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Abstract 20 

Genotyping-by-sequencing (GBS) and related methods are based on high-throughput short-21 

read sequencing of genomic complexity reductions followed by discovery of SNPs within 22 

sequence tags. This provides a powerful and economical approach to whole-genome 23 

genotyping, facilitating applications in genomics, diversity analysis, and molecular breeding. 24 

However, due to the complexity of analysing large data sets, applications of GBS may require 25 

substantial time, expertise and computational resources. Haplotag, the novel GBS software 26 

described here, is freely available and operates with minimal user-investment on widely-27 

available computer platforms. Haplotag is unique in fulfilling the following set of criteria: (1) 28 

operates without a reference genome; (2) can be used in a polyploid species; (3) provides a 29 

discovery mode and a production mode; (4) discovers polymorphisms based on a model of tag-30 

level haplotypes within sequenced tags; (5) reports SNPs as well as haplotype-based genotypes; 31 

(6) provides an intuitive visual “passport” for each inferred locus.  Haplotag is optimized for use 32 

in a self-pollinating plant species. 33 

 34 

Summary (100 words):   This report describes and makes freely available a novel software 35 

application designed to analyze and report results of genotyping-by-sequencing.  The software 36 

takes a novel approach to discovery and validation of loci based on tag-level haplotypes within 37 

clusters of aligned tags that may contain multiple paralogous loci.  Output from these analyses 38 

are reported in multiple formats, including an intuitive passport showing discovered loci and 39 

genotypes within each cluster.  40 
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Genotyping-by-sequencing (GBS: Elshire et al. 2011) and similar methods (e.g. RAD: Miller et al. 41 

2007) have become important strategies for whole genome genetic diversity analysis and 42 

related studies in many plant and animal species. The objective of these strategies is to re-43 

sequence a representative fraction of the genome of many individuals, and thereby determine 44 

the genotypes of those individuals at loci where sequence variants exist.  Methods are based on 45 

high-throughput short-read sequencing of enzymatically-constructed genomic complexity 46 

reductions, followed by discovery of SNPs within sequence tags. While GBS is powerful and 47 

economical, it is also complex: requiring the barcoding and multiplexing of samples, the 48 

deconvolution of large data files, the alignment of short reads (tags), and the discovery and 49 

filtering of SNPs.  The application of GBS in large and complex genomes is especially challenging 50 

because of the confounding presence of multiple paralogous loci (especially in polyploids), and 51 

often, the absence of a complete reference genome.   52 

 53 

There are several available bioinformatics pipelines for GBS analysis, including Stacks (Catchen 54 

et al. 2011), TASSEL (Glaubitz et al. 2014), UNEAK (Lu et al. 2013) and other custom-designed 55 

pipelines (e.g. Sonah et al. 2013; Poland et al. 2012). Most pipelines require or benefit from a 56 

reference genome, while UNEAK is designed specifically to operate independently from a 57 

reference genome and Stacks has the ability to run with or without a reference genome. Stacks 58 

is a flexible and integrative set of tools tool that produce many types of output and can be 59 

customized for many genetic scenarios.  Stacks also provides a unique web-based interface for 60 

inspection of results and quality control: a feature that is useful in tuning the many parameters 61 

of GBS analysis such that they produce results that are appropriate to the genome and the 62 
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genetic population. However, Stacks requires a Unix-like computer environment and a 63 

significant investment of effort in building and maintaining a pipeline, and the web-based 64 

interface requires a relational database and web server.  Most other GBS pipelines also require 65 

the installation of third party programs (e.g. to align sequences) while UNEAK requires only the 66 

installation of a JAVA run-time environment.  67 

To our knowledge, UNEAK and the customized scripts described by Poland et al. (2012) are the 68 

only existing pipelines that will handle data from polyploids in the absence of a reference 69 

genome. Both pipelines achieve this by using a population filter to rejects SNPs that fail to 70 

segregate with the expected genetic ratio in the population under analysis.  Because UNEAK can 71 

be run on any computer platform with adequate resources, it has been popular among 72 

researchers studying species where no reference genome is available. However, the UNEAK 73 

pipeline excludes all SNPs that belong to multi-locus series, SNPs from tags containing multiple 74 

SNPs, or SNPs with more than 2 alleles. In our experience with GBS in hexaploid oat (Huang et 75 

al. 2014) UNEAK excluded at least 30% of potentially useful SNPs that were discovered by an 76 

alternate customized pipeline. Furthermore, the developers of UNEAK (personal 77 

communication) have indicated that no further development of UNEAK will be performed.  78 

 79 

With high-density genotyping comes the possibility to analyse data based on haplotypes and 80 

the ability to impute missing data (Swarts et al. 2014) which may be of particular importance in 81 

GBS analyses where incomplete data are prevalent. Genome wide association studies (GWAS) 82 

based on haplotypes could also allow the discovery of cryptic QTL associations that have eluded 83 

analysis based on single SNPs (Lorenz et al. 2010). Because GBS data are acquired from 84 
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sequenced fragments that often contain multiple SNPs, direct information about localized ‘tag-85 

level’ haplotypes are available within a GBS pipeline. However, to our knowledge, no GBS 86 

pipeline is able to examine the segregation of haplotypes in the application of a population 87 

filter, nor does any software provide a simple method to access or examine haplotypes directly 88 

in an output file. Since accurate haplotype inference normally requires a reference genome, the 89 

availability to extract haplotypes directly from within GBS fragments could be of particular 90 

interest in a species where no reference is available.  91 

 92 

Our objective was to develop user-friendly GBS software that operates with minimal user-93 

investment on widely-available computer platforms. Additionally, we intended this software to 94 

meet the following requirements: (1) to operate without the requirement for a reference 95 

genome; (2) to operate in a polyploid or duplicated genome, distinguishing paralogous loci 96 

when an appropriate population filter is available; (3) to provide a discovery mode as well as an 97 

efficient production mode for scoring previously-discovered loci; (4) to discover polymorphisms 98 

based on models of segregating tag-level haplotypes within GBS sequenced tags; (5) to report 99 

results in a variety of formats, including SNP- and haplotype-based genotypes, and (6) to 100 

provide an intuitive “passport” for each inferred locus, enabling visual inspection and validation 101 

of discovered GBS loci.  102 

 103 

Materials and Methods 104 

 105 
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Software named ‘Haplotag’ was written in the Pascal programming language, implemented as 106 

Free Pascal (freepascal.org) within the Lazarus programing environment (lazarus-ide.org). Both 107 

of these programming packages are open source, available on multiple platforms, and actively 108 

supported by developer communities. Most algorithms within Haplotag were written to 109 

operate in parallel when executed on a computer with multiple processors. The code was 110 

compiled for the Windows 64-bit environment (Microsoft, Redmond WA) and tested with 111 

Windows XP, 7, 8, and 10 and server 2008. Haplotag was tested on many different computers, 112 

but evaluations reported below were executed on a computer running Windows server 2008 113 

with two Intel (Santa Clara, CA) Xeon X5670 processors running at 2.93 GHz.  Each processor 114 

had six cores, and each core was divided into 12 threads (total 24 threads). The test machine 115 

contained 96 GB RAM, but all reported analyses were confirmed to run within 24 GB RAM.  All 116 

input and output data resided on a locally-attached 500GB disk, since prior experience 117 

indicated reduced performance when reading and writing to a network drive.  Small projects, as 118 

well as the demonstration files described below, will run on most ordinary desktop computers, 119 

but will require a 64-bit operating system.   120 

 121 

Haplotag was evaluated using a set of small simulated demonstration files as well as on the full 122 

set of primary GBS reads from oat described by Huang et al. (2014). The later data contained 123 

894 taxa consisting of 360 diverse oat lines and 534 mapping progeny from six bi-parental 124 

populations. Both Haplotag and the UNEAK pipeline were run with a minimum merged tag 125 

count of 50, which is higher than the threshold used in the earlier work due to subsequent 126 

optimization. Output from both pipelines was filtered across the full population to maintain 127 
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markers for which genotype calls were ≥ 50% or ≥ 80% complete, heterozygosity was ≤ 10%, 128 

and minor allele frequency was ≥ 5%. The error detection threshold in UNEAK was set to 0.02. 129 

Additional filters for Haplotag included a maximum base difference of 3 for aligning tags, a 130 

maximum of 9 tags per cluster, a maximum heterozygote frequency on a haplotype basis of 131 

0.25, and a maximum tolerance for tri-zygotes and multi-zygotes of 1% and 0%, respectively.  132 

 133 

Terminology 134 

When referring to SNPs, we use of the terms ‘SNP locus’ (a specific base pair) and ‘SNP alleles’ 135 

(the variant bases found at a SNP locus).  We then define a ‘tag-level haplotype’ as the 136 

combined set of SNP alleles that must exist on a single chromosome due to their recovery in the 137 

sequence of a single GBS tag.  Although the term haplotype implies the existence of multiple 138 

loci, we essentially treat haplotypes as multiple alleles at a single composite locus, which we 139 

refer to as a ‘Haplotag locus’, and inferences are made under the assumption that the 140 

recombination rate within a tag is negligible.  The term ‘heterozygosity’ is used when applying a 141 

filter that rejects an inference that two or more haplotypes exist at the same Haplotag locus if 142 

those haplotypes occur together more frequently than they would be expected to based on the 143 

assumed heterozygosity in the population.   144 

 145 

Data and software availability:  146 

 147 

Data analysed in this report were deposited in the NCBI short read archive 148 

(http://www.ncbi.nlm.nih.gov/sra/) under project accession number SRP037730, and the GBS 149 
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key for analysis was available in Table S4 of Huang et al. (2014).  Supplemental files include: the 150 

Haplotag manual (S1), and sample output (S2 and S3). Haplotag is available as an executable 151 

distribution for recent versions of Windows 64-bit environments (XP, and versions 7 through 152 

10). The distribution can be obtained from the site http://haplotag.aowc.ca/ which provides a 153 

download links for a compressed file that contains the Windows executable, a user manual 154 

(also in S1) and demonstration files. Future updates will be maintained at this site, and a 155 

voluntary registration is provided to monitor interest in this software and to enable 156 

announcements regarding major revisions. The Pascal source code was made available to 157 

reviewers of this work, and will be provided by request on an as-is basis for any non-158 

commercial use based on an open source license. The source code is expected to be compatible 159 

with any operating system where a Free Pascal compiler is available, although minor 160 

modifications to the code may be required to adapt it for the file systems of other operating 161 

environments.   162 

 163 

Results and Discussion 164 

 165 

Software execution: 166 

 167 

The operation and function of Haplotag is described in the accompanying manual (S1) which 168 

references a set of small simulated input files for demonstration purposes. The input files are 169 

archived within the software distribution archive.  When extracted, the demonstration files fall 170 

within three separate subdirectories, each containing a complete self-contained set of 171 
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demonstration files for one of three primary modes in which Haplotag can operate.  Within 172 

each subdirectory is a master input file with the default name “HTinput.txt” which contains all 173 

relevant parameter specifications as well as a set of pipeline commands that Haplotag will 174 

follow in the order listed. Based on these commands, Haplotag can read and process data from 175 

three starting points (figure 1) representing the three modes of operation.  176 

 177 

There is currently a requirement to run part of the UNEAK GBS pipeline prior to running 178 

Haplotag in order to de-convolute the raw barcoded sequence data, produce a tag count file for 179 

each sample, and write a merged tag count file for the entire project. The UNEAK pipeline 180 

executes these steps very efficiently, thus the replacement of this functionality was not a 181 

priority. The current Haplotag distribution provides a small helper utility to assist users in 182 

writing the UNEAK script and converting binary output to the text files required by Haplotag. A 183 

standalone replacement for UNEAK is being developed which may allow the analysis of tags 184 

longer than 64bp, but this tag length is a current limitation of both UNEAK and the current 185 

version of Haplotag.  Sequencing data with short reads of 100bp is ideal for this type of analysis, 186 

since the barcode may occupy op to the first 10 bases, and this allows truncation of lower 187 

quality bases at the 3’ end of the read. Reads of longer than 100bp can be analysed, but the 188 

tags will be truncated at 64 bases. 189 

  190 

The cluster discovery mode (Figure 1A) is designed for applications where complete de-novo 191 

SNP discovery is required. This de-novo clustering step is multi-threaded, but it may still run 192 

slowly on very large data sets. The haplotype discovery mode (Figure 1B) reduces the scale of 193 
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analysis by seeding the clusters with a set of pre-determined tags. This feature is useful for 194 

maintaining the legacy nomenclature of reference sequences from prior GBS analyses. It could 195 

also be used to seed the alignment of clusters using predicted fragments from a sequenced 196 

genome.  Alternatively, this step could incorporate consensus sequences from an alternate or 197 

more efficient clustering algorithm. The production mode (Figure 1C) is designed for 198 

applications where SNPs and Haplotypes have already been discovered by Haplotag using a 199 

large, diverse and representative population, and where the objective is to genotype new 200 

samples while maintaining exactly the same nomenclature of loci, haplotypes, and SNPs.  No 201 

new haplotypes will be discovered in production mode, so it is not recommended for an 202 

application where the diversity of new taxa falls outside of the diversity where the model was 203 

built. 204 

 205 

What distinguishes Haplotag from other GBS pipelines is the treatment of the tags as 206 

haplotypes, and the development of locus models using a population filter to validate the 207 

diploid segregation these haplotypes.  Prior to model discovery, tags are deliberately over-208 

aligned into clusters that potentially represent multiple paralogous loci.  Then Haplotag tests 209 

every possible combination of haplotypes within each cluster to identify mutually exclusive 210 

groups of haplotypes that behave as single Haplotag loci. This model testing is based on a 211 

population filter, which specifies threshold parameters for maximum heterozygosity, minimum 212 

and maximum allele frequency, and genotype-completeness (minimum proportion of non-213 

missing genotypes). The result can be a single Haplotag locus within a single cluster, or multiple 214 

Haplotag loci within the same cluster.  The latter is common in polyploid or recently duplicated 215 
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genomes.  Results of locus prediction and genotype scoring are summarized within a single 216 

passport file for each cluster (see below).  Although the model selection within clusters does 217 

not incorporate sequence divergence, the population filter invariably identifies Haplotag loci in 218 

which haplotypes diverge less within the locus than they do among other loci within the same 219 

cluster.  220 

 221 

Software function, as illustrated by passport files: 222 

 223 

Another important and unique feature of Haplotag is the automated production of a ‘passport’ 224 

file for each cluster.  This is illustrated by one passport from the analysis of the included 225 

demonstration data (Figure 2). Passport files are formatted in plain HTML, such that they can be 226 

viewed in any web browser. They are indexed in a master HTML file which can also be opened 227 

and searched in any browser. While these files can be opened directly from a local disk, they 228 

could also be uploaded to a website in order to provide external access to the results of an 229 

analysis. Individual passport files can be inspected to determine if program parameters are 230 

appropriate, or to explore the metadata and genotypes of specific Haplotag loci. In our 231 

experience, these files also serve as intuitive graphical presentations that can assist in 232 

explaining the GBS concept and the program function to a lay audience.  233 

 234 

For example, in Figure 2, we would first explain that the six sequences at the top (TagID 1 to 6) 235 

constitute all of the unique 64-base tags from the experiment that formed a single cluster. 236 

Potential SNPs in this cluster are highlighted, and counts of each tag are shown at the left. We 237 
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would then explain that the species from which these tags are generated is polyploid, such that 238 

we suspect these tags may come from more than one locus. We might then click on the “details 239 

of model” link (which would open table S2) to illustrate how Haplotag has inspected all 57 240 

possible combinations (“models”) of two or more tags from the available six tags. This step is 241 

referred to as a “population filter”, since it allows the exclusion of inappropriate models based 242 

on whether the tags in a model segregate in a diploid manner within the tested population. 243 

Parameters for population filtering, reported at the bottom of the details page (S2) include 244 

genotype-completeness, allele frequency, and heterozygosity. Here each model was evaluated 245 

based on whether it would pass this filter (yes or no). Next, the acceptable model having 246 

complete data for the greatest number of taxa (Model 42 in S2) was assigned as ‘Locus-1’. All 247 

models that overlapped with Model 42 were then removed, and remaining acceptable models 248 

were inspected. Of these, the next best model was assigned to a Haplotag locus (in this case, 249 

Model 48 is assigned as ‘Locus-2’). The above process is iterated indefinitely until no acceptable 250 

models remain. We would then point out that ‘Haplotag Locus-2’ contains only one SNP Locus, 251 

and thus, two haplotypes while ‘Locus-1’ contains two SNPs, which could theoretically form 252 

four haplotypes, of which three haplotypes were observed.  In practice, it is very rare to 253 

observe four haplotypes at a single Haplotag locus with two SNP loci, as this would imply two 254 

mutation events at the same SNP locus, or a rare recombination event between two SNP loci in 255 

the same tag. 256 

 257 

We would then draw attention to the inferred genotypes and segregation of these five 258 

combined haplotypes at two putative Haplotag loci within the population of taxa, which are 259 
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shown in the table at the bottom of the passport (Figure 2). In this idealized example, the 260 

genotypes of all 10 taxa are complete at both accepted Haplotag loci. The numbers in each cell 261 

show the total counts of tags observed for each taxon under each haplotype within a selected 262 

Haplotag locus. Those with non-zero counts for two (or more) haplotypes (e.g. Taxa TJ, under 263 

Locus 1) are scored as heterozygotes. These inferred genotypes are written to a simple text-264 

based file called “HTgenos.txt”. Since many programs for genetic analysis cannot read 265 

haplotypes, an alternate genotype file is written where genotypes are defined by SNP locus 266 

calls from within the Haplotag loci. In the example in Figure 2, three SNP locus calls would be 267 

written, with ‘Locus-1’ being converted to two SNP loci, identified by their SNP positions within 268 

the Haplotag loci. Nomenclature output files are also written, such that all dependencies are 269 

represented in a hierarchical naming system. These files are designed with shared fields such 270 

that they could easily be loaded into a relational database designed for this purpose.  271 

 272 

Parameter selection: 273 

 274 

It is well known that results of SNP identification, especially in a polyploid without a reference 275 

genome, are highly dependent on methods and parameters (Huang et al. 2014).  As with other 276 

methods for SNP identification, there is no formal way to optimize the selection of model 277 

parameters within Haplotag.  However, parameters need to be selected carefully, possibly using 278 

iterative testing, in order to obtain good results and avoid artefacts. In our experience, the best 279 

results from Haplotag are obtained when it is run across a large composite base population 280 

consisting of a mixture of bi-parental populations and diverse taxa representative of target 281 
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germplasm. The bi-parental populations will allow validation of Mendelian segregation and 282 

mapping of the polymorphisms, while the diversity samples will ensure discovery of alternate 283 

haplotypes. The parameters used for the oat data presented below were based on recursive 284 

optimization for this type of experiment.  If bi-parental populations are analyzed, then the 285 

minimum allele frequency filter can be raised appropriately. If the analysis is restricted to a 286 

single bi-parental population, then the filter could be set to achieve a specific chi-square cut-287 

off. Setting the maximum heterozygote frequency to a low value is very useful to exclude non-288 

Mendelian models, but this can only be applied effectively within inbred lines where the 289 

expected heterozygote frequency is significantly lower than 50%.  290 

 291 

Evaluation of Haplotag using data from hexaploid oat: 292 

 293 

Data from 894 taxa reported by Huang et al. (2014) were reanalyzed to compare performance 294 

and output of Haplotag to that of the UNEAK pipeline. The first two steps of the UNEAK pipeline 295 

(production of tag counts and merged tag counts) were run to produce a common starting 296 

point for both pipelines, requiring approximately 6h hours to run on the test environment from 297 

the raw sequence files. The UNEAK pipeline is not multi-threaded so the presence of 24 298 

processors on this machine was not relevant. The remaining steps in the UNEAK pipeline took 299 

only 5min. Data from both UNEAK and Haplotag were filtered and formatted using the small 300 

helper-program “CbyT” described by Huang et al. (2014), which is now updated and provided in 301 

the current Haplotag distribution. The use of CbyT allowed parameters in either pipeline to be 302 

relaxed, such that data filtering could be tested at different levels from the same output.  The 303 
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total count of SNP loci from the UNEAK pipeline passing the population filter at a genotype-304 

completeness threshold of >=50% was 12,780. At a threshold of >=80%, the count of filtered 305 

SNP loci was 4,260 (Table 1).  306 

 307 

Running on the same machine, but utilizing 23 processors, the full Haplotag pipeline in cluster 308 

discovery mode took 6.9h in addition to the 6h required by UNEAK. The cluster discovery step 309 

took most of this execution time. After applying the same population filter, the number of 310 

Haplotag loci was 29,421 with a genotype-completeness of >=50% or 11,950 with a genotype-311 

completeness of >=80%. When translated to SNP loci, the number of calls was 43,378 at >=50% 312 

completeness or 17,117 at >=80% completeness. The larger number of SNP loci relative to 313 

Haplotag loci is due to the presence of multiple SNP loci within some Haplotag loci.  314 

 315 

In comparing the filtered SNP loci called by UNEAK to the SNP loci called from Haplotag, 4204 316 

(99%) of the 4260 UNEAK SNPs filtered at >=80% genotype-completeness were identical to 317 

those called by Haplotag at the same filtering level. In contrast, UNEAK identified only 24% of 318 

the 17,117 Haplotag SNPs filtered at >=80% genotype-completeness.  In general, Haplotag 319 

called most of the same SNP loci discovered by UNEAK, because these represented the clusters 320 

in Haplotag with exactly two haplotypes having only a single SNP difference.  The small number 321 

of UNEAK SNPs that were missed by Haplotag are a result of rare haplotypes and/or sequencing 322 

errors that were aligned into a large cluster by Haplotag.  In rare cases, this resulted in a 323 

complex cluster that was excluded from the Haplotag project because it exceeded the 324 

threshold for the maximum number of tags per cluster. The UNEAK pipeline has a different 325 
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network-based strategy that is intended to exclude rare haplotypes, because it is designed to 326 

seek models with only two haplotypes and a single SNP.  While it is possible to adjust Haplotag 327 

parameters to increase the coverage of UNEAK SNPs, this would be at the expense of a greater 328 

number of multi-haplotype models that are called by Haplotag.     329 

 330 

Haplotag was also tested in production mode, which required only 11 minutes in our test 331 

environment. . As shown in Figure 1, production mode uses loci and haplotypes discovered in a 332 

previous analysis to reduce the computation time and preserve an established nomenclature. 333 

When we used input files from the previously reported cluster-discovery run, we achieved 334 

exactly the same results, as expected.  Thus, to test a different scenario, we used input files 335 

from an alternate analysis (not reported) where Haplotag had been run in haplotype discovery 336 

mode.  In that analysis, clusters were built from the full set of SNP reference sequences 337 

reported by Huang et al. (2014), as well as from additional SNP reference sequences from 338 

subsequent work, encompassing a total of 3327 taxa. We had used this strategy in order to 339 

preserve SNP nomenclature with that of prior published and submitted work.  Here, we wanted 340 

to test whether the haplotypes discovered using this large inventory of reference sequences 341 

would provide similar results to those achieved above using Haplotag in cluster discovery 342 

mode.  The results of this analysis provided genotypes for 24,412 or 7,343 Haplotag loci (at 343 

>=50% or >=80% genotype-completeness, respectively), which translated to 31,685 and 8,872 344 

SNP loci, respectively (Table 1). Averaged across filtering levels, this was a 33% reduction in 345 

called loci relative to those from Haplotag in full cluster discovery mode. The disadvantage of 346 

this strategy, which we have now demonstrated, is that the current production files have not 347 
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incorporated a large number of high quality “new” SNPs that are discoverable only by Haplotag.  348 

This new result will be considered in future GBS work in oat, and will require careful addition of 349 

new clusters, loci, and haplotypes to the existing production files, while still preserving the 350 

legacy nomenclature.  351 

 352 

Each Haplotag run produces a complete index of passport files, linking each Haplotag locus to a 353 

passport file for the cluster where that locus was called.  While this index is written in HTML 354 

format, it can easily be manipulated into a table, which we have demonstrated in Supplement 355 

S3. This table provides links to the passport files for the 7,343 Haplotag loci called in the 356 

production mode and filtered at >=80% genotype-completeness.  We have chosen this output 357 

because it contains legacy SNPs and nomenclature (from Huang et al. 2014) to which we have 358 

added known map positions. By loading all passport files to a web server, they do not need to 359 

be downloaded and duplicated by users of this resource. This strategy will be used in future to 360 

provide passports and metadata for public GBS data sets loaded into the T3/Oat database 361 

(https://triticeaetoolbox.org/oat/). Since passport files can also be saved and opened without 362 

the need for a web server, an individual passport file can easily be shared with a collaborator 363 

when there is an interest in inspecting the sequence and genotypes of a specific Haplotag locus.   364 

 365 

Limitations and future development 366 

Haplotag was developed primarily to solve problems of genotyping in self-pollinating 367 

allopolyploid species without a reference genome.  It will also function well in a self-pollinating 368 

diploid species.  When paralogous loci exist, such that they are aligned together within the 369 
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same cluster, Haplotag depends on a simple heterozygosity filter to build models of Haplotag 370 

loci that exclude haplotypes from non-homologous loci.   Typically, this is very effective in self 371 

pollinating populations where heterozygotes are rare and this filter can be set at a low level 372 

(typically between 0.05 and 0.12).  In populations where high rates of heterozygosity are 373 

expected (in F2 populations, or in populations of outcrossing species) a heterozygosity filter that 374 

was set higher (e.g. 0.65) could still be effective in excluding non-segregating haplotypes from 375 

paralogous locus, but complications could arise if multiple paralogous loci are segregating 376 

simultaneously.  We initially considered the application of a Fishers’ test of contingency tables, 377 

but extending this test to an arbitrary number of haplotypes was beyond our programing skills.  378 

In future, we may consider adding additional population filters to expand the genetic scenarios 379 

in which Haplotag can be used, and we welcome suggestions in this regard. 380 

      381 
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Table 1.  Comparison of GBS data analysis using UNEAK vs Haplotag software.  

Software Mode Time (h:m) 

Number of loci passing population filter at indicated 

genotype completeness  

SNP loci (80%) Duplicated by 

alternate pipeline Haplotype Loci SNP loci 

50% 80% 50% 80% Number percent 

UNEAK NA 6:05 NA NA 12,780 4,260 4,204 
b
 99%

 b
 

Haplotag Cluster discovery 6:54 
a
 29,421 11,950 43,378 17,117 4,108 

c
 24% 

c
 

Haplotag Production 0:11 
a
 24,412 7,343 31,685 8,872 NA NA 

 

a

 Times for Haplotag runs do not include the 6h required for generation of tag-count files using UNEAK. 

b Number and percent of SNP-based loci called by UNEAK that were duplicated by Haplotag at the same 80% filtering level.  

c Number and percent of SNP-based loci called by Haplotag that were duplicated by UNEAK at the same 80% filtering level.  
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 382 

 383 

Figure Captions 384 

 385 

Figure 1. Flow chart showing input files (green), output files (blue) and dependencies 386 

(connecting lines) associated with ‘Haplotag’ GBS discovery software. Default file names are 387 

shown in yellow, and are normally appended by “.txt” in the Windows file system. Three 388 

alternative pipelines (A, B, and C) are available, with required input labeled for each. The cluster 389 

discovery pipeline (A) and the haplotype discovery pipeline (B) start by aligning a complete 390 

inventory of tags (A) or a reduced inventory of tags from prior work (B) to produce clusters. In 391 

(B), the complete inventory is then re-aligned against this template to increase the sampling of 392 

new haplotypes. A complete tag-by-taxa matrix of tag counts (HTBT) is then formed for all tags 393 

belonging to clusters of two or more tags. Other output files are then created based on 394 

haplotype model fitting. In the production pipeline, only the files labelled by (C) are required, 395 

since genotyping is based on counting copies of haplotype-tags in the output files from previous 396 

discovery work. 397 

 398 

Figure 2. Passport file produced by Haplotag from simulated demonstration files. Here, six tags 399 

(potential haplotypes) are identified at the top. After model fitting by population-based 400 

filtering, two locus-models are selected.  When Haplotag is run in ‘verbose’ mode, the details of 401 

model selection are written in a separate file (see S2).  Locus-1 contains three haplotypes and 402 

Locus-2 contains two. SNP positions are identified by color. The table at the bottom of the 403 
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passport shows the tag counts at the presumed haplotypes within each locus. Counts greater 404 

than one are shaded, indicating that they are scored as “present”.  405 

 406 

Supplementary Material 407 

 408 

File S1. Complete user manual for Haplotag. Future updates may be available at 409 

http://haplotag.aowc.ca where the latest version of Haplotag software can also be 410 

downloaded. 411 

  412 

File S2:  Details of model selection from the passport file presented in Figure 2.  A total of 57 413 

models were evaluated, which represent all possible combinations with 2 or more members of 414 

the 6 potential haplotypes.  Of these, 5 models met the filtering criteria.  Model 42 was 415 

selected as the first valid locus with the greatest number of complete genotypes.  Other models 416 

containing overlapping haplotypes from model 47 were then eliminated, and the process was 417 

iterated to select model 48 as a second valid locus.  418 

 419 

Table S3. Index of haplotype based locus calls from the software Haplotag. Calls were made 420 

from primary sequence data originating from 894 taxa, described by Huang et al. (2014). Data 421 

were analysed in the Haplotag production mode, such that SNP nomenclature from the 422 

previous work was preserved.    423 

 424 

 425 
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