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ABSTRACT 30 

Cassava (Manihot esculenta) is a crucial, under-researched crop feeding 31 

millions worldwide, especially in Africa. Cassava mosaic disease (CMD) has plagued 32 

production in Africa for over a century. Bi-parental mapping studies suggest 33 

primarily a single major gene mediates resistance. To be certain and to potentially 34 

identify new loci we conducted the first genome-wide association mapping study in 35 

cassava with 6128 African breeding lines. We also assessed the accuracy of genomic 36 

selection to improve CMD resistance. We found a single region on chromosome 8 37 

accounts for most resistance but also identified 13 small effect regions. We found 38 

evidence that two epistatic loci and/or alternatively multiple resistance alleles exist 39 

at major QTL. We identified two peroxidases and one thioredoxin as candidate 40 

genes. Genomic prediction of additive and total genetic merit was accurate for CMD 41 

and will be effective both for selecting parents and identifying highly resistant 42 

clones as varieties.  43 

  44 
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Cassava (Manihot esculenta Crantz) is a crucial staple food crop, usually 45 

grown by smallholder farmers and feeding over half a billion people worldwide, 46 

especially in sub-Saharan Africa (http://faostat.fao.org). Breeding cycles are long in 47 

this outcrossing, clonally-propagated crop and genetic gains from breeding have 48 

been small over the last century compared with other crops (Ceballos et al., 2004, 49 

2012). With a recently sequenced genome (Prochnik et al., 2012) and a high-density 50 

SNP-based genetic linkage maps ((ICGMC), 2014), it is for the first time possible to 51 

study the genetic architecture of key traits using modern genome-wide association 52 

analysis (GWAS) and to improve those traits with genomic selection (GS) (Oliveira 53 

et al., 2012; Ly et al., 2013).  54 

Cassava mosaic disease (CMD) is the longest running and thus-far most 55 

impactful of the challenges cassava farmers face in sub-Saharan Africa(Fauquet et 56 

al., 1990). The disease is caused by several related species of geminiviruses and 57 

transmitted both through infected cuttings and by a vector, the common whitefly 58 

(Bemisia tabaci G.). Development and deployment of resistant cultivars is the most 59 

effective control method for this devastating disease. Following an unsuccessful 60 

world-wide search for resistance in cultivated germplasm (M. esculenta) in the 61 

1930s, cassava breeders at the Amani research station in Tanzania resorted to 62 

interspecific hybridization with Ceara rubber tree (M. glaziovii Müll. Arg) and other 63 

related wild species in the 1930s (Hahn et al., 1979, 1980a; Fauquet et al., 1990). 64 

Moderate polygenic resistance combined with reasonable root yields was achieved 65 

through several cycles of backcross of Ceara rubber to the cultivated cassava (Hahn 66 

et al., 1980b). One of these interspecific hybrids, clone 58308, was subsequently 67 
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used to initiate cassava breeding breeding at the International Institute of Tropical 68 

Agriculture (IITA) in the 1970s and resulted in the Tropical Manihot Selections 69 

(TMS) varieties (Hahn et al., 1980b).  70 

More recently, a strong qualitative and dominant monogenic resistance 71 

known as CMD2 was discovered in a Nigerian landrace (TMEB3) in the 1980’s 72 

(Akano et al., 2002). Multiple bi-parental QTL analyses have been conducted, 73 

initially using SSR markers (Akano et al., 2002; Lokko et al., 2005; Okogbenin et al., 74 

2007, 2012a; Mohan et al., 2013) but more recently genome-wide SNPs (Rabbi et al., 75 

2014a; b) to understand the genetic basis of this type of qualitative resistance to 76 

CMD. Although some studies hint at additional resistance loci (Okogbenin et al., 77 

2012a; Mohan et al., 2013) most evidence points solely to the CMD2 locus (Rabbi et 78 

al., 2014a; b). However, these bi-parental mapping efforts relied on a handful of 79 

unique parental genotypes from West Africa and therefore only examined a narrow 80 

slice of African cassava germplasm diversity (Rabbi et al., 2014b). 81 

A limited genetic base for the dominant resistance implies potential 82 

vulnerability if the cassava mosaic geminivirus can evolve to overcome it. This 83 

possibility necessitates diversification of resistance sources to ensure durability. In 84 

order to determine with greater certainty whether there are additional sources of 85 

CMD resistance in the continent’s breeding germplasm, we undertook a large 86 

Genome-Wide Association Study (GWAS) using over six thousand cassava 87 

accessions from West and East Africa genotyped at more than 40,000 SNP loci using 88 

genotype-by-sequencing (GBS) approach (Elshire et al., 2011). The entire collection 89 

represents five sub-populations (Table 1) that are part of an ongoing international 90 
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genomic selection-based breeding project in cassava 91 

(http://www.nextgencassava.org). In addition, we combined GWAS and genomic 92 

prediction in order to not only dissect the genetic architecture of resistance to CMD 93 

but also to assess the potential for population improvement by genomic selection 94 

(GS). We used a variety of approaches to localize and identify candidate genes for 95 

future investigation. The potential for GS to improve CMD resistance and for non-96 

additive models to predict total genetic merit of clones for the selection of superior 97 

CMD resistant varieties were assessed. Finally, multi-kernel genomic prediction 98 

models were used to study the relative importance of qualitative and quantitative 99 

resistance sources.  100 

  101 
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MATERIALS & METHODS 102 

Germplasm collection 103 

 The germplasm included in this study represent the reference populations 104 

used to develop genomic prediction models as part of a collaborative project 105 

between Cornell University and three breeding institutions: The International 106 

Institute of Tropical Agriculture (IITA) in Ibadan, Nigeria, the National Root Crops 107 

Research Institute (NRCRI) in Umudike, Nigeria and the National Crops Resources 108 

Research Institute (NaCRRI) in Namulonge, Uganda. The IITA’s Genetic Gain 109 

population is comprised of 694 historically important, mostly advanced breeding 110 

lines that have been selected and maintained clonally since 1970 (Okechukwu and 111 

Dixon, 2008; Ly et al., 2013). Most of these materials are derived from the cassava 112 

gene-pool from West Africa and early introductions of CMD tolerant parents derived 113 

from the inter-specific hybridization program at the Amani Station in Tanzania 114 

(Hahn et al., 1980b). It also includes hybrids of germplasm introduced from Latin 115 

America (see Table S1 for a list of accessions and details on pedigree where 116 

available). The NRCRI population contains 626 clones from their breeding program, 117 

189 of which are also part of IITA’s Genetic Gain. The remainder of the NRCRI 118 

collection includes a large number of materials either directly from or derived with 119 

parentage from the International Center for Tropical Agriculture (CIAT) in Cali, 120 

Columbia (Table S2).   121 

There are two major clades of cassava mosaic virus species, African Cassava 122 

Mosaic Virus (ACMV) and East African Cassava Mosaic Virus (EACMV) (Legg and 123 

Fauquet, 2004). EACMV is generally more severe in its symptoms and is present in 124 
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west Africa but only in low proportion to ACMV, usually occurring as a dual infection  125 

(Legg and Fauquet, 2004; Rabbi et al., 2014b). This fact makes it all the more 126 

important to include east African cassava breeding germplasm in a more 127 

comprehensive screen of the genetic architecture of CMD resistance. The NaCRRI in 128 

Uganda has a population of 414 clones that represent the genetic diversity of East 129 

African cassava gene pool. The pedigree of this population arises from 49 parents 130 

coming from IITA, CIAT in Columbia and Amani Research Station in Tanzania (Table 131 

S3). The population was generated in part by making crosses of parents with 132 

qualitative resistance to parents with quantitative resistance as well as quantitative 133 

x quantitative and qualitative x qualitative resistances. 134 

 We also analyzed a large genotyped and phenotyped multi-parental 135 

population of individuals from two cycles of genomic selection (GS) conducted at 136 

IITA. The GS program at IITA will be described briefly here and in detail as part of 137 

other publications. In 2012 the IITA Genetic Gain population was used as the 138 

reference population from which genomic estimated breeding values (GEBVs) were 139 

obtained using the genomic BLUP method (GBLUP) (Heffner et al., 2009). Selection 140 

of clones from the Genetic Gain was based on a selection index including CMD and 141 

cassava bacterial blight disease severity and yield components (dry matter content, 142 

harvest index and fresh root yield). In the end, 83 parents gave rise to 2187 143 

progenies, which we will call IITA Cycle 1. In 2013, the GEBVs for Cycle 1 were 144 

obtained, again using the Genetic Gain as a reference population and 84 Cycle 1 plus 145 

13 (97 total) Genetic Gain clones were selected as parents, giving rise in 2014 to 146 
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2466 progenies (Cycle 2). The pedigrees of IITA Cycle 1 and Cycle 2 are available in 147 

Tables S4-S5. 148 

 149 

Phenotyping Trials 150 

 Phenotypic data were combined from trials conducted at multiple locations 151 

in Nigeria and Uganda. The data are contributed from all three breeding programs 152 

(IITA, NRCRI and NaCRRI). IITA’s Genetic Gain trials were conducted in seven 153 

locations over 14 years (2000 to 2014) in Nigeria. Each Genetic Gain trial comprises 154 

a randomized, unblocked design replicated one or two times per location and year. 155 

NRCRI’s population was phenotyped in two years, 2013 and 2014. During the 2012-156 

2013 season the trial was conducted in one location, Umudike, Nigeria. In 2013-157 

2014 the population was planted in three locations (Umudike, Kano, and Otobi). 158 

NRCRI’s trial design was a randomized incomplete block with three replications per 159 

location/year and 10 plants per plot. Trials at NaCRRI were conducted in two years: 160 

2012-2013 and 2013-2014. In both years plots were 10 plants in two rows of 5 with 161 

randomized incomplete blocks. During the first year, a single location (Namulonge, 162 

Uganda) was used with only one replicate. During the second season, two 163 

replications were used at each of three locations: Namulonge, Kasese and Ngetta.  164 

Genomic selection (GS) Cycle 1 (C1) progenies were observed as seedlings in the 165 

2012-2013 field season with phenotyping conducted only for early disease 166 

expression and seedling vigor. Cycle 1 progenies were subsequently cloned and 167 

phenotyped in a three-location (Ibadan, Ikenne, and Mokwa) trial in 2013-2014 168 

with all phenotypes scored. For the C1 clonal trial, planting material was only 169 
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available for one plot of five stands per clone, so each clone was only planted in one 170 

of the three locations. Clones were assigned to each location so as to equally 171 

represent each family in every environment. The GS Cycle 2 (C2) individuals were 172 

observed in a seedling trial during the 2013-2014 field season. We note that 173 

expression of disease symptoms in cassava seedlings may not be representative of 174 

expression in clonal evaluations. This is in part because seedling symptoms can 175 

arise solely from whitefly transmission, making it probable that some asymptomatic 176 

plants are in fact escapes rather than resistant genotypes. Table 1 summarizes the 177 

phenotypes and phenotyping trials available for each sub-population. We also 178 

provide details about the sample sizes and replication numbers for each 179 

location/year of data analyzed (Table S6) and per accession (Table S7) 180 

Cassava mosaic disease severity (CMDS) was scored on a scale of 1 to 5, with 1 181 

representing no symptoms and 5 indicating the most severe symptoms. CMDS was 182 

scored at up to five time points (1, 3, 6, 9 and 12 months after planting) depending 183 

on the trial. Additionally, we analyze the season-wide mean CMDS score (MCMDS), 184 

which is used for making selections and the area under the disease progress curve 185 

(see below; AUDPC).  The distribution of raw phenotypic data used in each 186 

population and for each trait can be seen in Figures S1-S6. 187 

 188 

Statistical Models and Analyses of Phenotypes 189 

 Our interest in this study was to identify key aspects of the genetic 190 

architecture of cassava in Africa rather than location- or year-specific QTLs. We 191 

condensed up to 38854 observations on 6198 genotyped and phenotyped clones to 192 
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single BLUPs for each. To do this, we fit the following mixed linear model with the 193 

lme4 package in R: 194 

 195 

��,�.� �  � � �� � �� � ����� � 	�,�,� [1] 196 

 197 

Here, yl,i,j represents raw phenotypic observations, μ is the grand mean, cl is a 198 

random effects term for clone with cl ~
�0, ��
��, βi is a fixed effect for the 199 

combination of location and year harvested, rj(i) is a random effect for replication 200 

nested within location-year combination assumed to be distributed 
�0, �	
�� and 201 

finally, εl,i,j is the residual variance, assumed to be random and distributed 
�0, ���. 202 

Because the number of observations per clone varies greatly in our dataset (from 1 203 

to 941, median of 2; Table S7), we expect BLUPs are differentially shrunken to the 204 

mean. To counter this, we de-regressed BLUPs according to the following formula:  205 

����������� ���� �

��


��
���

�
�
�

   [2] 206 

Where PEV is the prediction error variance for each clone and ��
� is the clonal 207 

variance component. The distribution of deregressed BLUPs used as response 208 

variables in GWAS can be seen in Figures S7-S13. 209 

 We also calculated areas under disease progress curves (AUDPC) for each 210 

clone using data from 1, 3 and 6 months after planting. To do this, we treated 211 

severity scores from any time point as the same trait with a second variable 212 

indicating the time point of the score. We then ran the model indicated in [1] but 213 

with cl indicating the clone-time point combination. This gave us a deregressed 214 
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BLUP for each clone at each time point. We calculated areas under these curves 215 

using the trapezoid rule as implemented by the auc function in the flux R package 216 

(http://cran.r-project.org/web/packages/flux/index.html). We excluded 9 and 12 217 

months data because they were only scored at NRCRI, thus including them would 218 

have limited the ability to compare results for this trait between populations. 219 

 220 

Genotype Data 221 

Genotyping of SNP markers was done by the genotyping-by-sequencing 222 

procedure (Elshire et al., 2011) using the ApeKI restriction enzyme recommended 223 

by (Hamblin and Rabbi, 2014) and read lengths of 100bp. Marker genotypes were 224 

called with the TASSEL GBS pipeline V4(Glaubitz et al., 2014) and aligned to the 225 

cassava version 5 reference genome, available on Phytozome 226 

(http://phytozome.jgi.doe.gov) and described by the International Cassava Genetic 227 

Map Consortium (2014). Individuals with >80% missing SNP calls and markers with 228 

more than 60% missing were removed. Also, markers with extreme deviation from 229 

Hardy-Weinberg equilibrium (Chi-square > 20) were removed.  Allele calls were 230 

maintained if depth was ≥2 otherwise the call was set to missing. Marker data was 231 

converted to dosage format (0, 1, 2) and missing data were imputed with the glmnet 232 

algorithm in R (http://cran.r-project.org/web/packages/glmnet/index.html) as 233 

described in(Wong et al., 2014). In order to judge the resolution of association 234 

analyses we calculated pair-wise linkage disequilibrium (LD) between all markers 235 

with a MAF of 5% on each chromosome using PLINK (version 1.9, https://www.cog-236 
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genomics.org/plink2). We examine the rate of decay with increasing physical 237 

distance between markers.  238 

 239 

Population Structure and Genome-Wide Association Analyses 240 

 In order to examine the patterns of relatedness within and among our 241 

populations and to control population structure, we constructed a genomic-242 

relationship matrix according to the formulation of Van Raden (VanRaden, 2008); 243 

see also 25), as implemented in PLINK, using all markers with greater than 1% 244 

minor allele frequency (MAF). We also use this relationship matrix for genomic 245 

prediction (see below). 246 

 We conducted principal components analysis (PCA) on SNP markers with 247 

MAF > 5% using the prcomp function in R. PCA on SNP markers is often used to 248 

identify major patterns of relatedness (population structure) in a sample and the 249 

first few PCs can be used as covariates to control false-positive rates in GWAS(Price 250 

et al., 2006). Because the genomic selection progenies (C1 and C2) are by far the 251 

largest part of our dataset and because these individuals are descended from the 252 

IITA Genetic Gain population, we excluded these from the initial PCA. We then 253 

projected these individuals into the genetic space defined by the three training 254 

populations (NRCRI, IITA, NaCRRI) using the predict function in R. This allows us to 255 

visualize and quantify the relatedness in our populations based on the founders only 256 

and unbiased by the large size of the C1 and C2 collections. 257 

 Because GWAS has not previously been done in this or any other cassava 258 

collection, we tested several different models for controlling population structure. 259 
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In particular, we compared the genome-wide inflation of p-values between a general 260 

linear model (GLM) with no population structure controls, a GLM with 5 principal 261 

components (GLM + 5 PCs)(Price et al., 2006), and a mixed linear model (MLM), 262 

which fits a random effect for clone with ~N(0,σg
2K), where σg

2 is the clonal variance 263 

component and K is the relationship matrix described above (Kang et al., 2010).  264 

MLM were conducted using the P3D and compression method (Zhang et al., 2010). 265 

All GWAS were conducted in TASSEL (version 5, [27]). We compare the observed –266 

log10(p-values) against the expectation using QQ-plots. We used visual inspection of 267 

QQ-plots to judge which model most effectively reduced the genome-wide inflation 268 

of –log10(p-values) typically attributed with population structure. We consider 269 

association tests significant when more extreme than the Bonferroni threshold 270 

(with experiment-wise type I error rate of 0.05). 271 

Because marker effects, LD patterns, and allele frequencies may differ within as 272 

well as across sub-populations, we conducted GWAS population-wide as well as 273 

within each sub-population. In each analysis, we used markers that segregated with 274 

MAF > 5% in that specific sub-population. Bonferroni thresholds were calculated 275 

according to the number of markers analyzed in each sub-population. 276 

We also examined the proportion of variance in the deregressed BLUPs 277 

explained by the kinship matrix, K using the variance components estimated when 278 

TASSEL fits the MLM model. 279 

 280 

Candidate Genes 281 
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Because the underlying mechanisms of plant disease resistance are of general 282 

interest and identification of causal polymorphism may aid in transgenic 283 

approaches and/or marker assisted selection, we identified candidate genes in CMD 284 

associated regions. Significant SNPs from the GWAS results corresponding to four 285 

time points (1, 3, 6 and 9 months after planting) were selected for the analysis. We 286 

considered SNPs that were both above the Bonferroni threshold and were located 287 

within exons or introns of cassava genes.  The SNP position on the genome was 288 

compared with the gene interval position using the annotation list from Phytozome 289 

10. Gene ontology annotation for each time point and combining all the datasets was 290 

done with Panther (http://go.pantherdb.org/). We have generated whole genome 291 

sequences (WGS) from one CMD resistant clone (I011412) and two CMD tolerant 292 

clones (I30572 and TMEB1). TMEB1 is a landrace from Ogun State, Nigeria also 293 

called Antiota, that is not likely to contain the qualitative resistance allele and is 294 

usually classified as tolerant or only partially susceptible to CMD (Raji et al., 2008; 295 

Rabbi et al., 2014b). Similarly, I30572 is an improved variety whose parents were 296 

the M. glaziovii-derived clone 58308 and a south American Cassava (Branca de 297 

Santa Catarina) and is therefore known to have only the quantitative resistance 298 

source (Fauquet et al., 1990). PCR-free libraries were generated from these clones 299 

and sequenced at 20X coverage using Illumina HiSeq. Additionally two resistant 300 

clones (TMEB3 and TMEB7) were obtained from Phytozome 301 

(http://phytozome.jgi.doe.gov).  TMEB3 is itself the original landrace parent from 302 

which the qualitative resistance source has been derived and TMEB7 has been 303 

shown to be nearly genetically identical to TMEB3. We therefore define TMEB3, 304 
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TMEB7 and I011412 as “resistant” lines while TMEB1 and I30572 will be referred 305 

to, for simplicity as “susceptible” primarily on the basis of whether they do or do not 306 

have the qualitative resistance source CMD2. These sequences were aligned against 307 

the cassava V5 reference genome assembly to call the variants to identify the 308 

genomic difference between resistance and susceptible clones in candidate gene 309 

loci. Since the genotypes compared were few in number, we called SNPs manually 310 

using an exon annotated sequence and the Integrative Genomics Viewer software 311 

(IGV; http://www.broadinstitute.org/igv/). 312 

 313 

 314 

Genomic Prediction of Additive and Total Genetic Merit 315 

We used a multi-random effects (a.k.a. multi-kernel or multi-relationship 316 

matrix) genomic prediction model to compare the variance explained and 317 

prediction accuracy achieved from the major CMD QTL (CMD2) compared to the 318 

rest of the genome. Specifically, we created relationship matrices either from all 319 

markers, markers significantly associated with CMD2 from GWAS results, or all 320 

markers not in the region of the QTL.   321 

For additive relationships, we used the formulation described above for 322 

controlling population-structure (VanRaden, 2008). Dominance relationships can be 323 

captured as � �
���

∑ ���������������

 (Su et al., 2012; Muñoz et al., 2014). Where H is the 324 

SNP marker matrix (individuals on rows, markers along columns), heterozygotes 325 

are given as (1 - 2piqi) and homozygotes are (0 - 2piqi). We made a custom 326 

modification (available upon request) to the A.mat function in the rrBLUP package 327 
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(Endelman, 2011) to produce the D matrix. Relationship matrices that capture 328 

epistasis can also be calculated by taking the hadamard product (element-by-329 

element multiplication; denoted #) of two or more matrices (Henderson, 1985). For 330 

simplicity, we tested an additive-by-dominance (A#D) matrix in this study.  331 

 We tested four models. Model 1 used all markers and only a single, additive 332 

kernel (AdditiveAll_Markers). Model 2 used all markers but three kernels, 333 

AdditiveAll_Markers + DominanceAll_Markers + EpistasisAll_Markers. Model 3 used two 334 

additive kernels, one constructed from the 163 CMD2 significant markers 335 

(AdditiveCMD2) and the other from all markers outside of the chromosomal region 336 

bounded by CMD2 markers (AdditiveNon-CMD2). Model 4 had four kernels: 337 

AdditiveCMD2 + DominanceCMD2 + EpistasisCMD2 + AdditiveNon-CMD2. 338 

We assessed the influence that modeling non-additive genetic variance 339 

components have on genomic prediction using a cross-validation strategy (see 340 

below). We used the deregressed BLUPs for MCMDS as described above. In our data, 341 

the number of observations per clone ranges from one to 941 (checks, TMEB1 and 342 

I30572) with median of two and mean of 10.6 (Table S7). Pooling information from 343 

multiple years and locations, especially when there is so much variation in numbers 344 

of observations can introduce bias. Much theoretical development, particularly in 345 

animal breeding has been done to address this issue, and we followed the approach 346 

recommended by Garrick et al. (2009) 347 

In the second step of analysis, where deregressed BLUPs are used as 348 

response variables, weights are applied to the diagonal of the error variance-349 
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covariance matrix R. Weights are calculated as 
����

�.�� 
	
��

��
��

, where h2 is the proportion 350 

of the total variance explained by the clonal variance component, ��
� derived in the 351 

first step (Garrick et al. 2009). 352 

 We implemented a 5-fold cross-validation scheme replicated 25 times to test 353 

the accuracy of genomic prediction using the genomic relationship matrices and 354 

models described above. In each replication, we randomly assign each individual to 355 

one of five groups (folds). We then select one fold, remove the corresponding 356 

individuals from the training set and use the remaining four folds to predict the fold 357 

that was left out. We iterate this process over each of the five folds to produce a 358 

prediction for each individual that was made while its phenotypes were 359 

unobserved. For each replicate of each model, we calculated accuracy as the Pearson 360 

correlation between the genomic prediction made when phenotypes were excluded 361 

from the training sample and the BLUP (ĝ, not-deregressed) from the first step. For 362 

each model, we calculated accuracy both of the prediction from the additive kernel 363 

(where present) and the total genetic merit prediction, defined as the sum of the 364 

predictions from all available kernels (e.g. additive + dominance + epistasis). 365 

Genomic predictions were made using the EMMREML R package. For simplicity, we 366 

tested only the trait MCMDS in the IITA Genetic Gain population. 367 

 In addition, we assessed the predictability of CMD based on random forest 368 

regression (RF), a non-linear, machine-learning approach that excels at capturing 369 

non-additive especially interaction-type genetic effects(Jannink et al., 2010). We 370 

used RF only with the significant CMD2 associated markers as predictors to assess 371 
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additional evidence for interaction at this locus on the basis of prediction accuracy 372 

achieved. We used the same cross-validation scheme described above. 373 

 374 

 375 

  376 
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RESULTS 377 

Genotyping Data 378 

SNP marker data was generated using genotyping-by-sequencing (GBS) 379 

(Elshire et al., 2011). Overall coverage was 0.07x (range 0.05-0.2). There were 380 

114,922 markers that passed initial filters with a MAF > 1%. Of these, 95,047 are 381 

mapped to the genome. Of mapped markers used for GWAS (MAF > 5%), there was 382 

an average of 2293 SNPs per chromosome or one marker every 9.5 kb. The mean 383 

MAF (0.21-0.22), mean heterozygosity (0.32-0.35) and number of markers analyzed 384 

(40,539-42,113) were similar between sub-populations (Table 1). Most 385 

chromosomes in most populations had mean r2 > 0.2 extending 10 to 50 Kb. The r2 386 

between markers 4.5-5.5kb apart was 0.3 on average (median 0.13) suggesting at 387 

least some LD between most causals and at least one marker but also that increased 388 

density in future studies will provide additional mapping resolution (Figs S14-S19). 389 

 390 

Population stratification and structure  391 

Principal components analysis of our SNP dataset revealed subtle 392 

differentiation among African cassava clones analyzed. This can been seen from a 393 

plot of the first four PCs (cumulative variance explained = 15%). The Nigerian sub-394 

populations (NRCRI, IITA Genetic Gain, Cycle 1 and Cycle 2) occupy similar genetic 395 

space, but the Ugandan sub-population (NaCRRI) is somewhat distinct on PC1 and 396 

PC2. This may be consistent with a history of germplasm sharing and recurrent use 397 

of elite parents among African breeding institutes.  398 
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We tested several standard GWAS models for controlling inflation of p-values 399 

caused by population structure including a general linear model (GLM, no 400 

correction); a GLM with the first 5 PCs of the SNP matrix as covariates; and a mixed-401 

linear model using the marker-estimated kinship matrix. Visual inspection of QQ 402 

plots (Fig. 2 inset, Figs. S20-25) indicated that the MLM was most consistent for 403 

reducing –log10(p-values) towards the expected level (i.e. controlling false-positives, 404 

removing population structure effects). All subsequent results are therefore based 405 

on mixed-model associations. From the variance components estimated when fitting 406 

MLMs we found that kinship matrices explained on average 57% (range 31-94%) of 407 

the phenotypic variance (Table S1). 408 

 409 

 410 

Overall Genome-wide Associations 411 

Association tests were performed for CMD symptom severity at one, three, 412 

six, nine and twelve months after planting (where measured) in the five sub-413 

populations (Table 1) and in analysis that combined all accessions. We identified 414 

311 markers in total that pass a Bonferroni significance threshold (Fig. 2, Table S8). 415 

However, many significant SNPs were detected because of rare marker genotypes 416 

that were phenotypically extreme (Figure S26). The F-test implemented by TASSEL 417 

is sensitive to imbalanced sample size between groups and we wish to be 418 

conservative and only consider significant results that we can be confident in. 419 

Therefore, we only consider SNPs where each genotype class (e.g. aa, Aa, AA) is 420 

represented by at least 10 individuals. This reduced the number of significant 421 
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markers to 198, on 14 chromosomes, mostly concentrated at a single region of 422 

chromosome 8. Significant results were found within each sub-population, with 423 

more signals associated with greater sample size (e.g. Cycle 1). Variance explained 424 

by significant markers ranged from 0.5% to 22% (median 3.5%) (Table S9). 425 

 426 

Chromosome 8 contains the major resistance locus, CMD2 427 

There were 163 significant markers on chromosome 8 (between 3.56-11.38 428 

megabases; Fig. 3a) with the top marker (S8_7762525) explaining 5-22% of the 429 

variance depending on the sub-population. The frequency of the resistance-430 

associated allele at S8_7762525 is 56% overall (range: 44% in IITA Genetic Gain to 431 

63% in IITA Cycle 2 progenies).  432 

The resistance allele at S8_7762525 is incompletely dominant  (Fig. 3 inset); 433 

homozygotes with the alternate allele were closer to CMD free than heterozygotes. 434 

To formally test this, we conducted a post-hoc test for an additive effect at this 435 

marker that explained 15% of the variance compared to a test of additive plus 436 

dominance effect that explained 20%, and a test of dominance alone that accounted 437 

for only 2%. 438 

We confirmed that our major QTL is the CMD2 locus by aligning previously 439 

published SSR marker primers (SSRY28, NS158 and SSRY106) (Akano et al., 2002; 440 

Lokko et al., 2005; Okogbenin et al., 2007, 2012a; Mohan et al., 2013) to the 441 

reference genome using E-PCR (http://www.ncbi.nlm.nih.gov/tools/epcr/). Our 442 

significant markers on chromosome 8 co-locate with these markers (Fig. S28a).  443 

Additionally, scaffolds bearing the significant QTL reported in Rabbi et al. ( 2014a; 444 
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b) are located in this region. However, while Rabbi et al.’s (2014a; b) strongest 445 

association was on scaffold 5214, corresponding to Chr. 8 position 6511133, the 446 

strongest association for the present study is on scaffold 6906 (7454373-7836749), 447 

more than a megabase away. This discrepancy is due to the fact that the SNP 448 

markers in scaffold 6906 did not segregate in the resistant parents of the bi-parental 449 

mapping populations. 450 

 451 

Dissecting resistance originating from alleles or loci on Chromosome 8 452 

The significance region on chromosome 8 is large (~8 Mb; Fig. 3a). In fact, 453 

the region appears as two, sometimes equally significant peaks in some sub-454 

populations (Fig. S27). We scanned the region for haplotype blocks with PLINK 455 

(version 1.9, https://www.cog-genomics.org/plink2) and found it was not 456 

characterized by a single, or even a few large, but many small LD blocks (Fig. S29). A 457 

second locus (CMD3) has been reported on the same chromosome as 458 

CMD2(Okogbenin et al., 2012b). The authors reported the marker NS198 to be 36 459 

cM from CMD2 and associated with very strong resistance in the progeny of 460 

TMS972205. E-PCR collocated NS198 on chromosome 8, five megabases (position 461 

997099) outside our significance region (Fig. S28). Thus our results suggest a 462 

second QTL (i.e. CMD3), if present, is much closer to CMD2 than previously believed. 463 

We used several approaches to evaluate the evidence for multiple QTL in the 464 

region. We conducted a post-hoc test for interactions between the top-marker on 465 

chromosome 8 and every other marker on the chromosome. There were significant 466 
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interactions, explaining up to 42% of the variance, 1-3 megabases from the top 467 

GWAS hits, but none in the region surrounding S8_7762525 (Fig. 3b, Fig. S30). 468 

We implemented a multi-locus mixed-model (MLMM (Segura et al., 2012)), 469 

which uses a forward-backward stepwise model selection approach to determine 470 

which and how many marker cofactors are required to explain the associated 471 

variance in the region. The MLMM for MCMDS in the population-wide sample 472 

selected five markers (S8_7762525, S8_6380064, S8_6632472, S8_7325389, 473 

S8_4919667) spanning the significance region (Fig. S31). Of the five, the first was 474 

our top marker S8_7762525, the fourth is only about 400 Kb away, and the 475 

remaining three cover the secondary peak and the region of statistical interaction. 476 

These markers are mostly in linkage equilibrium (Table S10) and collectively 477 

explain up to 40% of the variance. The selection of markers distributed across the 478 

region by MLMM including both putative peaks to explain the phenotypic-479 

association in the region is additional evidence in support of a multi-locus 480 

hypothesis. 481 

LD decays in the region to low levels (r2<0.25) and is virtually zero between 482 

significant markers on the left, e.g. S8_5064191 and those on the right, e.g. 483 

S8_762525 of the significance region (Fig. 3c). Combined with our genome-wide 484 

analysis of LD decay rates (Figs. S14-S19) this LD decay makes it unlikely that a 485 

single locus or allele is responsible for the associated region. 486 

We examined the two-locus genotype effects (e.g. between S8_7762525 and 487 

the SNP with the most significant interaction test, S8_4919667) and found a usually 488 

dominant effect of the secondary resistance allele (e.g. S8_4919667) in the 489 
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heterozygous and homozygous resistant background at the primary peak (Fig. 4; 490 

Fig. S32). We found little evidence of secondary peak effects in the homozygous 491 

susceptible primary peak background. Clones that are homozygous resistant at both 492 

loci are superior to all other cassava clones, expressing virtually no symptoms (Fig. 493 

4c).  494 

 495 

Other Loci Associated with CMD Resistance 496 

 We identified thirty-five markers on 13 chromosomes that explained 0.5–497 

10% (median 4%) of the variance (Table S9). Many of these had recessive and 498 

usually rare susceptibility alleles (Fig. S26). Marker S4_637212 explained 4% of the 499 

variance (CMD6S, Genetic Gain) and had an additive effect. Marker S11_20888811’s 500 

recessive resistance allele appears to lower CMD symptoms 4% more than CMD2 501 

(S8_7762625) but only 14 clones are homozygous resistant at this locus (Fig. S26). 502 

Further work on this locus is urgently needed to determine it's possible impact as 503 

its frequency increases. There were four significant markers on chromosome 14 504 

with mostly dominant effects and explaining up to 5% of the variance. Two 505 

previously published SSR markers (SSRY44, NS146) (Mohan et al., 2013) are located 506 

within 1.4 megabases of these SNPs (Fig. S28b). Four markers, spread across seven 507 

megabases of chromosome 9, with recessive susceptibility loci, explained up to 10% 508 

(S9_14551208) of the variance. These markers co-located with SSRY40, originally 509 

reported as CMD1 and associated with quantitative resistance (Fregene et al., 2000; 510 

Mohan et al., 2013).  511 

 512 
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Candidate Genes 513 

We intersected our association-results with available gene annotations and 514 

related data and identified 105 unique genes within the association peaks, with 79, 515 

61, 56 and 9 genes identified at one, three, six and nine months after planting, 516 

respectively (Table S11, Fig. S33). There were no significant differences between 517 

gene ontology categories between time points. Most of the annotated genes are 518 

involved in metabolic processes (Fig. S34). Thirty-five out of the 105 genes are 519 

known to respond to cassava mosaic virus infection (Allie et al., 2014) (Table S11). 520 

 Among these genes we found ones known to be susceptibility or resistance 521 

factors, a number of which are also involved in plant-geminivirus interaction 522 

processes (Hanley-Bowdoin et al., 2013). We found two peroxidases 523 

Cassava4.1_029175 and Cassava4.1_011768 within the primary QTL region 524 

(scaffold 6906, ~7.7Mb); peroxidases are pathogenesis-related proteins (PRs), 525 

involved in host response to infection(van Loon et al., 2006). In the secondary GWAS 526 

peak (scaffold 5214, 5-6Mb) six SNPs were in a protein disulfide-isomerase like 2-2 527 

ortholog, a thioredoxin (PDIL2-2, cassava4.1_007986). In barley, an ortholog of 528 

PDIL2-2 (HvPDIL5-1) is a known virus susceptibility factor as are PDI gene family 529 

members across the animal and plant kingdoms (Yang et al., 2014). We also 530 

identified the Ubiquitin-conjugating enzyme E2 ortholog (UBC5) gene 531 

(cassava4.1_017202) under the secondary GWAS peak (scaffold 5214, 5-6 Mb 532 

region).  Genes like UBC5 in the ubiquitinylation pathway have been known to 533 

influence plant virus infection response (Becker et al., 1993). 534 
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We analyzed the coding sequence of the three genes mentioned above in 535 

three CMD resistant cassava genotypes known to possess the qualitative resistance 536 

allele(s) (TMEB3, TMEB7 and I011412) and in two susceptible/tolerant ones known 537 

to possess only quantitative resistance sources (I30572 and TMEB1). We identified 538 

SNPs within the coding regions and identified amino acid changes (Table S12). Two 539 

non-synonymous mutations were found on exons 7 and 9 of Cassava4.1_007986, 540 

homozygous in the susceptible group but heterozygous in the resistant clones 541 

(Table S12). The peroxidase, Cassava4.1_011768 did not show any non-synonymous 542 

mutations specific to the resistant/susceptible group. However, Cassava4.1_02917, 543 

showed three non-synonymous mutations that were specific to the susceptible 544 

group.  545 

 546 

Genomic Prediction of Additive and Total Genetic Merit 547 

We tested four prediction models using cross-validation: (1) 548 

AdditiveAll_Markers, (2) AdditiveAll_Markers + DominanceAll_Markers + EpistasisAll_Markers, (3) 549 

AdditiveCMD2 + AdditiveNon-CMD2, (4) AdditiveCMD2 + DominanceCMD2 + EpistasisCMD2 + 550 

AdditiveNon-CMD2. Mean cross-validation accuracy averaged 0.53 for additive and 0.55 551 

for total value across models (Table 2, Figure 5). Including non-additive effects, 552 

using all markers (model 2) shifted 60% of the variance to dominance and epistasis 553 

and decreased the accuracy of the additive prediction from 0.53 (model 1) to 0.51, 554 

but gave increased total prediction accuracy of 0.55.  An additive only model giving 555 

separate weight to CMD2 and non-CMD2 regions (model 3) had the highest total 556 

prediction accuracy (0.58), with most accuracy coming from CMD2 (0.54) vs. non-557 
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CMD2 (0.29) but most variance absorbed by non-CMD regions. Modifying model 3 to 558 

allow the CMD2 region additive, dominance and epistatic effects (model 4) slightly 559 

decreased total prediction accuracy (0.57) relative to model 3, with most accuracy 560 

coming from the additive CMD2 kernel (0.52), but with 51.7% non-additive 561 

variance, 33.6% non-CMD2 variance and only 14.7% additive CMD2. 562 

 563 

  564 
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DISCUSSION 565 

The present study solidifies our understanding of the genetic resistance to CMD 566 

that is available in African cassava germplasm and demonstrates the efficacy of 567 

genomic selection at improving CMD resistance. After conducting the first genome-568 

wide association study for this species with markers anchored to chromosomes, we 569 

are able to confirm that the basis of genetic resistance to CMD is indeed narrow, 570 

arising chiefly from a single region of chromosome 8 that collocates with the loci 571 

CMD2 (Akano et al., 2002) and CMD3 (Okogbenin et al., 2012b). The lack of new 572 

major effect loci is a key outcome of our study. Even after analyzing a broad sample 573 

of the breeding germplasm from West and East Africa. However, we also identified 574 

13 regions of small effect including one on chromosome 9 that collocates with CMD1 575 

(Fregene et al., 2000). 576 

Another key result of our analysis is that the most highly resistant cassava 577 

clones, those that never show disease symptoms, are only identified using models of 578 

epistasis in the significance region on chromosome 8. We propose two alternative 579 

hypotheses to explain this result. As suggested both in our analyses and previous 580 

studies (Okogbenin et al., 2012b) there may be multiple interacting loci in the region 581 

(i.e. CMD2 and CMD3). Alternatively, our results may arise from a complex haplotype 582 

structure, where observed levels of resistance come from a single locus with one 583 

moderate and another strong resistance allele segregating in the population. An 584 

example of the later scenario is resistance to tomato yellow leaf curl which initially 585 

mapped to two genes Ty-1 and Ty-3 on the same chromosome, but was later 586 

revealed by fine-mapping to be one gene with multiple alleles (Verlaan et al., 2013). 587 
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In order to facilitate functional studies of the qualitative resistance source(s) on 588 

chromosome 8, we used our GWAS results to identify three candidate genes. 589 

Interestingly, there are no major resistance genes (e.g. NBS-LRR) in our region of 590 

interest (Lozano et al., 2015). We found two peroxidases, which have recently been 591 

shown to down-regulate in response to cassava mosaic geminivirus infection in 592 

susceptible genotypes (Allie et al., 2014) and a thioredoxin, which can be important 593 

for plant defense activation (Bashandy et al., 2010; Ballaré, 2014).  We note that our 594 

genome assembly contains gaps ((ICGMC), 2014) and is based on a South American 595 

accession (Prochnik et al., 2012) that may not possess the causal gene(s). Significant 596 

work remains to identify the causal mechanism of qualitative resistance to CMD.  597 

Finally, we demonstrate the potential of genomic selection for CMD resistance 598 

breeding. In agreement with our association analyses, we found most of the variance 599 

and the prediction accuracy was attributable to the chromosome 8 QTL(s). While 600 

additive models will allow us to accurately select parents for cassava breeding, we 601 

found non-additive prediction of total genetic merit to be even more accurate. 602 

Prediction of total genetic merit will therefore enable cassava breeders to more 603 

easily identify clones with superior disease resistance to be elite varieties, 604 

effectively exploiting dominance and epistasis for crop improvement. Further, it is 605 

significant that, while accuracy is low for the quantitative (non-major gene) 606 

components, it is not zero. Thus it should be possible to do genomic selection to 607 

simultaneously improve both qualitative (i.e. CMD2/CMD3) and quantitative (i.e. 608 

polygenic background) resistance.  609 
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The results we present in this study will represent progress towards discovering 610 

the mechanistic basis for major gene resistance to CMD and will also aid breeders 611 

seeking to pyramid useful alleles and achieve symptom-free cassava varieties either 612 

by marker assisted or genomic selection. In only two years we have conducted two 613 

rounds of selection and recombination, twice as fast as conventional phenotypic 614 

selection, and have increased the resistance-allele frequency at our top marker from 615 

44% to 63%. The present study is an example of the possibilities for rapidly 616 

improving and dynamically breeding a crop that is crucial for hundreds of millions, 617 

particularly in underdeveloped regions of the world.  618 

 619 

 620 

 621 

  622 
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FIGURE LEGENDS 798 

 799 

Figure 1. Plot of the first four principal components of the SNP marker matrix. 800 

The three main training populations were used in the PCA and are shown here. A 801 

random sample of IITA GS Cycles 1 and 2 were projected into the genetic space and 802 

are displayed here. 803 

 804 

Figure 2. Manhattan plot from mixed-linear models summarizing genome-805 

wide association results for all traits in all sub-populations. Bonferroni 806 

significance threshold is shown in red. An example QQ-plot (MCMDS in the 807 

population-wide analysis) is shown inset to demonstrate the differences between 808 

various population structure controls. 809 

 810 

Figure 3. Plots dissecting the major effect QTL on chromosome 8. (A) 811 

Manhattan plot summarizing genome-wide association results for all CMD-related 812 

traits in the population-wide mixed-linear model analysis, zoomed to chromosome 8 813 

only. (B) Manhattan plot showing linear model tests for interactions (blue dots) 814 

between the top marker (S8_7762525, blue vertical line) and every other maker on 815 

chromosome 8. Red dots are for the main effect of the second marker (main effects 816 

of S8_7762525 are not shown). (C) LD between S8_7762525 (blue vertical line) and 817 

every other maker (blue dots), plus LD between the marker with the strongest 818 

interaction effect (S8_4919667; red vertical line) and every other marker. Bar plot 819 

showing mean and standard error for MCMDS between each genotype class at the 820 

top marker, S8_7762525 (Inset). 821 

 822 

Figure 4. Plots demonstrating the combined effect of the genotype at the top 823 

marker (S8_7762525) and the most epistatic marker (S8_4919667). (A) 824 

Boxplot showing the distribution of mean CMD severity scores (MCMDS) for each 825 

two-locus genotype. (B) Disease progress curves showing mean and standard error 826 

CMD severity across 1, 3 and 6 months after planting for each two-locus genotype. 827 

(C) Zoomed Manhattan plot showing the location of the two markers being 828 

compared; S8_7762525 (red line) and S8_4919667 (blue line). 829 

 830 

Figure 5. Cross-validated genomic prediction results for MCMDS. (A-C) Box 831 

plots of accuracies from 25 reps of 5-fold cross-validation. (A) Accuracies of the 832 

additive models (#1 and #3) using either a single kernel (AdditiveAll_Markers) or two-833 

kernels (AdditiveCMD2 and AdditiveNon-CMD2). (B) Accuracies of the additive 834 

predictions from the models that included dominance and additive-by-dominance 835 

epistasis (models #2 and #4). A single additive accuracy is calculated from the 836 

model #2 (AdditiveAll_Markers) and two accuracies for model #4 (AdditiveCMD2 and 837 

AdditiveNon-CMD2). The accuracy of total genetic merit prediction from models (#2, all 838 

markers; #4, CMD2 + Non-CMD2) with dominance and epistasis are shown in (C). 839 

Kernel weights corresponding to the partitioning of the genetic variance for the 840 

epistatic models are shown in (D, all markers model #2) and (E, CMD2 + Non-CMD2 841 

model #4).  842 

  843 
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Table 1. Summary of phenotype and genotype datasets analyzed. 

 Population 

Trait NRCRI NaCRRI 

IITA: Genetic 

Gain GS Cycle 1 GS Cycle 2 Trait Description 

CMD1S X 

 

X X X 

Cassava mosaic disease (CMD) 

severity rated on a scale from 1 (no 

symptoms) to 5 (extremely severe). 

One month after planting (MAP). 

CMD3S X X X X  CMD Severity at 3 MAP 

CMD6S X  X X  CMD Severity at 6 MAP 

CMD9S X     CMD Severity at 9 MAP 

CMD12S X     CMD Severity at 12 MAP 

MCMDS X X X X X 

Mean across all growing season 

observations of Cassava Mosaic 

Disease Severity 

AUDPC X 
 

X X 
 Area under disease severity progress 

curves (1, 3 and 6 MAP). 

2 2 14 2 1 Years 

3 3 10 3 1 Locations 

Clonal Clonal Clonal Seed/Clonal Seed Propagation 

626 414 2187 694 2466 N Clones 

41820 41060 42113 41369 40539 N Markers (MAF > 0.05) 

 
0.21 0.21 0.22 0.21 0.22 

Mean MAF (mapped markers, with 

MAF > 0.05) 

 
0.32 0.33 0.34 0.33 0.35 

Mean observed Heterozygote 

frequency 

NRCRI National Root Crops Research Institute (NRCRI) in Umudike, Nigeria 

NaCRRI National Crops Resources Research Institute (NaCRRI) in Namulonge, Uganda 

IITA: Genetic 

Gain 
International Institute of Tropical Agriculture in Ibadan, Nigeria, 

IITA: Cycle 1 Genomic selection progenies of 76 IITA: Genetic Gain clones. 

IITA: Cycle 2 Genomic selection progenies of 158 IITA: Cycle 1 clones. 
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Table 2. Summary of cross-validation results for MCMDS. Mean kernel weights as well as additive 

and total prediction accuracies are reported for each of four models tested. 

  Fraction of the variance explained (Kernel Weights) 

Additive 

Component 

Accuracy 

Total Sum 

Accuracy 

1) AdditiveAll_Markers 
0.53 0.53 

  1 

2) AddAll_Markers DomAll_Markers EpiAll_Markers 
0.51 0.55 

  0.396 0.015 0.589 

3) AdditiveCMD2 AdditiveNon-CMD2 0.54CMD2 / 

0.29Non-CMD2 
0.58 

  0.3 0.7 

4) AddCMD2 DomCMD2 EpiCMD2 AddNon-CMD2 0.52CMD2 / 

0.25Non-CMD2 
0.57 

  0.147 0.019 0.498 0.336 
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