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Abstract  26 

The microbiome is the collection of all microbial genes and can be investigated by sequencing highly 27 

variable regions of 16S ribosomal RNA (rRNA) genes. Evidence suggests that environmental factors and 28 

host genetics may interact to impact human microbiome composition. Identifying host genetic variants 29 

associated with human microbiome composition not only provides clues for characterizing microbiome 30 

variation but also helps to elucidate biological mechanisms of genetic associations, prioritize genetic 31 

variants, and improve genetic risk prediction. Since a microbiota functions as a community, it is best 32 

characterized by beta diversity, that is, a pairwise distance matrix. We develop a statistical framework and 33 

a computationally efficient software package, microbiomeGWAS, for identifying host genetic variants 34 

associated with microbiome beta diversity with or without interacting with an environmental factor. We 35 

show that score statistics have positive skewness and kurtosis due to the dependent nature of the pairwise 36 

data, which makes P-value approximations based on asymptotic distributions unacceptably liberal. By 37 

correcting for skewness and kurtosis, we develop accurate P-value approximations, whose accuracy was 38 

verified by extensive simulations. We exemplify our methods by analyzing a set of 147 genotyped 39 

subjects with 16S rRNA microbiome profiles from non-malignant lung tissues. Correcting for skewness 40 

and kurtosis eliminated the dramatic deviation in the quantile-quantile plots. We provided preliminary 41 

evidence that six established lung cancer risk SNPs were collectively associated with microbiome 42 

composition for both unweighted (P=0.0032) and weighted (P=0.011) UniFrac distance matrices. In 43 

summary, our methods will facilitate analyzing large-scale genome-wide association studies of the human 44 

microbiome. 45 
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Introduction 51 

The human body is colonized by bacteria, viruses and other microbes that exceed the number of human 52 

cells by at least 10-fold and that exceed the number of human genes by at least 100-fold. The relationship 53 

between a person and his or her microbial population, termed the microbiota, is generally mutualistic. The 54 

microbiota may promote human health by inhibiting infection by pathogens, conditioning the immune 55 

system, synthesizing and digesting nutrients, and maintaining overall homeostasis. The microbiome, 56 

which is the collection of all microbial genes, can be investigated through massively parallel, next-57 

generation DNA sequencing technologies. By amplifying and sequencing highly variable regions of 16S 58 

ribosomal RNA genes that are present in all eubacteria, cost-effective and informative microbiome 59 

profiles down to the genus level are obtained.  60 

The human microbiome has been associated with diseases, including obesity1, inflammatory bowel 61 

disease (IBD)2, colorectal cancer3 and breast cancer4. Thus, identifying factors that have a sustained 62 

impact on the microbiome is fundamental for elucidating its role in health conditions and for developing 63 

treatment strategies. Increasing evidence suggests that microbiome composition at a specific site of the 64 

human body is impacted by environmental factors5,6, host genetics7,8, and possibly by their interactions. In 65 

the mouse, quantitative trait loci (QTL) studies have identified loci contributing to the variation of the gut 66 

microbiome using linkage analysis9,10. Recently, Goodrich et al.11 systematically investigated the 67 

heritability of the human gut microbiome by comparing monozygotic twins to dizygotic twins and found 68 

substantial heritability in different microbiome metrics, suggesting the important role of host genetics on 69 

gut microbiome diversity. Associations between individual host genetic variants and microbiome taxa 70 

abundances have also begun to emerge in other human samples7,8,12. These studies suggest that genome-71 

wide association studies (GWAS) have great potential to identify host genetic variants associated with 72 

microbiome diversity.  73 

GWAS of complex human diseases have identified many risk SNPs; however, the biological mechanisms 74 

are largely unknown for the majority of the risk SNPs. QTL studies of intermediate traits, e.g., gene 75 
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expression13,14, DNA methylation15,16, chromatin structure17,18, and metabolite production19,20, have 76 

provided useful insights on biological mechanisms of the GWAS findings. The human microbiome at a 77 

specific body site is another important and informative intermediate trait for interpreting GWAS signals. 78 

Knights et al.8 reported that a risk SNP for IBD located in NOD2 was associated with the relative 79 

abundance of Enterobacteriaceae in the human gut microbiome. Tong et al.7 show that a loss-of-function 80 

allele in FUT2 that increases the risk of developing Crohn’s Disease (CD) may modulate energy 81 

metabolism of the gut microbiome. In both examples, the microbiome is a potential intermediate for 82 

explaining the association between risk SNPs and disease risks, although a formal mediation analysis is 83 

required based on samples with genotype, microbiome, and disease status data. Moreover, identifying 84 

microbiome-associated host genetic variants has the potential to prioritize SNPs for discovery and to 85 

improve the performance of polygenetic risk prediction.    86 

Three types of microbiome metrics can be derived as phenotypes for GWAS analysis. First, for each 87 

taxon at a specified taxonomic level (phylum, class, order, family, genus, and species), we calculate the 88 

relative abundance (RA) of the taxon as the ratio of the number of sequencing reads assigned to the taxon 89 

to the total number of sequencing reads. In 16S ribosomal RNA sequence profiles, approximately 100-90 

200 taxa with average RAs ≥0.1% (from the phylum level to the genus level) across samples are abundant 91 

enough for QTL analysis. One can perform a Poisson regression to examine the association between RA 92 

of each taxon and each SNP. Significant associations are identified using Bonferroni correction (P<5×10-
93 

8/200=2.5×10-10) or by controlling FDR at an appropriate level. Second, multiple alpha-diversity metrics21 94 

can be calculated to reflect the richness (e.g., number of unique taxa) and evenness of each microbiome 95 

community after a procedure called rarefication, that eliminates the dependence between estimated alpha 96 

diversity and the variable total number of sequencing reads across subjects. Once alpha-diversity metrics 97 

are derived, one may perform standard GWAS with alpha diversity as the phenotype using linear 98 

regression.  99 
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Because a microbiota functions as a community, the most important analysis for a microbiome GWAS 100 

may be by assessing the complete structure of the community by using a pairwise microbiome distance 101 

matrix (or beta-diversity) of the microbial community. Microbiome distances can be defined in different 102 

ways, based on using phylogenetic tree information or each taxon’s abundance information. Bray–Curtis 103 

dissimilarity22 quantifies the difference between two microbiome communities using the abundance 104 

information of specific taxa. UniFrac23-25 is another widely used distance metric. Unlike the Bray–Curtis 105 

dissimilarity metric, UniFrac compares microbiome communities by using information on the relative 106 

relatedness of each taxon, specifically by phylogenetic distance (branch lengths on a phylogenetic tree). 107 

UniFrac has two variants: the weighted UniFrac24 that accounts for the taxa abundance information, and 108 

the unweighted UniFrac23 that only models the information of presence or absence. Recently, a 109 

generalized UniFrac distance metric26 was developed to automatically appreciate the advantages of 110 

weighted and unweighted UniFrac metrics and was shown to provide better statistical power to detect 111 

associations between human health conditions and microbiome communities. GWAS based on a 112 

microbiome distance matrix aims to identify host SNPs associated with microbiome composition. 113 

Intuitively, the microbiome distances tend to be smaller for pairs of subjects with similar genotypic values 114 

at the associated SNP. In addition, it is also of great interest to identify host SNPs that interact with an 115 

environment factor to affect microbiome composition. Importantly, beta diversity is temporally more 116 

stable compared with RA of taxa and alpha-diversity metrics based on the data from the Human 117 

Microbiome Project27 (data not shown), suggesting smaller power loss for a GWAS due to temporal 118 

variability. To our knowledge, no statistical methods or software packages have been designed to 119 

efficiently analyze microbiome GWAS data using distance matrices as phenotypes.  120 

In this paper, we develop a statistical framework and a computationally efficient package, 121 

microbiomeGWAS, for analyzing microbiome GWAS data. Our package allows the detection of host 122 

SNPs with a main effect or interaction with an environment factor, i.e. host SNPs interacting with an 123 

environment factor to affect the microbiome composition. We calculate the variance of the score statistics 124 
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by appropriately considering the dependence of the pairwise distances. Importantly, we show that the 125 

score statistics have positive skewness and kurtosis due to the dependence in pairwise distances, which 126 

makes the approximation of small P-values based on the asymptotic distribution too liberal, which easily 127 

yields false positive associations. Resampling methods, e.g. bootstrap or permutation, are computationally 128 

prohibitive for accurately approximating small P-values. We propose to improve the tail probability 129 

approximation by correcting for skewness and kurtosis of the score statistics. Numerical investigations 130 

demonstrate that our method provides a very accurate approximation even for P=10-7. MicrobiomeGWAS 131 

runs very efficiently, taking 36 minutes for analyzing main effects and 69 minutes for analyzing both 132 

main and interaction effects for a study with 2000 subjects and 500,000 SNPs using a single core. 133 

MicrobiomeGWAS can be freely downloaded at https://github.com/lsncibb/microbiomeGWAS. 134 

We illustrate our methods by applying microbiomeGWAS to non-malignant lung tissue samples �� �135 

147� in the Environment And Genetics in Lung cancer Etiology (EAGLE) study28,29. Because smoking 136 

may alter microbiome composition, we tested both main effect and gene-smoking interaction effect. 137 

When P-values were calculated based on asymptotic distributions, the quantile-quantile (QQ) plots 138 

strongly deviated from the uniform distribution. Also, nine loci achieved genome-wide significance based 139 

on asymptotic approximations. Correcting for skewness and kurtosis eliminated the inflation and also the 140 

genome-wide significance of these loci. However, we provide evidence that the established lung cancer 141 

risk SNPs are associated with lung microbiome composition. 142 

Material and Methods 143 

A score statistic for testing main effect 144 

Suppose that we have a set of � subjects genotyped with SNP arrays. For notational simplicity, we 145 

consider only one SNP with minor allele frequency (MAF) denoted as 	. Our interest centers on testing 146 

whether the genotype of the SNP is associated with microbiome composition. Let 
� � 0,1,2 represent 147 

the number of the minor alleles for the ���  subject. We assume that the 16S rRNA gene of microbiota 148 
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from a target site (e.g., gut) has been sequenced for these samples. Let ���  be the microbiome distance 149 

between the ���  and ��� subjects and � be the distance matrix.  150 

Intuitively, if the SNP is associated with the microbiome composition, the microbiome distances tend to 151 

be smaller for subject pairs with similar genotypic values, as is illustrated in Figure 1. For � subjects, 152 

��� � 1�/2 pairs can be divided to three groups with genetic distance 0, 1 and 2. For example, a pair of 153 

subjects with genotype (AA, AA) or (BB, BB) has genetic distance 0; a pair of subjects with genotype 154 

(AA, BB) or (BB, AA) has genetic distance 2; all other pairs have genetic distance 1. Apparently, we 155 

expect the microbiome distance to be positively correlated with genetic distance for subject pairs.   156 

We define ��� � |
� � 
�| as the genetic distance for a pair of subjects ��, ��. We assume ��� � � �157 

����� � ���  for all pairs of subjects. The score statistic for testing ��: �� � 0 (main effect) vs. �� � 0  158 

is derived by maximizing ∑ ���� � � � ����� �
�	� :  159 

 !� � " ���

 ���

�	�
   with    ���


 � ��� � 1��� � 1�/2 " ���
�	�

. (1) 

The variance ()*��!�|�� under ��: �� � 0 is calculated by considering the dependence in ���� , ���   160 

and conditioning on the distance matrix �. Briefly, we have ()*��!�|�� � ∑ ���

 ���


 +,-���� , ��� .�	�,�	�  161 

When ��, �, ., /� are distinct, ���  and ��� are independent, i.e. +,-���� , ��� � 0. Some algebra leads to  162 

                             ()*��!�|�� � ��� � 1�2 ()*���� 0� � ��� � 1��� � 2�+,-���� , ��� 0�                  �2� 

where 163 

                                                                      0� � 2��� � 1� "����

  �                                                                     �3�

�	�

 

and 164 

                                           0� � 2��� � 1��� � 2� " ����

 ���


 � ���

 ���


 � ���

 ���


  
�	�	�

.                                    �4� 
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The details for calculating ()*����� and +,-���� , ���  are in Appendix A. The variance-normalized 165 

score statistic 2� � !�/3()*��!�|��  ~��0,1� under �� asymptotically.  166 

In analyses of real data, we typically have to adjust for covariates, including demographic variables and 167 

principal component analysis (PCA) scores derived based on genotypes to eliminate potential population 168 

stratification. Let 5� � �6�� , 7 , 6��� denote the - covariates for the ���  subject. We assume   ��� � � �169 

����� � ∑ 8�|6�� � 6��|�
��� � ��� . Define ���


 � ��� � �9 � ∑ 8:�
�
��� |6�� � 6��| with �8:�, 7 , 8:�� being 170 

estimated under ��:  �� � 0. It is straightforward to verify that the score equation for ��  evaluated at 171 

��: �� � 0 is !�

 � ∑ ���


 ����	� . We can similarly derive the variance ()*��!�

 |�;� and the normalized 172 

score statistic 2�

 � !�


 /3()*��!�

 |�;�. Here, �; denotes the residue distance matrix with ��
��� � ���


 . 173 

A score statistic for testing gene-environment interaction 174 

Let <�  denote an environmental variable. Define Δ�� � |
�<� � 
�<�|. We extend the statistical framework 175 

to detect the SNP-environment interaction by assuming  ��� � � � ����� � ��><� � <�> � ��Δ�� � ��� , 176 

where �� denotes the main genetic effect, �� denote the additive gene-environment effect and ��  denotes 177 

the main effect of the environmental factor. We consider testing the null hypothesis that the SNP is not 178 

associated with microbiome composition either directly or by interacting with <, �. ?.  �� : �� � �� � 0. 179 

The alternative hypothesis is ��: �� � 0 or �� � 0.  180 

Again, we estimate ��  and � under �� and calculate ���

 � ��� � �9 � �B�|<� � <�|.  The score equations 181 

evaluated under �� are !� � ∑ ���

 ����	�   for  �� and !� � ∑ ���


 Δ���	�  for ��. Similar to (2), we derive 182 

the variance ()*��!�|�;� by accounting for the dependence in �Δ�� , Δ�� :  183 

           ()*��!�|�;� � ������

�
()*�Δ�� 0� � ��� � 1��� � 2�+,-�Δ�� , Δ�� 0� .        (5) 

Let 2� � !�/3()*��!�|�
� and 2� � !�/3()*��!�|�
�. Asymptotically, 2�~��0,1� and 2�~��0,1� 184 

under ��. 185 
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In Appendix B, we derive  186 

                 +,-��!� , !�|�;� � ��� � 1�2 +,-���� , Δ�� 0� � ��� � 1��� � 2�+,-�G�� , Δ�� 0� .              �6� 

The correlation F �  +,*��2� , 2�|�;� is calculated as F � +,-��!� , !�|�
�/3()*��!�|�;�()*��!�|�;�.  187 

Asymptotically, �2� , 2�� follows a bivariate normal distribution with a correlation matrix G � H1 FF 1I. 188 

In Appendix C, we derive a statistic for jointly testing �� : �� � �� � 0 vs. ��: �� � 0 or �� � 0. 189 

Briefly, the 2D plane is partitioned to four parts (Figure 2). The joint statistic is derived as 190 

J �
KLM
LN�2� , 2��O���2� , 2���       �2� , 2�� P Q�  �8�2� � 8�2���                �2� , 2�� P Q��8�2� � 8�2���                �2� , 2�� P Q�0                                            �2� , 2�� P Q�

R     (7) 191 

where 8� � �S � 1 S⁄  � 2⁄ ,  8� � �S � 1 S⁄  � 2⁄  and S � 3�1 � F� �1 � F�⁄ . The asymptotic P-value is 192 

calculated as  193 

                               U�J � V�� � W�U�X�
� � V�� � W�U���0,1� � V� � W�U���0,1� � V�,                    (8)  194 

where W� � U��2� , 2�� P Q� . 195 

Improved P-value approximations by correcting for skewness and kurtosis 196 

Theoretic investigation suggests that the score statistics 2� and 2�  have a positive skewness, which makes 197 

the tail probability approximations based on the asymptotic distribution ��0,1� unacceptably liberal 198 

(Figures 3A and 3B). In a numeric example with skewness Y � 0.2, U�2 � 5� �2.9×10-7 based on 199 

��0,1�, which is approximately two orders of magnitude more significant than P=3.9×10-5 based on 108 200 

permutations. The significance inflation becomes worse for smaller P-values and larger skewness Y. 201 

Similar but more tedious calculations suggest that both statistics have positive kurtosis, making the 202 

approximation based on ��0,1� even worse. One possible solution is to approximate tail probabilities 203 
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using permutations or bootstrap. However, these resampling methods are computationally prohibitive for 204 

testing millions of common SNPs in a large-scale study.  205 

To address this problem, we calculated the skewness Y and kurtosis [ of the score statistics under 206 

��  (Appendix D). We propose to improve the tail probability approximation U��2 � V� by correcting for 207 

the skewness and kurtosis, following the skewness correction in linkage analysis30,31. Technical details are 208 

provided in Appendix E. Correcting for both skewness and kurtosis leads to an approximation 209 

                                       U��2 � V� \ ?����������
����

�/��!��
�/"�#��

�/�� ]�� �̂_��,                                     (9) 210 

where _� satisfies _ � Y_�/2 � [_�/6 � V, �̂
� � 1 � Y_� � [_�

�/2 and ]�·� is the cumulative 211 

distribution function of ��0,1�. Correcting for skewness but ignoring kurtosis (i.e., assuming [ � 0) 212 

leads to an approximation     213 

                                                U��2 � V� \ ?����������
����

�/��!��
�/" ]�� �̂_��,                                      (10) 214 

where _� � �31 � 2YV � 1�/γ, �̂
� � 1 � Y_�. Numerical results presented in Figure 3B demonstrate 215 

that (9) works very well. 216 

Given the distance matrix �, Y� b 1/��/�, Y� b 1/��/� , [� b 1/� and [� b 1/� (Appendix D). Thus, 217 

skewness decays much more slowly with sample size � than kurtosis (Figures 3C and 3D). Thus, even 218 

for a large study with thousands of samples, correcting for skewness is necessary for accurately 219 

evaluating tail probabilities. Importantly, both skewness and kurtosis highly depend on the MAF, 220 

suggesting that the impact of skewness and kurtosis is different across SNPs with different MAF. 221 

Numerical studies (Figures 3C and 3D) show that skewness and kurtosis are minimized when MAF=0.5 222 

and maximized when MAF\0.2-0.3.  223 

Finally, we discuss how to approximate the tail probability of J in (7) for testing ��: �� �  �� � 0 by 224 

correcting for non-normality in 2� and 2� . When �2� , 2�� P Q� (or Q�), we calculate the skewness 225 
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<�8�2� � 8�2��� and the kurtosis <�8�2� � 8�2��� � 3 and use (9) to approximate U�8�2� �226 

8�2� � V�. When �2� , 2�� P Q�, we first approximate their marginal P-values as c� and c� by (9), then 227 

calculate the normal quantile d� � ]�1 � c�� and d� � ]�1 � c��. Because the correction primarily 228 

impacts the tails of the distributions, the correlation between the two statistics will remain roughly 229 

unchanged, i.e., e,*��2� , 2�� \ e,*��d� , d��. Thus, when �2� , 2�� P Q�, the tail probability is 230 

approximated as U�X�
� � �d� , d��Ω���d� , d��;�.  231 

Results 232 

Simulation results 233 

The main purpose of simulations was to investigate the type-I error of 2� (for testing main genetic effect), 234 

2�  (for detecting SNP-environment interactions) and J (for detecting either main genetic effect or SNP-235 

environment effect or both). Simulations were performed under different combinations of sample size, 236 

MAF and microbiome distance matrices. To make simulations realistic, we used an unweighted distance 237 

matrix of the fecal microbiome samples with the 16S rRNA V4 region sequences from the American Gut 238 

Project (AGP). The OTU table rarefied to 10,000 sequence reads per sample, as well as metadata, was 239 

downloaded from the AGP website. Samples with less than 10,000 sequence reads were excluded from 240 

analysis. The weighted and the unweighted UniFrac distance matrices were generated in the Quantitative 241 

Insights Into Microbial Ecology21 (QIIME) pipeline. Because antibiotics may substantially change 242 

microbiome composition to generate outliers that may distort the null distribution, we excluded samples 243 

with self-reported history of antibiotic usage within one month. After quality control, 1879 subjects 244 

remained for analysis. In simulations, we randomly selected � samples for a given sample size �.  245 

For each setting, the type-I error rates were evaluated based on 108 simulations under ��. For the 246 

interaction test and the joint test, the binary environment factor had a frequency of 50% and was 247 

simulated independent of the SNP. The type-I error rates are summarized in Table 1 for weighted UniFrac 248 

distance matrix. The skewness and kurtosis are reported in Figures 3C and 3D. The statistics adjusted for 249 
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skewness and kurtosis have accurate type-I error rates while the statistics without adjustment have 250 

unacceptably high type-I error rates. As sample size increases, the impact of skewness and kurtosis 251 

decreases. However, even for a study with � � 1000, the type-I error rates are still seriously inflated. 252 

The results for the unweighted UniFrac distance matrix and for MAF=0.5 are reported in Table S1.    253 

Software implementation, memory requirement and computational complexity 254 

We implemented our algorithms in a software package, microbiomeGWAS, which is freely available at 255 

https://github.com/lsncibb/microbiomeGWAS. MicrobiomeGWAS requires three sets of files: a 256 

microbiome distance matrix file, a set of PLINK binary files for GWAS genotypes, and a set of covariates. 257 

MicrobiomeGWAS processes one SNP at a time and does not load all genotype data into memory; thus, it 258 

requires only memory for storing the distance matrix. Variance, skewness and kurtosis can be partitioned 259 

into two parts related with the microbiome distance matrix and the MAF of the SNP separately; thus, we 260 

can quickly calculate these quantities for a predefined grid of MAFs. The overall computational 261 

complexity is about g���h�, where � is sample size and h is the number of SNPs. Figure 4 reports the 262 

computation time on a Linux server using a single core.    263 

GWAS of microbiome diversity in adjacent normal lung tissues 264 

We applied our methods to a set of lung cancer patients of Italian ancestry in the EAGLE28 study. All 265 

subjects have germline genome-wide SNPs29 and 16S rRNA microbiome data (V3-V4 region, Illumina 266 

MiSeq, 300 paired-end) in histologically normal lung tissues from these patients. Here, the histologically 267 

normal lung tissues were 1~5 cm from the tumor tissue. We performed a series of quality control steps to 268 

filter out low quality sequence reads: average quality score <20 over 30bp windows, less than 60% 269 

similarity to the Greengenes32 reference or identified as chimera reads using UCHIME33. Sequence reads 270 

were then processed by QIIME21 to produce relative abundances (RA) of taxa, two alpha diversity metrics 271 

(observed number of species and Shannon’s index) and beta-diversity metrics (unweighted and weighted 272 
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UniFrac distances) rarified to 1000 reads. We included 147 subjects with at least 1000 high quality 273 

sequence reads for genetic association analysis.   274 

Out of the 147 subjects, 78 are current smokers, 8 are never smokers and 61 are former smokers. Because 275 

of the small number of never smokers, we merged never and former smokers as non-current smokers. All 276 

of the genetic association analyses were adjusted for sex, age, smoking status, and the top three PCA 277 

scores derived based on genome-wide SNPs. Here, the top three PCA scores were selected controlling 278 

population stratification because other PCA scores were unassociated with the distance matrices. We 279 

included 383,263 common SNPs with MAF ≥ 10% because rarer SNPs were expected to have no 280 

statistical power given the current sample size. We first performed GWAS analysis using PLINK34 to 281 

identify SNPs associated with taxa with average RA greater than 0.1% or two alpha-diversity metrics. We 282 

did not detect genome-wide significant associations with either main effects or gene by smoking 283 

interactions.  284 

Next, we performed GWAS analysis using unweighted and weighted UniFrac distance matrices as a 285 

representation of eubacteria beta-diversity. The results for testing main effects are reported in Figure 5. 286 

Results for testing joint effects (main effect and SNP by smoking status interaction) are reported in 287 

Figure S1. Because of the small sample size, we observed large values of skewness and kurtosis with 288 

magnitude varying with the MAF of the SNPs (Figure 5A). The score statistics based on the weighted 289 

UniFrac distance matrix had a much larger skewness and kurtosis than did the unweighted UniFrac matrix. 290 

Figures 5B and 5C report the quantile-quantile (QQ) plot of the logarithm of the association P-values for 291 

the unweighted and weighted UniFrac distance matrices, respectively. For each distance matrix, we 292 

produced QQ plots for P-values based on the asymptotic approximation and for P-values adjusted for 293 

skewness and kurtosis. For both distance matrices, the QQ plots before adjustment strongly deviated from 294 

the expected uniform distribution. Our adjustment eliminated the deviation. In addition, consistent with 295 

the observation that the skewness and kurtosis were larger for the weighted UniFrac distance matrix, the 296 

QQ plot deviated more for the analysis based on the weighted UniFrac distance. Note that the skewness 297 
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and kurtosis only affect the tail probabilities; thus, the inflation of the QQ plot is not reflected by the 298 

genomic control lambda value35 calculated as the median of P-values. In fact, lambda \ 1 for all four QQ 299 

plots.  300 

Without correcting for skewness and kurtosis, we identified three and six loci achieving genome-wide 301 

significance (U i 5 j 10�%) for the unweighted and weighted UniFrac distance matrices, respectively 302 

(Figure 5D). After correcting for skewness and kurtosis, no locus remained genome-wide significant 303 

(Figure 5D), which was verified by 108 permutations. Importantly, skewness and kurtosis had a dramatic 304 

effect on tail probabilities. Here, we use SNP rs12785513 as an example, which was identified as the top 305 

SNP in both analyses. In the unweighted UniFrac analysis, P= 4.4×10-9 without adjustment and P=1.6×10-
306 

6 after adjustment, a 364-fold inflation. The inflation was even larger for weighted UniFrac analysis 307 

because of larger skewness and kurtosis (Figure 5A). In fact, P= 3.4×10-10 without adjustment and 308 

P=3.5×10-6 after adjustment, a 1000-fold inflation. Although these SNPs were not significant genome-309 

wide, they were the top SNPs from the current study. Thus, we report box-plots for each of these nine 310 

SNPs (Figure 5E). As expected, in all box plots, microbiome distances tend to be larger in subject pairs 311 

with greater genetic distance at these SNPs. These associations remain to be replicated in studies with 312 

larger sample sizes. 313 

Finally, we concentrated on the six common SNPs in four genomic regions reported to be associated with 314 

lung cancer risk in GWAS of European subjects: rs2036534 and rs1051730 at 15q25.136-39 (CHRNA5–315 

CHRNA3–CHRNB4), rs2736100 and rs401681 at locus 5p15.3329,40 (TERT/CLPTM1L), rs648976941 at 316 

12p13.3 (RAD52), and rs1333040 at 9p21.342 (CDKN2A/CDKN2B). The SNPs at 15q25.1 and 5p15.33 317 

have the largest effect sizes for lung cancer risk based on the meta-analysis from the Transdisciplinary 318 

Research in Cancer of the Lung (TRICL) consortium42: OR=1.32 for rs1051730, OR=1.26 for rs2036534, 319 

OR=1.13 for rs2736100, and OR=1.14 for rs401681. Rs3131379 at locus 6p21.3340 (BAT3/MSH5) was 320 

excluded because MAF=7.5%. No SNPs were significantly associated with taxa RAs or alpha-diversity 321 

metrics after correcting for multiple testing (data not shown). However, association analysis based on the 322 
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UniFrac distance matrices provided evidence that these SNPs may be associated with the lung microbiota 323 

(Table 2). Importantly, for both unweighted and weighted UniFrac analyses, all six SNPs had P-value < 324 

0.5. These SNPs were independent except that rs2036534 and rs1051730 at 15q25.1 were weakly 325 

correlated with R2=0.15. A test combining six d-scores (2�) and adjusting for the weak correlation 326 

yielded overall P-values 0.0033 and 0.011 for the unweighted and the weighted UniFrac distance matrices, 327 

respectively. These results suggest that lung cancer risk SNPs were enriched for genetic association with 328 

the composition of the lung microbiome. The results for testing interactions and joint effects are reported 329 

in Table S2.  330 

Discussion 331 

We developed a software package, microbiomeGWAS, for identifying host genetic variants associated 332 

with microbiome composition.  MicrobiomeGWAS can test both main effect and SNP-environment 333 

interactions. Importantly, we found that the score statistics had positive skewness and kurtosis and that 334 

the tail probabilities evaluated based on asymptotic approximations were very liberal. We addressed this 335 

problem by explicitly adjusting for skewness and kurtosis. MicrobiomeGWAS runs very efficiently and 336 

takes only 36 minutes for testing main effects and 69 minutes for testing joint effects in a GWAS with 337 

2000 subjects and 500,000 markers. Other statistical methods exist for testing the association of 338 

microbiome distance matrices. PERMANOVA43 is an extension of multivariate analysis of variance to a 339 

matrix of pairwise distances and relies on permutations to evaluate significance. MiRKAT44, a recently 340 

proposed method based on kernel regression, takes hours for evaluating one association for 2000 subjects. 341 

Neither is computationally feasible for analyzing a large-scale GWAS of microbiome.      342 

Interactions of host genetic susceptibility with the microbiome have been postulated for many conditions, 343 

including inflammatory bowel diseases45,46, autoimmune and rheumatic diseases47-50, diabetes51, and 344 

cancer especially of the colon52. All models of these host-microbiome interactions also note the critical 345 

role of environmental factors including diet, smoking, drugs, and antibiotics and other medications53. 346 
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Although based on a very small initial sample set, the suggestive associations that we found between the 347 

six known lung cancer risk SNPs and the microbiome of adjacent normal lung tissue samples, including 348 

effects of cigarette smoking, provide preliminary evidence that our microbiomeGWAS method is likely to 349 

be a useful tool for generating data that will unravel host-microbiome interactions with high confidence.  350 

We are working on two extensions for microbiomeGWAS: (1) jointly testing additive and dominant 351 

effects and (2) testing genetic associations using many microbiome distance matrices. We have assumed 352 

an additive effect model (Figure 1); however, several top SNPs in the EAGLE data suggest a dominant 353 

effect (e.g. rs8083714 in Figure 5E). Thus, a statistic for jointly testing the additive and dominant effects 354 

might be powerful for this scenario. The second extension is motivated by the fact that that the power to 355 

detect associations depends heavily on the choice of distance matrix. The recently developed generalized 356 

UniFrac26 (gUniFrac) defines a series of distance matrices to reflect different emphasis of using taxa 357 

relative abundance information. gUniFrac has been shown to have a robust power for association studies26. 358 

Extending microbiomeGWAS to gUniFrac, however, requires solving two problems. First, the 359 

computational complexity is proportional to the number of distance matrices analyzed for associations, 360 

which can be addressed by implementing the algorithms using multithreading technology. Second, we 361 

need to derive accurate analytic approximations to the association P-values by correcting for the multiple 362 

testing introduced by many distance matrices. MiRKAT44 has an option for using gUniFrac; however, 363 

intensive permutations are required to evaluate P-values.   364 

In summary, GWAS of the microbiome of each body site has a potential to understand microbiome 365 

variation, to elucidate biological mechanisms of genetic associations, to improve the power of identifying 366 

novel disease-associated genetic variants, and to improve the performance of genetic risk prediction. We 367 

expect our methods and software to be useful for large-scale GWAS of human microbiome.   368 

 369 

 370 
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Appendices 371 

Appendix A: ()*���� , +,-���� , ��� , ()*�Δ��  and +,-�Δ�� , Δ�� . 372 

We first calculate <���� , ()*����  and +,-���� , ��� . Let c� � U�
� � k� with c�, c�, c� l 0 and 373 

c� � c� � c� � 1. We can also assume the Hardy–Weinberg equilibrium and characterize the 374 

probabilities as the allele frequency:  c� � �1 � 	��, c� � 2	�1 � 	� and c� � 	�. Some algebra leads to  375 

                   <���� � <>
� � 
�> � " c&c�|m � �|
&,�'(�,�,�)

� 2c�c� � 2c�c� � 4c�c�;                        �Q1� 

  ()*���� � <����
�  � <���� � � �2c�c� � 2c�c� � 8c�c�� � �2c�c� � 2c�c� � 4c�c���;             �Q2� 376 

                    +,-���� , ��� � c��1 � c�� � 4c�c��1 � c�� � �2c�c� � 2c�c� � 4c�c���.                     �Q3� 

Now consider Δ�� � |
�<� � 
�<�|. When <�  is binary, 
�<� � 0, 1 or 2. Let c�

 � U�
�<� � k�. Then, 377 

<�Δ�� , ()*�Δ��  and +,-�Δ�� , Δ��  can be calculated similarly using (A1), (A2) and (A3).  378 

Appendix B: Calculating F � +,*��2� , 2�|�;� 379 

Let ���

 � ��� � <���  and Δ��


 � Δ�� � <Δ�� . We first calculate the covariance under ��: 380 

+,-��!� , !�|�;� � +,-� p" ���

 ���


 ,
�	�

" �&�

 Δ&�




&	�
q � " ���


 �&�

 +,-���� , Δ&��

�	�,&	�
. 

When ��, �, m, �� are distinct, +,-���� , Δ&� � 0. Some algebra leads to 381 

                                  +,-��!� , !�|�;� � r�2s +,-���� , Δ�� 0� � 6 r�3s +,-���� , Δ�� 0�                           �Q4� 

with 0� and 0� specified in (2) and (3). Combining (2), (5) and (A4), we have 382 

                   F � +,-��!� , !�|�
�
3()*��!�|�
�()*��!�|�
� �*+tuuv +,-���� , Δ�� 

w+,-���� , ��� +,-�Δ�� , Δ�� .                                     �Q5� 
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(A5) suggests that the correlation is asymptotically independent of the microbiome distance matrix. In 383 

real data analyses, we found that (A5) was very accurate when sample size � l 50. The details of 384 

calculating +,-���� , Δ��  and +,-���� , Δ��  are provided in Supplemental Data.  385 

Appendix C: A statistic for jointly testing ��: �� � �� � 0 vs ��: �� � 0 or �� � 0 386 

Denote z � �2� , 2��� . Under ��, z~��{, |� with | � H1 FF 1I. Let _� � <�2� l 0 and _� � <�2� l 0 387 

be the non-centrality parameter of the two score statistics. Apparently the original testing problem is 388 

equivalent for testing ��: _� � _� � 0 vs ��: _� � 0 or _� � 0. Given the observed values �2� , 2��, the 389 

likelihood ratio statistic is simplified as  390 

                                                           J � z�|��z � �z � }��|���z � }�                                                      �Q6� 

where } � �_� , _��� � arginf��,�,��,�J (Figure S2A). 391 

To simplify the optimization problem in (A6), we perform a linear transformation: �- � z�|��
�  and 392 

�- � }�|��
�, where  393 

                                               |��
� � 1√2 r 1 1�1 1s p1 31 � F⁄ 00 1 31 � F⁄ q.                                                 �Q7� 

Under this transformation, � � ��� � �� � ����� � �� and can be interpreted as the difference of the 394 

square of two distances (Figure S2B). The original parameter space ��_� , _��: _� l 0, _� l 0� is now 395 

transformed to ����, ���: �� l S��, �� l �S��� with S � 3�1 � F�/�1 � F�. Thus, the new parameter 396 

space is bounded by two lines represented by �� l S�� and �� l �S��. We partition the 2D plane into 397 

four parts (see Figure S2B), identify � � arginf.'/��� � ����� � �� and calculate J: 398 

 J �
KLM
LN��

� � ��
�                                              ���, ��� P Q�  ��� � �� S⁄ �� �1 � S���⁄                ���, ��� P Q���� � �� S⁄ �� �1 � S���⁄                ���, ��� P Q�0                                                           ���, ��� P Q�

R    (A8) 399 
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We now perform an inverse transformation using matrix  400 

                                           |�
� � � 1√2 p31 � F 00 31 � Fq r1 �11 1 s�                                                             �Q9� 

to return to the original parameter space. The four areas �Q�, Q�, Q�, Q�� under the original space are in 401 

Figure 2 and Figure S2C. 402 

Tedious calculations show that ��� � ��/S��/�1 � S��� � �8�2� � 8�2���  with 8� � �S � 1/S�/2 403 

and 8� � �S � 1/S�/2. Similarly, ��� � ��/S��/�1 � S��� � �8�2� � 8�2���. This proves (7). In 404 

addition, 8�2� � 8�2� l 0 and 8�
� � 2F8�8� � 8�

� � 1; thus, U��8�2� � 8�2��� � V�� �405 

U�8�2� � 8�2� � V� � U���0,1� � V�. This proves (8). The probabilities in (8) could also be 406 

calculated from Figure S2B: W� � 1 2⁄ � �arctan 	� 
 ⁄ , W� � W� � 1 4⁄ . 407 

Appendix D: Calculating skewness and kurtosis under �� 408 

By definition, Y � <��!�
� >�;�/()*�

�/� �!�|�;� and [ � <��!�
� |�;�/()*�

� �!�|�;� � 3. We first 409 

calculate <��!�
� >�;�. Let ���


 � ��� � <��� . We have  410 

<��!�
� >�
� � <� p" ���


 ���



�	�
q� � " ���


 �&�

 �0�




�	�,&	�,0	�

<���

 �&�


 �0�

 . 

Figure S3A lists all combinations of ��, �, m, �, �, k� with <���

 �&�


 �0�

 � 0, which leads to  411 


����� |��� � ��
2 � ��
���

��  � ��
3 � ���
���

�	��

� � ��
���

� ��
� ��

� � � ��

4 � ���
���
� ��
� �



� � ��
���
� ��


� ��

� �,  412 

where �0� , 01 , 0" , 02 , 0%� are provided in Supplemental Data. Similarly, 413 

<��!�
� |�
� � <� p" ���


 ���



�	�
q� � " ���


 �&�

 �0�


 �34



�	�,&	�,0	�,3	4

<���

 �&�


 �0�

 �34


 . 

Figure S3B lists 15 combinations of ��, �, m, �, �, k, 6, �� with  <���

 �&�


 �0�

 �34


 � 0. Thus,  414 
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<��!�
� |�� � r�2s 05<���


� � r�3s �0��<���

����


 � 0��<���

����


� � 0��<���

����


 ���

  

� r�
4s r�

13

���

�2���
� ���

� � �
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�
��

� ���
�2���

� � �
15


���
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� ���
� � �

16

���

� ���
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� � �
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���

� ���
� ���

� ���
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���
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���
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���
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���

� ���
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� ���
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The constants �05 , 7 , 0��� are dependent on � and are provided in Supplemental Data.  415 

Note that ()*��!�|�;�~g����, <��!�
� >�;�~g����, thus Y~g� �

√�
�. Similarly, we can prove [~g��

�
�. 416 

Appendix E: Improve P-value approximations by adjusting for skewness and kurtosis 417 

We assume that <�2 � 0,  ()*�2 � 1, Y � <�2� and [ � <�2� � 3 under the original probability 418 

measure U�. The tail probability U��2 � V� for a large value of V is sensitive to the non-normality of 2, 419 

characterized by Y and [. We define a new probability measure by embedding to the exponential 420 

probability density 421 

                                                           �U� � exp�_2 � ��_� �U�                                                                  �Q10� 

where ��_� � log <� exp�_2� is the log moment generating function. Note that Y � �;;;�0� and [ �422 

�



�0�. Because <��2� � 0 and ()*��2� � 1, the Taylor expansion leads to ��_� \ _�/2 � Y_�/6 �423 

[_�/24. Under U� , we have 424 

                                          <�2 � � 2�U� � �
�_� \ _ � Y2 _� � [6 _�                                                    �Q11� 

and 425 

                                                       ()*�2 � �

�_� \ 1 � Y_ � [2 _� .                                                        �Q12� 

We choose _ such that <�2 \ V by numerically solving an equation 426 

                                                                   _ � Y2 _� � [6 _� � V.                                                                     �Q13� 

Under the probability measure U� , 2~��V, ^�� approximately with ^� � 1 � Y_ � ._�/2 in (A12).  427 
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By the likelihood ratio identity and (A10), we have  428 

                      U��2 � V� � <��78� � <�
�U��U�

�78� � <�?9�����7�78� � ?9���<�?��7�78� .                 �Q14� 

Note that ?��7 decays very fast when 2 increases. Thus, the integral <�?��7�78�  does not heavily depend 429 

on the tail distribution of 2. Assuming 2~��V, ^�� under U� , we can verify that  430 

                                                      <�?��7�78� � ?��������
� ]��^_�.                                                              �Q15� 

Combining (A14) and (A15) gives U��2 � V� \ ?9�����������

�  ]��^_�, which is further approximated 431 

as   U��2 � V� \ ?����	�
���
�

����



��� �
��

�� ]��^_�, because ��_� \ _�/2 � Y_�/6 � [_�/24 based on 432 

the Taylor expansion. This proves (9).  433 

If we correct skewness but assume kurtosis [ � 0, then ��_� \ _�/2 � Y_�/6. We recalculate _ by 434 

setting [ � 0 in (A13) to derive _ � �31 � 2YV � 1�/γ. This proves (10). 435 

  436 
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Supplemental Data 437 

Supplemental Data include 2 tables and 3 figures can be found with this article online at XXX. 438 
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 Table 1: Type-I error rates estimated based on 108 simulations. Minor allele frequency = 20%. 563 

Simulations were based on the weighted UniFrac distance matrix of the gut microbiome data from the 564 

American Gut Project. Reported are the type-I error inflation factor. A value greater than 1 indicates an 565 

inflated type-I error.   566 

 567 

  2� 2�  Q  
 N � �10-3 10-5 10-7 10-3 10-5 10-7 10-3 10-5 10-7 

asymptotic 
approximation 

100 5.5 51.6 610.0 4.7 36.1 342.8 7.3 80.9 1148.0 
200 3.7 23.0 187.3 3.1 15.8 105.5 4.6 33.0 316.7 
500 2.4 9.4 45.2 2.1 6.7 25.5 2.8 11.9 64.1 
1000 2.0 5.7 21.3 1.8 4.4 14.0 2.2 6.9 28.5 

adjusted for 
skewness and 

kurtosis 

100 1.0 1.2 0.7 1.0 1.1 0.6 1.0 1.5 2.0 
200 1.0 1.1 1.0 1.0 1.1 0.7 0.9 1.3 1.8 
500 1.0 1.1 1.3 1.0 1.0 0.9 0.9 1.0 1.7 
1000 1.0 1.0 1.2 1.0 1.0 0.8 0.9 1.0 1.1 

 568 

 569 

 570 

 571 

Table 2: Association P-values between lung cancer risk SNPs and microbiome composition in the 572 

EAGLE data.   573 

SNP 
Chr Annotated genes 

unweighted 
UniFrac weighted UniFrac 

rs2036534 15q25.1 CHRNA3/4/5 0.425 0.167 
rs1051730 15q25.1 CHRNA3/4/5 0.020 0.401 
rs2736100 5p15.33 TERT 0.089 0.267 
rs401681 5p15.33 CLPTM1L 0.056 0.005 

rs6489769 12p13.3 RAD52 0.197 0.329 
rs1333040 9p21.3 CDKN2A/B 0.249 0.224 

Overall test 0.0032 0.011 
  574 
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Figure 1 Microbiome distances are positively correlated with genetic distances at an associated SNP.  575 

Figure 2 Define the joint test for testing ��: �� � �� � 0 vs. �� � 0 ,* �� � 0. We assume that 576 

2�~��0,1�, 2�~��0,1� and e,*�2� , 2�� � F under ��. Details are in Appendix C.  577 

Figure 3 Correcting tail probabilities for skewness and kurtosis. (A) The standard normal distribution 578 

��0,1� and an approximately normal distribution with positive skewness. The skewness has big impact 579 

when calculating the tail probability U�2 � V� for a large value of V. (B) Numerical evaluation of tail 580 

probability approximation for 2�. We used the unweighted UniFrac distance matrix of 500 samples from 581 

the American Gut Project (AGP). For each value of V�� 0�, we calculated P-values U�2� � V� based on 582 

��0,1�, skewness correction, both skewness and kurtosis correction, and 108 simulations. (C) Skewness 583 

depends on MAF of SNPs and the sample size of the study, calculated based on the weighted UniFrac 584 

distance matrix in AGP data. (D) Kurtosis depends on MAF of SNPs and the sample size, calculated 585 

based on the weighted UniFrac distance matrix in AGP data. 586 

Figure 4 Computation time for a microbiome GWAS with 500,000 SNPs. “Main”: computation time for 587 

testing main effect only. “All”: computation time for testing main effect, interaction and the joint null 588 

hypothesis ��: �� � 0, �� � 0.  589 

Figure 5 Results of analyzing the microbiome GWAS data of 147 adjacent normal lung tissues in the 590 

EAGLE study.  (A) Skewness and kurtosis for the main effect test using the unweighted and the weighted 591 

UniFrac distance matrices. (B) Quantile-quantile (QQ) plot for association P-values using the unweighted 592 

UniFrac distance matrix. “Adjusted”: P-values were corrected for skewness and kurtosis. “Unadjusted”: 593 

P-values were approximated based on the asymptotic distribution ��0,1�. (C)  Quantile-quantile (QQ) 594 

plot for association P-values using the weighted UniFrac distance matrix. (D) Manhattan plots based on 595 

the unweighted or the weighted UniFrac distance matrices. (E) Box plots for the top nine loci in 596 

microbiome GWAS analysis. Subject pairs are classified into three groups according to the genetic 597 

distance |
� � 
�| at the SNP. The y-coordinate is the microbiome distance.   598 
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