju’s Greedy-5 mode. The percent-
ages of reads that are classified by Kraken, but un-
classified by Greedy-5 range between 0.3% (Desert
Soil and Lake) and 4.4% (Human Gut). Across all
datasets, the number of reads that were classified
by both Greedy-5 and Kraken (overlap) varies be-
tween 2.8% (Lake) and 42.4% (Human Vagina). By
merging the results from Greedy-5 and Kraken, be-
tween 24.7% (Desert Soil) and 73.1% (Bioreactor
Sediment) of the total reads can be classified.

As expected, the environmental samples, espe-
cially from the extreme xeric desert, but also the
aquatic microbiomes, pose the biggest challenges
for taxonomic assignment. In those samples Kaiju’s
protein-level comparison with substitutions allows
for a more sensitive sequence comparison result-
ing in more classified reads. However, even in the
human microbiomes Kaiju’s protein-level classifica-
tion adds more than 20% additional classified reads
to Kraken’s result.

We also run each dataset through Clark (k = 31)
with its phylum-level database and it classified
fewer reads than Kraken in all cases (data not
shown). In principle, if only a small fraction of
reads were classified, classification could be done
using a smaller k-mer size in Kraken and Clark or
smaller cutoff values in Kaiju in order to increase
the number of classified reads. The trade-off, how-
ever, would be a decreased precision as shown in
our benchmark and also discussed in [19].

HiSeq and MiSeq mock communities

Additionally to the real metagenomes, we also mea-
sured Kaiju’s and Kraken’s performance using the
same metrics and reference database on the HiSeq
and MiSeq mock community datasets that were
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Figure 3: Percent of classified reads in the ten real metagenomes for Kaiju MEM (m = 12) and Greedy-5
(s = 70) as well as Kraken (k = 31). The Merged column shows the percentage of reads that are classified
by at least one of Greedy-5 or Kraken. The Venn-Bar-diagram visualizes the percentage of reads that are
classified either only by Kraken (blue), Greedy-5 (orange), or both (yellow). Gray bars in the human/cat
samples denote the percentage of reads mapped to the respective host genomes.

MEM  Greedy Kraken Merged
Human Vagina 58.6 63.3 45.5 66.4
Human Saliva 56.1 61.8 374 64.6
Human Gut 51.6 56.7 34.7 61.1
Cat Gut 51.8 58.9 23.0 63.1
Lake 26.5 33.7 3.1 34.0 |
River Plume 31.8 38.8 5.8 39.3 |
Baltic Sea water 25.3 33.9 5.6 34.8
Desert Soil 19.3 24.4 3.8 24.7 |
Bioreactor Sediment 65.0 72.8 16.2 73.1 |
Bioreactor Compost 50.3 58.5 15.1 59.5
I 43.6 50.3 19.0 52.1

used in [25, 19]. They comprise 10k real sequenc-
ing reads from 10 bacterial strains with mean read
length of 92nt (HiSeq) and 156nt (MiSeq). All
strains belong to genera that are associated with
human microbiomes or human pathogens and have
typically many reference genomes available. Suppl.
Tab. 2 shows sensitivity and precision on both
genus and phylum-level of Kaiju in Greedy-5 mode
and Kraken (k = 31) using the same reference
database as above. In the HiSeq dataset, Kaiju has
73.3% sensitivity (Kraken: 78.0%) and 94.4% pre-
cision (Kraken: 99.2%) on genus level, and 78.1%
sensitivity (Kraken: 78.8%) and 98.3% precision
(Kraken: 99.7%) on phylum level. Because the
short reads can only yield short amino acid frag-
ments, which are more likely found across genera,
many reads are assigned to higher ranks result-
ing in a lower genus-level sensitivity. Addition-
ally, the short read length results in generally lower
overlap with protein-coding regions and therefore
Kraken yields a higher sensitivity, because it can
classify those. In the MiSeq dataset, the difference
between both programs on genus level is similar,
whereas Greedy-5 yields 8% higher sensitivity and
1% higher precision on phylum-level compared to
Kraken.

Runtime and Memory

The read dataset for the runtime benchmark con-
tained 27.24m reads comprised of 10k randomly
sampled reads from each of the 2724 genomes in
our accuracy benchmark, which served again as the
reference database. For the five different types of
reads, the classification speed of Clark and Kraken
using k = 31 and of Kaiju’s modes MEM, Greedy-
1, and Greedy-5 was measured using 25 parallel
threads (see Materials & Methods for specification
of the hardware).

Figure 4 shows the number of processed reads per
second (rps). The classification of the short single-
end Illumina 100nt reads is the fastest in all pro-
grams (Kaiju MEM: 108k rps, Kraken: 165k rps,
Clark: 93k rps), whereas classification of the Il-
lumina paired-end 250nt (MEM: 58k rps, Kraken:
24k rps, Clark: 19k rps) takes the longest time.
In the long reads, Kaiju can benefit from search
space pruning by finding long MEMs first, whereas
Kraken and Clark have to analyze more k-mers
compared to the shorter reads. Naturally, Kaiju’s
MEM mode is much faster than the Greedy modes,
which extend the search space and also need to cal-
culate the scores for each match. Depending on the
read type, Greedy-5 classifies between 13k and 33k
rps. Greedy-1 with only one allowed mismatch is


https://doi.org/10.1101/031229
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/031229; this version posted November 16, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

454-5e-350 v Am <0
llumina-pe-250  MOWPA .
lllumina-pe-100 W/ A H «O
lllumina-se-250 v A 3
llumina-se-100 v A H o 2

10k 30k 50k 70k 90k 110k
Reads per second

130k 150k 170k

o MEMA Greedy-1 \ Greedy-5 <> Kraken-k31 [l Clark-k31

Figure 4: Classification speed in processed reads
per second using 25 threads for the five read types.

faster than Greedy-5 and can classify between 28k
and 50k rps. Interestingly, Kaiju’s Greedy mode
is faster in longer reads compared to the 100nt
reads. This is due to the pruning of the search space
by discarding query sequences that cannot achieve
higher scores than the best scoring match, which
is usually found earlier in longer reads (see Materi-
als & Methods). While Kraken is the fastest pro-
gram in most cases, especially for the short reads,
Kaiju’s Greedy-5 generally takes the longest time,
nicely demonstrating the trade-off between speed
and sensitivity. However, Kaiju’s MEM as well as
Greedy modes were faster than Kraken and Clark in
the Illumina paired-end 250nt reads, and the whole
dataset of 27.24m reads is classified in ~35 minutes.

The measured peak memory consumption during
the classification is 4.4 GB for Kaiju, 72 GB for
Kraken and between 65 and 78 GB for Clark de-
pending on the read length.

The construction of Kaiju’s database index from
the protein sequences takes 10 minutes with peak
memory usage of 10 GB using 25 threads (Kraken:
1h26m/165 GB, Clark: 3h57m/152 GB) and
Kaiju’s final index size on disk is 3.6 GB (Kraken:
73 GB, Clark: 39 GB).

Conclusion

When performing sequence comparison, as in the
case of taxonomic assignment using a reference
database, there is the obvious trade-off between
an algorithm’s speed and accuracy. While the
traditional local alignment would return optimal
alignments, its slow runtime prohibits its use on

large HTS datasets. On the other hand, while k-
mer based methods are very fast, they often lack
sensitivity and a big fraction of the metagenomic
reads might remain unclassified, as can be seen
from Figure 3. Kaiju therefore uses maximum ex-
act matches (with optional substitutions) on the
protein-level instead nucleotide-level in order to in-
crease sensitivity of the classification while main-
taining a high precision. By using the Borrows-
Wheeler transform as an index for the reference
protein database, Kaiju is still fast enough for clas-
sifying up to millions of reads per minute, depend-
ing on the read length and the number of allowed
mismatches. Additionally, Kaiju’s memory foot-
print is small enough (below 5 GB) for running the
program on a standard PC/laptop.

The aim of using protein-level sequence compari-
son is to improve the classification of metagenomes
comprising species that are evolutionary distant
to the species in the reference or belong to gen-
era that have only few reference genomes avail-
able. Therefore, we focused on those genera with
ten or less genomes in our genome exclusion bench-
mark, because the classification problem becomes
easier once many reference genomes are available
and can be mostly accomplished by nucleotide-level
sequence comparison, which is also better suited for
strain typing because of the finer resolution regard-
ing SNPs. Our benchmark on 882 genomes and
five types of simulated reads shows that Kaiju con-
sistently achieves a much higher sensitivity with
only little loss of precision compared to Kraken and
Clark, which use fixed-length k-mers. The differ-
ence was especially visible in genera with only few
available genomes.

The obvious disadvantage of protein-level sequence
classification is the inability to classify reads orig-
inating from non-protein-coding genomic regions.
Especially when the genomes of the sequenced
microbial strains are also contained in the ref-
erence database, Kaiju would be less sensitive
than nucleotide-level classifiers, which can assess
the entire genome, as seen in the HiSeq and
MiSeq datasets. However, due to the high den-
sity of protein-coding genes in microbial genomes,
the probability of overlap between individual se-
quencing reads and protein-coding genes increases
substantially with increasing read lengths. Fur-
thermore, when using paired-end sequencing, the
chance of one mate overlapping with a protein-
coding gene is higher than for single-end sequenc-
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ing, which was also shown in our benchmark where
longer and paired-end reads had higher sensitivity
compared to shorter single-end reads.

In our set of ten randomly selected real metage-
nomic datasets, Kaiju consistently classifies on av-
erage twice as many reads as Kraken. The high-
est differences are observed in samples from non-
human microbiomes, showing that especially the
classification of environmental samples with high
evolutionary distances to reference genomes can
gain from Kaiju’s more sensitive sequence compar-
ison. By combining Kaiju’s and Kraken’s output,
between 24% and 73% of reads can be classified
across the various samples.

Principally, Kaiju’s algorithm is not limited to as-
signing reads to taxa, but can also be used for fast
searching in arbitrary protein databases, for exam-
ple when querying novel bacterial genomes against
a database of resistance genes. The certainly ex-
pected increase of reference database volumes in
the coming years can easily be handled by Kaiju,
due to the usage of a sparse suffix array and FM-
index, resulting in a small memory footprint.

Materials and Methods

Metagenome classifier

Kaiju classifies individual metagenomic reads us-
ing a reference database comprising the protein-
coding genes of a set of microbial genomes. We
employ a search strategy, which finds maximal ex-
act matching substrings (MEMs) between query
and database using a modified version of the back-
wards search algorithm in the Borrows-Wheeler
Transform [6, 8]. The Borrows-Wheeler Trans-
form (BWT) [5] is a text transformation that con-
verts the reference sequence database into an eas-
ily searchable representation, which allows for ex-
act string matching between a query sequence and
the database in time proportional to the length of
the query. Whereas in the context of read map-
ping, MEMs have been used as a fast method for
identifying seeds of mapping regions in the refer-
ence genome, for example in [16, 13], we use MEMs
to quickly find those sequences in the reference
database, which share the longest possible subse-
quence with the query. Lookups in the BWT are
performed using a checkpointed variation of the

FM-index [6], which allows for decreasing the oth-
erwise large memory requirement due to the size
of the amino acid alphabet. The initial suffix ar-
ray used for calculating the FM-index is saved as
a sparse suffix array, which further reduces the size
of the database index with only little impact on
runtime, because the suffix array is only needed to
extract the name of the database sequence once the
best match for a read is found.

First, Kaiju translates each read into the six pos-
sible reading frames, which are then split at stop
codons into amino acid fragments. These frag-
ments are sorted by length, and, beginning with
the longest fragment, queried against the reference
database using the backwards search in the BWT
(Figure 5). Given a query fragment of length n and
the minimum required match length m, the back-
wards search is started from all positions between
n and n — m in the query and the longest MEMs
are retained. If one or more matches of length
I > m are found, m is set to [ and the next frag-
ment is queried against the database if its length
is at least [, otherwise the search stops. Once the
search is finished and one or more matches of max-
imum length are found, the taxon identifiers from
the corresponding database sequences are retrieved
from the suffix array and printed to the output. If
matches are found in multiple taxa, Kaiju deter-
mines their least common ancestor and outputs its
taxon identifier. Thus, each read is always classi-
fied to the lowest possible taxonomic level given the
ambiguity of the search result.

The minimum required MEM length m is the major
parameter for trading sensitivity versus precision
(with little impact on runtime). If the error rate e of
the sequencing reads is known and the evolutionary
distance between reference genome and sequenced
genome is negligible, m can be estimated from e and
the read length [16]. However, in metagenomics,
the evolutionary distance, which adds variation on
top of sequencing errors, is not known a priori. At
least, one can estimate the false positive rate by
counting random matches. To this end, we created
a shuffled version of the microbial subset of NCBI’s
NR protein database, using uShuffle [11] with a
window length of 100 amino acids, and searched
for MEMs between simulated metagenomic reads
and the shuffled database. Suppl. Fig. 5 shows
the cumulative sum of random matches sorted by
the length of the match, and one can observe that
~95% have length < 11. When classifying simu-
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Figure 5: Kaiju’s algorithm for maximum exact matching (right side) and greedy matching (left side).
Grey lines denote the translated amino acid fragments that are searched in the database, whereas red
and orange lines indicate matches in MEM and Greedy mode. Blue lines indicate fragments that are
not evaluated because their length or maximum obtainable score is lower than the length or score of the

best match from previously searched fragments.

lated reads against the original database, more than
75% of wrong classifications and only ~2% of cor-
rect classifications have length < 11. We therefore
set m = 11 as the default minimum match length
in Kaiju.

Searching for MEMs is the fastest possible search
strategy, but its sensitivity decreases with increas-
ing evolutionary distance between query and target,
where more and more amino acid substitutions oc-
cur and exact matches become shorter. Therefore,
allowing for substitutions during the backwards
search can bridge mismatches and extend the match
at the cost of an exponential increase of runtime
depending on the number of allowed mismatched
positions. Because of the rapid expansion of the
search space, especially with the 20 letter amino
acid alphabet, one could employ a greedy heuris-
tic, in which substitutions are only introduced at
the end of a match instead of all positions in the
query sequence. Therefore, we also implemented a
Greedy search mode in Kaiju, which first locates all
MEMs of a minimum seed length (default 7) and
then extends them by allowing substitutions at the
left ends of each seed match. From there, the back-
wards search continues until the next mismatch oc-
curs. Eventually the search stops once the left end
of the query is reached or if the maximum allowed
number of substitutions has been reached.

Since amino acid substitutions in homologous se-
quences are non-uniform, a further speed-up can
be gained by prioritizing the most likely substitu-
tions at each position. By using an amino acid
substitution model, a total score for each match
can be calculated, as in standard sequence align-
ment, which is then used to rank multiple matches
and select the taxon from the database for classi-
fication. Therefore, after the translation of a read
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into a set of amino acid fragments, we rank the
fragments by their BLOSUMG62 score and start the
database search with the highest scoring fragment.
For each substituted amino acid the modified frag-
ment is placed back into the search list according to
its new (now lower) score. Once a match is found,
which has a higher score than all remaining frag-
ments in the search list and a score above the min-
imum score threshold s, the algorithm stops and
this highest-scoring match is used for classifying the
read. Again, the minimum required score s neces-
sary for avoiding random matches can be estimated
by using a shuffled database and we use s = 65 as
default value for Kaiju’s Greedy mode.

Kaiju is implemented as a command-line program
in C/C++. It reads input files in either FASTA
or FASTQ format containing the (single-end or
paired-end) reads and outputs one line for each read
(or read pair), containing the read name and the
NCBI taxon identifier of the assigned taxon as well
as the length /score of the match. Optionally, Kaiju
can also produce a summary file with the number of
reads assigned per taxon, which can be loaded into
Krona [18] for interactive visualization. We also in-
clude a utility program, which can merge the clas-
sification results from different runs or programs,
e.g. for merging Kaiju and Kraken results.

Performance evaluation

The primary goal of Kaiju’s protein-level classifi-
cation is to improve classification of those parts
of a metagenome that are only distantly related
to the known sequences or belong to a branch of
the phylogeny that is underrepresented in the ref-
erence database. We therefore devised a benchmark
study, which addresses this problem by simulating
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the classification of metagenomic reads from a novel
strain or species, which is not contained in the ref-
erence database.

For our benchmark dataset, we downloaded a snap-
shot of all complete bacterial and archaeal genomes
from the NCBI FTP server (date: 2014-12-16).
Only those genomes were retained that are as-
signed to a species belonging to a genus and have a
full chromosome with annotated proteins, resulting
in a total of 2724 genomes belonging to 692 dis-
tinct genera. Suppl. Fig. 4 shows the distribution
of genomes to genera, illustrating the large vari-
ance in the number of sequenced genomes for each
genus. For example, the genus Streptococcus con-
tains 121 genomes, whereas 405 genera have only
one available genome, 106 genera have two avail-
able genomes, and so on. The distribution clearly
illustrates a sampling bias and the sparseness across
large parts of the phylogeny.

From the total of 2724 genomes, we extracted
those genera, which have at least 2 and at most
10 genomes assigned. This resulted in a list of
242 genera comprising 882 genomes, for which we
measure the classification performance individually.
For each of the 882 genomes we simulated five sets
of HTS reads and created a reference database not
containing this genome, which is then used to clas-
sify the simulated reads. Reads were simulated
from the whole genome (including plasmids) using
ART [10]. The four sets of Illumina reads contain
50k reads of length either 100nt or 250nt, both in
single-end and paired-end mode. Another set of
50k Roche/454 reads with minimum length of 50nt
and mean length of 350nt was also simulated using
ART.

To evaluate classification accuracy, we measure the
number of classified reads as well as sensitivity and
precision on genus and phylum levels. Sensitivity
is calculated as number of reads assigned to the
correct genus/phylum divided by the total num-
ber of reads in the input. Precision is calculated
as the number of reads assigned to the correct
genus/phylum divided by the number of classified
reads minus the number of reads that were clas-
sified correctly to a rank above genus level. The
same measurements were used in [25]. Kraken (ver
0.10.4b) and Clark (ver 1.1.3) were run in their de-
fault modes using k = 31 for highest precision, and
Clark was also run using k£ = 20. Kaiju was run in
MEM mode using m = 11...14 and in Greedy-1
and Greedy-5 modes (allowing only 1 or up to 5
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substitutions) using s = 55.. . 80.

Speed measurements were run on an HP Apollo
6000 System ProLiant XL230a Gen9 Server, which
has two 64-bit Intel Xeon E5-2683 2GHz CPUs (14
cores each), 128GB DDR4 memory and a 500GB
7200rpm SATA disk (HP 614829-002). Kraken and
Clark were run in default modes with £ = 31 and
Kaiju was run in MEM (m = 12) as well as Greedy-
1 and Greedy-5 (s = 65) modes. Performance was
measured in processed reads (or read pairs) per sec-
ond (rps) using 25 parallel threads. While Kaiju
and Clark need to preload to index into memory
before the classification starts, Kraken can either
preload the index or only load necessary segments
during the classification. We therefore measured
Kraken’s speed using both options, and it turned
out that Kraken runs faster without preloading on
our hardware. We therefore report its performance
without preloading. For each of the five types
of simulated reads from our exclusion benchmark,
we created a dataset comprising 10k reads from
each genome in the reference database, resulting in
27.24m reads for each read type. Each combination
of program and read type was measured four times
to reduce impact of caching and I/O fluctuations
and the fastest run of the replicates is reported.

Acknowledgments

The research leading to these results has received
funding from the European Union 7th Framework
Programme FP7,/2007-2013 under grant agreement
nr. 265933.

References

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and
D. Lipman. Basic local alignment search tool.
J Mol Biol, 215:403-10, Oct 1990.

S. Ames, D. Hysom, S. Gardner, G. Lloyd,
M. Gokhale, and J. Allen. Scalable metage-
nomic taxonomy classification using a ref-
erence genome database. Bioinformatics,
29:2253-60, Sep 2013.

S. Bentley and J. Parkhill. Comparative ge-
nomic structure of prokaryotes. Annu Rev
Genet, 38:771-92, 2004.


https://doi.org/10.1101/031229
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/031229; this version posted November 16, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[4] B. Buchfink, C. Xie, and D. Huson. Fast and speed of metagenome analysis tools. Preprint,

sensitive protein alignment using DIAMOND. doi:10.1101/017830, 10 2015.
Nat Methods, 12:59-60, Jan 2015.
[16] Y. Liu and B. Schmidt. Long read alignment

[5] M. Burrows and D. Wheeler. A block sorting based on maximal exact match seeds. Bioin-
lossless data compression algorithm. Technical formatics, 28:1318-1324, Sep 2012.

Report Technical Report 124, Digital Equip-
ment Corporation, 1994. [17] P. Menzel, S. Gudbergsdéttir, A. Rike, L. Lin,
Q. Zhang, P. Contursi, M. Moracci, J. Krist-

[6] P. Ferragina and G. Manzini. Opportunistic jansson, B. Bolduc, S. Gavrilov, N. Ravin,
data structures with applications. In Proceed- A. Mardanov, E. Bonch-Osmolovskaya,
ings of the 41st Annual Symposium on Foun- M. Young, A. Krogh, and X. Peng. Compar-
dations of Computer Science, FOCS ’00, pages ative metagenomics of eight geographically
390—, Washington, DC, USA, 2000. IEEE remote terrestrial hot springs. Microb Ecol,
Computer Society. 70:411-24, Aug 2015.

[7] N. Fonseca, J. Rung, A. Brazma, and J. Mar- [18] B. Ondov, N. Bergman, and A. Phillippy. In-
ioni. Tools for mapping high-throughput se- teractive metagenomic visualization in a web
quencing data. Bioinformatics, 28:3169-77, browser. BMC' Bioinformatics, 12:385, 2011.
Dec 2012.

[19] R. Ounit, S. Wanamaker, T. Close, and

[8] J. Frellsen, P. Menzel, and A. Krogh. Algo- S. Lonardi. CLARK: fast and accurate classifi-
rithms for mapping high-throughput dna se- cation of metagenomic and genomic sequences
quences. In A. Brahme, editor, Comprehensive using discriminative k-mers. BMC Genomics,
Biomedical Physics, pages 41 — 50. Elsevier, 16:236, 2015.

Oxford, 2014.
[20] C. Riesenfeld, P. Schloss, and J. Handelsman.

[9] R. A. Garrett and H.-P. Klenk, editors. Ar- Metagenomics: genomic analysis of microbial
chaea: FEwvolution, Physiology, and Molecular communities. Annu Rev Genet, 38:525-52,
Biology. Wiley-Blackwell, 2007. 2004.

[10] W. Huang, L. Li, J. Myers, and G. Marth. [21] N. Segata, D. Boernigen, T. Tickle, X. Mor-
ART: a next-generation sequencing read sim- gan, W. Garrett, and C. Huttenhower. Com-
ulator. Bioinformatics, 28:593-4, Feb 2012. putational meta’omics for microbial commu-

. ) ] nity studies. Mol Syst Biol, 9:666, 2013.

[11] M. Jiang, J. Anderson, J. Gillespie, and
M. Mayne. ushuffle: a useful tool for shuffling [22] S. Shokralla, J. Spall, J. Gibson, and M. Ha-
biological sequences while preserving the k-let jibabaei. Next-generation sequencing technolo-
counts. BMC' Bioinformatics, 9:192, 2008. gies for environmental DNA research. Mol

Ecol, 21:1794-805, Apr 2012.

[12] J. Kinross, A. von Roon, E. Holmes, A. Darzi,
and J. Nicholson. The human gut microbiome: [23] S. Sunagawa, L. Coelho, S. Chaffron, J. Kul-
implications for future health care. Curr Gas- tima, K. Labadie, G. Salazar, B. Djahan-
troenterol Rep, 10:396-403, Aug 2008. schiri, G. Zeller, D. Mende, A. Alberti,

. L F. Cornejo-Castillo, P. Costea, C. Cruaud,

[13] H. Li.  Aligning sequence 'reads,’ clone se- F. d’Ovidio, S. Engelen, 1. Ferrera, J. Gasol,
quences and assembly contigs with BWA- L. Guidi, F. Hildebrand, F. Kokoszka, C. Lep-
MEM. Preprint, arXiv:1303.3997v2, 2013. oivre, G. Lima-Mendez, J. Poulain, B. Pou-

[14] L. Li, S. McCorkle, S. Monchy, S. Taghavi, lqs, M. Royo.—Lllonch, H. Sarmento, S. Vieira-
and D. van der Lelie. Bioprospecting Silva, C. Dlmu.sr, M. Picheral, S. Searson,
metagenomes: glycosyl hydrolases for convert- S. Kandels-Lewis, Tara Oceans coordmatgrs,
ing biomass. Biotechnol Biofuels, 2:10, 2009. C. Bowler, C. de Vargas, G. Gorsky, N. Grim-

sley, P. Hingamp, D. Iudicone, O. Jaillon,

[15] S. Lindgreen, K. L. Adair, and P. Gard- F. Not, H. Ogata, S. Pesant, S. Speich,

ner. An evaluation of the accuracy and

12

L. Stemmann, M. Sullivan, J. Weissenbach,


https://doi.org/10.1101/031229
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/031229; this version posted November 16, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

P. Wincker, E. Karsenti, J. Raes, S. Aci-
nas, and P. Bork. Structure and function
of the global ocean microbiome. Science,
348:1261359, May 2015.

[24] W. Wade. The oral microbiome in health and
disease. Pharmacol Res, 69:137-43, Mar 2013.

[25] D. Wood and S. Salzberg. Kraken: ultrafast
metagenomic sequence classification using ex-
act alignments. Genome Biol, 15:R46, Mar
2014.

[26] Y. Zhao, H. Tang, and Y. Ye. RAPSearch2:
a fast and memory-efficient protein similar-
ity search tool for next-generation sequencing
data. Bioinformatics, 28:125-6, Jan 2012.

13


https://doi.org/10.1101/031229
http://creativecommons.org/licenses/by-nc-nd/4.0/

