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Abstract: 

 

Type 1 interferons such as interferon-alpha  (IFNα)  inhibit  replication  of  Human  

immunodeficiency virus (HIV-1) by upregulating the expression of genes that 

interfere with specific steps in the viral life cycle.   This pathway thus represents a 

potential target for immune-based therapies that can alter the dynamics of host-

virus interactions to benefit the host.  To obtain a deeper mechanistic understanding 

of  how  IFNα  impacts  spreading  HIV-1 infection, we modeled the interaction of HIV-

1  with  CD4  T  cells  and  IFNα  as  a  dynamical  system.    This  model  was  then  tested  

using experimental data from a cell culture model of spreading HIV-1 infection.  We 

found  that  a  model  in  which  IFNα  induces  reversible  cellular  states  that  block  both  

early and late stages of HIV-1 infection, combined with a saturating rate of 

conversion to these states, was able to successfully fit the experimental dataset.  

Sensitivity  analysis  showed  that  the  potency  of  inhibition  by  IFNα  was  particularly  

dependent on specific network parameters and rate constants. This model will be 

useful  for  designing  new  therapies  targeting  the  IFNα  network  in  HIV-1-infected 

individuals, as well as potentially serving as a template for understanding the 

interaction  of  IFNα  with  other  viruses. 
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Author Summary 

Interferon-alpha  (IFNα)  is  a  key  component  of  the  host  response  to  HIV-1, but the 

details  of  how  IFNα  regulates  infection  are  still  incompletely understood.  To 

provide  a  deeper  understanding  of  the  dynamics  of  how  IFNα  inhibits  HIV-1, we 

simulated  the  interaction  of  IFNα  and  HIV-1 as a computational model and 

compared this model to an experimental dataset.  We identify a model structure that 

is able to fit many key features of the data.  Furthermore, we use the model to 

predict  optimal  strategies  for  targeting  the  IFNα  pathway  therapeutically.  We  

anticipate that this model will be useful for further analysis of HIV-IFNα  

interactions and will help to guide new therapeutic strategies. 

 

Introduction: 

 

Around 65 million people worldwide have been infected with Human immunodeficiency 

virus (HIV-1) [1].    Although progress has been made in mitigating disease with antiviral 

chemotherapy, a protective vaccine has proved elusive, and other approaches are still 

needed.  Furthermore, permanently eliminating virus from patients undergoing drug 

therapy has been difficult due to the existence of latently infected reservoirs that are 

resistant to standard antiviral therapy [2].    Another possible approach to treating HIV-1 

infection is to alter aspects of virus-host dynamics by targeting host pathways that inhibit 

or enhance infection.  For this to be successful, a deep understanding of the dynamics 

underlying how specific host pathways interact with HIV-1 will likely be required. 
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The application of mathematical modeling to HIV-1 dynamics during acute and chronic 

infection has been highly successful at improving our understanding of the basic features 

of clinical infection.  In particular, fundamental insights into the response to antiviral 

therapy, and the existence of multiple long-lived virus reservoirs have been revealed [3–

6].  In early models, the extent of infection was typically limited by target cell abundance, 

although more recent HIV-1 models have also considered the impact of virus-specific 

CD8 T cells [7,8].  However these models have not yet included the impact of the host 

innate immune system. 

 

A key component of the host innate response to HIV-1 infection is the type 1 interferon 

(IFN) system [9,10].  In humans, type 1 IFNs consist of a family of related cytokines 

including  13  subtypes  of  IFNα,  and  two  subtypes  of  IFNβ,  that  are  secreted  in  response  to  

stimulation of microbe-sensing pattern-recognition receptors such as Toll-like receptors 

(TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs) [11].  Type 1 IFNs 

bind  the  IFNα  receptor  (IFNΑR)  and  activate  phosphorylation  of  the  signaling  molecules  

STAT1 and STAT2, which then bind to Interferon regulatory factor 9 (IRF9) to form the 

Interferon-stimulated gene factor 3 (ISGF3) complex [12].  ISGF3 then binds to 

conserved Interferon-sensitive response elements (ISREs) found upstream of interferon-

sensitive genes (ISGs) [13].    Dozens  of  ISGs  are  upregulated  by  IFNα,  the  function  of  

which only a few are clearly understood [14].  Overall, IFNs create an antiviral state that 

can either prevent de novo infections, or inhibit later stages of virus replication in cells, 

such as assembly and egress.   
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IFNα  is  detectable  in  the  plasma  during  acute  HIV-1 infection, and this cytokine is 

predominantly secreted by plasmacytoid dendritic cells (pDCs).  pDCs detect HIV-1 via 

the single-stranded  RNA  sensor  TLR7,  and  secrete  high  levels  of  IFNα  due  to  

constitutive expression of the Interferon regulatory factor 7 (IRF7) transcription factor 

[15,16].   A number of ISGs have been shown to have anti-HIV-1 activity [17]. In 

particular, Tripartite motif-containing 22 (TRIM22) and Myxovirus resistance protein 2 

(MX2) inhibit early stages of infection [18,19], while other ISGs such as Apolipoprotein 

B mRNA editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) and Tetherin 

target later stages of infection, such as virus release or the infectivity of virus particles 

[20,21].      Furthermore,  IFNα  inhibits  HIV-1 replication in tissue culture and blockade of 

IFNα  during  Simian  immunodeficiency  virus  (SIV)  infection  leads  to  higher  virus  levels  

in vivo [10].  

 

Due to its HIV-1-inhibiting  properties,  IFNα  has  attracted  interest as a therapeutic target 

for HIV-1 infection.  However, treatment of HIV-1  patients  with  recombinant  IFNα  has  

produced inconsistent and disappointing results, with only modest effects on virus levels 

being observed [22–24].    However,  since  the  structure  of  the  IFNα  inhibitory  network,  as  

well as the parameters that regulate its activity are poorly understood, a better 

understanding of the underlying dynamics of this response may lead to improved and 

more  effective  IFNα-based therapies.   For example, dynamical models may help 

pinpoint  which  molecular  components  of  the  IFNα  inhibition  network  will  achieve  the 

most potent or most durable results.   Furthermore, modeling approaches have previously 
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been  applied  to  the  interaction  of  Hepatitis  C  virus  (HCV)  with  peggylated  IFNα,  and  

have yielded valuable insights [25–27]. 

 

To achieve this goal, we simulated the inhibition of HIV-1  by  IFNα  using  a  dynamical  

system modeling approach, and tested this model in a well-defined experimental system.  

In  our  model,  IFNα  interacts  with  both  HIV-1-infected and uninfected cells to induce a 

reversible state of blocked infection, and we demonstrate that this model makes testable 

predictions about how specific network parameters may be targeted to achieve maximal 

inhibition of HIV-1. 

 

 

Results: 

 

IFNα  inhibits  spreading  HIV-1 infection. 

To generate an experimental dataset against which different models can be tested, we 

performed experiments with a tissue culture model of spreading HIV-1 infection.  CEM-

5.25 cells are a human CD4 T cell line that are susceptible to HIV-1 infection and contain 

an integrated HIV-1 long terminal repeat-Green fluorescent protein (LTR-GFP) reporter 

cassette [28].  Infected cells express GFP due to the viral Tat protein permitting 

transcription of GFP from the integrated LTR.  This allows us to distinguish HIV-1-

infected cells (GFP+) from uninfected cells (GFP-).  CEM-5.25 cells were infected with 

HIV-1, and both cell and supernatant samples were then isolated at 24h intervals for 72h 

post infection.  Cells samples were analyzed by flow cytometry to determine 1) absolute 
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cell numbers and 2) the percentage of HIV-1-infected (% GFP+) cells.  Infectious virus in 

the supernatant was quantified by focus-forming assay using GHOST-X4 reporter cells 

[29].   In infected cell cultures, the % GFP+ cells, as well as the concentration of 

infectious HIV-1 in the supernatant, rises exponentially until 3dpi (Fig. 1B,C).  By day 3, 

total cell levels decline due to infection-induced cytopathic effect (Fig. 1A).   

 

Figure 1:Inhibition of spreading HIV-1  infection  by  IFNα. 

A human CD4 T cell line was infected with HIV-1 and the total concentration of cells 

(A), the proportion of infected (GFP+) cells (B), and the concentration of infectious virus 

in the supernatant (C), were  monitored  at  24h  intervals.    Different  concentrations  of  IFNα  

were added to the cells at 6h prior to infection, and the effect on total cell concentration 

(D), the percent infected cells (E), and the concentration of infectious HIV-1 in the 

supernatant (F), were measured every 24h. Measurements were taken in quadruplicate 

and data shown are representative of three independent experiments. Error bars represent 

the standard deviation of the dataset. 

 

To  examine  the  effect  of  IFNα  on  the  replication  of  HIV-1 in this system, different 

concentrations  of  IFNα  were  included  in  the  tissue  culture  media  from  6h  prior  to  

infection and maintained throughout the course of the infection.    Inclusion  of  IFNα  in  the  

media caused a clear and progressive decrease in the accumulation of infected cells (Fig. 

1E) and infectious HIV-1 in the supernatant (Fig. 1F), as well and an increase in overall 

cell density at later timepoints (Fig 1D).  Interestingly, inhibition of HIV-1  by  IFNα  

exhibits two key features – firstly that the inhibition curve is very broad – with 
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differential  inhibition  being  observed  for  IFNα  concentrations  over  several  orders  or  

magnitude (from 2pg/mL to 20ng/mL), and secondly, that inhibition of HIV-1 increased 

only  minimally  above  2ng/mL,  suggesting  that  inhibition  saturates  at  higher  IFNα  

concentrations.  50% inhibition of infection, as measured by infectious HIV-1 

concentration at 3dpi, was achieved between at 0.02ng/mL and 0.2ng/mL (Fig. 1F).  

 

Model  of  IFNα  inhibitory  network. 

We constructed a dynamical system that models the dynamics of CD4 T cells and their 

interaction with both HIV-1  and  IFNα  (Fig.  2,  Table  1).    This  model  shares  a  number  of  

features with a model previously  used  to  analyze  the  IFNα  response to influenza infection 

[30].  In this system, the initial species are HIV-1  (H),  CD4  T  cells  (C)  and  IFNα  (I).  

HIV-1 can infect CD4 T cells to generate infected cells (CH) at a rate proportional to the 

concentrations of HIV-1 and CD4 T cells, via the infection rate constant (k5).  Infected 

cells secrete infectious HIV-1 (H) at a constant rate (k6).    IFNα  can  bind  to  uninfected  (C)  

or infected cells (CH) and convert them into refractory cells (CI) that cannot be infected, 

or infected-inhibited cells (CHI) that no longer release virus, respectively.  The rate of 

this conversion is determined by the concentrations  of  susceptible  cells  and  IFNα,  as  well  

as the k2 and k8 rate  constants.  Since  the  effects  of  IFNα  on  cells  are  reversible,  CI  and  

CHI revert at an intrinsic rate (k3) to C or CH respectively.  H and I each have their own 

intrinsic decay rates that were measured separately (k7 and k9) (Fig. S1).  For these 

studies, an immortalized CD4 T cell line (CEM 5.25) was used that divides continuously 

and has an intrinsic death rate that is negligible when maintained at subconfluency. By 

contrast, HIV-1-infected cells (CH and CHI) cells die at an intrinsic rate due to the 
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cytopathic effect of HIV-1 infection (k4).  All CD4 T cell subsets divide at an intrinsic 

rate to generate additional cells of the same type.  The replenishment rate of all CD4 T 

cells was modeled with the same rate for all subspecies (k1), which was experimentally 

determined by parameter fitting.   

 

Figure 2: Model of inhibition of HIV-1  by  IFNα. 

CD4 T cells are replenished at a rate proportional to the number of cells, leading to 

exponential growth (k1).  HIV-1 particles infect cells (k5), and infected cells die at an 

inherent rate (k4).    IFNα  inhibits  infection  by  converting  uninfected  cells  (C)  and  infected  

cells (CH) into states in which they cannot be infected (CI), or which longer release 

infectious virus (CHI) (k2), and this rate is also governed by a saturating rate constant 

(k8).    Both  these  states  are  reversible,  and  without  continued  IFNα  exposure,  CI  and  CHI  

revert to C and CH respectively (k3). Infected cells (CH) secrete HIV-1 at a continuous 

rate (k6).  Both HIV-1  and  IFNα  have  their  own  natural  decay  rates  (k7 and k9 

respectively). 

 

Table 1: Species and parameter descriptions. 

 

Species/parameter description Units 

C Uninfected CD4 T cells cells uL-1 

CI 
Uninfected CD4 T cells made refractory to infection 

by  IFNα 
cells uL-1 

CH HIV-1-infected CD4 T cells cells uL-1 
CHI HIV-1-infected CD4 T cells in which virus release cells uL-1 
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has  been  blocked  by  IFNα 

H HIV-1 
Focus-forming units (FFU) 

uL-1 
I Interferon alpha ng mL-1 
k1 Intrinsic division rate of CD4 T cells day-1 

k2 
Rate of conversion of CD4 T cells to refractory (CI) 

or blocked (CHI) state. 
ng-1 day-1 

k3 
Intrinsic  rate  of  reversion  of  IFNα  exposed  cells  to  

HIV-1 susceptible state. 
day-1 

k4 Death rate for HIV-1 infected cells (CH and CHI) day-1 
k5 Infection rate uL day-1 FFU-1 
k6 HIV-1 secretion rate from infected cells (CH) FFU cell-1 day-1 

k7 HIV-1 decay rate day-1 
k8 Saturated rate of conversion to CI or CHI ng mL-1 
k9 IFNα  activity  decay  rate day-1 

 

One key element of our model was the inclusion of a Michaelis-Menten saturating rate 

constant (k8) for the conversion of C to CI and CH to CHI. As such, the conversion rate 

of C to CI and CH to CHI saturates for high I concentrations, due to k8. Previous models 

of  IFNα  interaction  with  virus  infection  do  not  include  saturation  for  conversion to an 

inhibited state [30], and this therefore represents a novel feature of this model. 

Our system of equations is thus:  
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Derivation of parameter estimates. 

First, the biological decay rates for HIV-1 (k7)  and  IFNα  (k9) were experimentally 

determined separately and assumed to be invariant in the different conditions (Fig. S1). 

We then estimated all seven remaining parameters (k1 through k6 and k8) and the initial 

CD4 T cell count C(0) using the 72h timecourse data. In particular, we estimated these 

parameters by minimizing the weighted sum of squared distances between each 

observation and the corresponding model prediction.  Using our experimental data, we 

cannot directly distinguish between individual uninfected subspecies (C and CI) or 

infected subspecies (CH and CHI). Thus, the observed cell species, GFP+ and GFP- cells, 

were assumed to represent the sum of CH and CHI, and the sum of C and CI, 

respectively. 

  We compared the basic model (Model 1) to several variants of the model to determine 

which could more accurately fit the dataset, and to identify the features that make 

important contributions to model accuracy. For Models 1, 3 and 4, the rate of conversion 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 9, 2015. ; https://doi.org/10.1101/031005doi: bioRxiv preprint 

https://doi.org/10.1101/031005


to inhibited cell states saturates due to the inclusion of the k8 rate constant, while for 

models 2, 5 and 6 we take the conversion rate of C to CI and CH to CHI as linearly 

proportional  to  I,  as  has  been  done  in  previous  models  of  IFNα  interaction.  For Model 3, 

cell division was restricted to uninfected CD4 T cells that had not been  exposed  to  IFNα  

(C). For Model  4,  we  only  considered  the  interaction  of  IFNα  with  uninfected  CD4  T  

cells, and ignored inhibition of previously infected cells – meaning that the CHI species 

was eliminated from the model. For Model 5, the death rate (k4) for the CHI species was 

modeled as distinct from the death rate of CH, while for Model 6, the interconversion rate 

constants (k2 and k3) between uninhibited and inhibited states were distinct for infected 

and uninfected cells.  Different model configurations are described graphically in Figure 

S2. 

The accuracy of the model fits were compared between these six different model 

configurations (Table 2).  Notably, we found that inclusion of the saturation constant for 

IFNα-mediated inhibition dramatically improved the accuracy of the fitting, with 

significantly lower fit error for all model variants with saturating inhibition (Models 1, 3 

and 4).  Model 1 most accurately simulated overall timecourse data, and became our 

default model for further analysis. This model was also significantly superior to another 

variant with saturating inhibition that lacks CHI (Model 4) suggesting that considering 

the  effects  of  IFNα  on  infected  cells  is  important.    Model  1  also  accurately  simulated  

important features of the timecourse data for %GFP- and GFP+ T cells, as well as the 

concentration of infectious HIV-1 in the supernatant (Figure 3A-C).  The better fit for the 

saturating models was not simply due to the inclusion of an extra rate constant (k8), 

because other variants of the linear inhibition model with additional parameters (models 5 
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and 6) did not exhibit a comparable improvement in fit quality.  

Table 2:  Sum of squared error for model fit versus measured species. 

A nonlinear least squares method was used to fit experimental data to six different model 

configurations – some with saturating inhibition  by  IFNα  (Models  1,  3  and  4),  and  others  

with linear inhibition (Models 2, 5 and 6).  Weighted squared error (Fit error) was 

determined for the best fit for each model with respect to the all measured concentrations 

of GFP- cells, GFP+ cells, and HIV-1.  Fit error total refers to the overall mean error of 

the fit to all collected data. For each model, a 95% confidence interval for the increase in 

error over that of Model 1 (95% CI), and the Akaike Information Criterion (AIC), are 

shown. An asterisk next to the fit error value for a model indicates a statistically 

significant difference in performance relative to Model 1, at the p<0.05 level. 

Model Description Parameters Fit error 95% CI AIC 

1 
Basic model (saturating 

inhibition). 
8 277.5  2529 

2 Linear inhibition 7 849.5* 240.7 - 984.0 3671 

3 
Saturating inhibition, cell division 

restricted to C species 
8 296.6 -1.7 - 42.3 2567 

4 
Saturating inhibition, no effect of 

IFNα  on  infected  cells  (No  CHI) 
8 297.7* 6.6 - 35.5 2570 

5 
Linear inhibition, separate death 

rates (k4) for CH and CHI  
8 848.4* 240.1 - 985.3 3671 

6 

Linear inhibition, separate 

interconversion rates (k2 and k3) 

for uninfected (C and CI) and 

infected (CH and CHI) cells. 

9 846.0* 240.1 - 976.3 3669 
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Figure 3: A saturating model of inhibition of HIV-1  by  IFNα  recapitulates  infection  

timecourse data. 

Experimental data for the concentration of uninfected (GFP-) cells (A), infected (GFP+) 

cells (B), and infectious HIV-1 (C) was fitted with a saturating model (Model 1).  Open 

circles represent independent experimental data points, while for each species, the solid 

black  lines  represent  the  model’s  best  fit.  Data  points  with  the  same  value  are  shown  side  

by side. 

 

Estimated parameter values for the model rate constants were determined for all six 

model variants (Table 3, Table S1).  Estimates for most parameters except k2, k3 and k8 

were similar between Model 1 (saturating) and Model 2 (linear).  However, compared to 

Model 1, Model 2 exhibited a significantly lower k2 estimate and a higher k3 estimate.  

Also, the predicted concentrations for each individual CD4 T cell species were calculated 

from the best fit for both Model 1 and Model 2.  Notably, for most concentrations of 

IFNα,  Model  1  predicts  a  higher  proportion of cells in the inhibited states compared to 

Model 2, although both models predict that the majority of inhibited cells are uninfected 

over  the  range  of  IFNα  concentrations  tested (Fig S4). 

Table 3: Estimated model parameter values. 

Values for unfixed rate constants were obtained as the best fits of Model 1 and Model 2 

to the experimental dataset.   
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Parameter Units Model 1 value (95% CI) Model 2 value (95% CI) 

k1 day-1 0.905 (0.831-1.006) 0.898 (0.831-0.945) 

k2 ng-1 day-1 37.5 (31.5-45.1) 0.0431 (0.0291-0.0610) 

k3 day-1 261 (214-552) 355 (0-inf) 

k4 day-1 6.42 (4.80-8.61) 8.13 (5.86-10.96) 

k5 uL day-1 FFU-1 0.00913 (0.00736-0.0116) 0.0136 (0.0104-0.0175) 

k6 FFU cell-1 day-1 20.1 (18.3-23.1) 14.4 (13.3-15.2) 

k8 ng mL-1 0.154 (0.063-0.463) NA 

 

 

To further investigate the performance of our model, we re-plotted the data for HIV-1 

levels,  %  GFP+  cells,  and  total  cell  concentration,  at  3dpi,  against  different  IFNα  

concentrations, and compared to model predictions (Fig. 4).   Significantly, Model 1 was 

able to simulate key features of the HIV-1 inhibition curve accurately including plateaus 

at  high  and  low  IFNα  levels,  and  a  broadly  sloped  inhibitory  curve.    Furthermore,  Model 

1 performed better than a linear inhibition model (Model 2) in two out of the three 

curves, with statistically significantly lower RMSE values for HIV-1 concentrations and 

the percentage of infected cells.  

 

Figure  4:  Saturating  effect  of  IFNα  on  CD4  T  cells  improves  model  accuracy. 

Dose-response data for the effect of different IFNα  concentrations  on  the  concentration  of  

HIV-1 (left panel), the percentage of GFP+ cells (middle panel), and on total cell 

concentration (right panel) from the 3dpi timepoint of the timecourse dataset were 

compared to model generated estimates for Models 1 and 2. Root mean squared errors 

(RMSE) are shown on the figure panels. Circles represent individual data points.  An 
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asterisk besides RMSE values for Model 2 denotes a statistically significant difference in 

performance relative to Model 1. 

 

 

 

Differential  effects  of  inhibitory  parameters  on  the  potency  of  IFNα. 

Using the saturating default model, we examined the sensitivity of biologically 

significant outcomes of the model to specific parameters - particularly the parameters that 

regulated  the  IFNα-related component of the network (k2, k3 and k8). To measure the 

outcome of parameter scanning, we calculated the HIV-1 concentration at 3dpi as a 

function  of  IFNα  concentration  with  different  parameter  values  over  a  range  of  10  fold  

higher or lower than our estimated values.  As expected, increasing the rate at which 

IFNα  converts  CD4  T  cells  to  an  inhibited  state  (k2), and decreasing the reversion rate 

(k3), both individually resulted in lower total HIV-1 amounts at most concentrations of 

IFNα  (Fig  5A).  Modulating the saturation rate constant (k8) had negligible effect on HIV-

1  levels  at  higher  IFNα  concentrations,  but  modulated  the  IFNα  threshold  at  which  

saturation is achieved.  Thus, although the inclusion of a saturation constant greatly 

improved accuracy of the model, the outcome of infection is less sensitive to the value of 

this parameter than for k2 and k3 at  higher  IFNα  concentrations. 

 

 

To  describe  the  effects  of  IFNα  on  HIV-1, two metrics have previously been used – the 

IC50,  that  is,  the  IFNα  concentration that results in 50% of maximal inhibition, and the 
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Vres, which is the percent residual HIV-1 replication at the maximal  IFNα  concentration  

[31].  Based on our simulations, we observe a clear differential effect of k2, k3 and k8 on 

and Vres, namely that k2 and k3 strongly affect Vres, while k8 does not (Fig 5B). 

Interestingly, increased k2 values and decreased k3 values both reduced the IC50 of  IFNα,  

while scaling these parameters in the opposite direction had little effect.  By contrast, 

both higher and lower k8 values affected the IC50, with lower k8 leading to a lower IC50, 

and higher k8 leading to a higher IC50.  Overall, we conclude that Vres is determined by 

the balance of k2 and k3, while IC50 is determined by the combined effect of k2, k3 and k8. 

Thus our model makes testable predictions about how these specific network parameters 

affect  IFNα  inhibition  of  HIV-1. 

 

Figure  5  Differential  effects  of  inhibitory  parameters  of  the  potency  of  IFNα. 

 (A) Experimentally measured values for k2 (left panel), k3 (middle panel) and k8 (right 

panel), were modulated up (blue) and down (red) by 10-fold, and the effect on the 

outcome of infection determined by running a simulation with these parameter values 

substituted for the experimentally determined ones, and calculating the concentration of 

infectious HIV-1 at 3dpi. (B) The effect of modulating values for k2, k3 and k8 on IC50 

(concentration required for 50% inhibition) and Vres (the percent HIV-1 replication at 

maximal  IFNα  concentration)  were  determined  by  scanning  parameter  values  over  a  10  

fold range above and below our measured value, and calculating the HIV-1 concentration 

at 3dpi. 
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Discussion 

 

In this manuscript we describe, for the first time, a dynamical model that simulates the 

interaction of HIV-1  with  IFNα,  and  demonstrate  that  this  model  accurately  fits  an  

experimental  dataset.    Also,  we  have  estimated  rate  constants  for  how  IFNα  interacts  with  

CD4 T cells and HIV-1, thereby providing a realistic range in which to perform 

simulations of infection. A key novel feature of this model is a saturating rate constant for 

IFNα’s  effects  on  target  cells,  which  significantly  increased  the  accuracy  of  the  model’s  

fit to the experimental data.  In the absence of this feature, the model performed poorly in 

fitting, and had a profoundly different balance of forward and reverse rate constants for 

the generation of inhibited cellular states (k2 and k3).  Furthermore, we have found that a 

model  in  which  IFNα  affects both uninfected and infected cells fit experimental data 

significantly  better  that  one  in  which  IFNα  only  affected  uninfected  cells.  Although  the  

interaction  of  IFNα  with  viral  infection  has  been  previously  studied  using modeling 

approaches [30,32–34], a saturating rate constant for inhibition of infection has not been 

a standard assumption of these models.  A similar study that considered inhibition of 

influenza  by  IFNα  found  that  a  linear  inhibition  model,  in  which  IFNα  affects  uninfected  

cells only, was able to successfully fit experimental data, suggesting that models  of  IFNα  

interaction with viruses may require virus-specific dynamics [30]. 

 

This model could be useful for the design of novel therapies for HIV-1 that target the 

IFNα  pathway.    Notably,  our  model  recapitulates  the  observation  that  IFNα  has a broad 
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HIV-1-inhibition  curve,  meaning  that  changes  in  IFNα  concentration  over  several  orders  

of magnitude have only partial effects on HIV-1 levels.  However, sensitivity analysis of 

the network rate constants indicates that modulation of the k2 and k3 rate constants can 

lead to a dramatically more potent inhibition of HIV-1  for  a  given  IFNα  concentration.    

By contrast, the value of the saturation rate constant (k8) has a lesser effect on the course 

of  infection  for  most  IFNα  concentrations.    As  such,  our model predicts that clinical 

modulation of k2 and k3 could  prove  more  beneficial  than  simply  boosting  total  IFNα  

levels by a similar factor or by modulating k8.   

 

In order to design therapies that can target the biological processes controlled by these 

rate constants, it will be critical to identify the molecules that govern them.   The 

signaling  pathway  and  transcriptional  response  to  IFNα  have  been  extensively  

characterized, and the identities of many of the participating molecules have been 

described [14].  The rate of conversion to inhibited states (k2) could reflect features such 

as  the  abundance  of  the  IFNΑR  receptor,  the  expression  level  of  IFNα  signaling  factors  

such as STAT1/2 and IRF9, as well as the transcription/translation rate for antiviral 

effector proteins. The reversion rate (k3), by contrast, is likely determined by the off-rate 

for ISGF3 detachment from the IRSE sequences in the promoters of ISGs, and/or the 

degradation rate for antiviral effector proteins in the cytoplasm.  The requirement for a 

saturating rate constant (k8) to accurately fit our dataset could reflect any rate-limiting 

process  in  the  generation  of  an  ‘inhibited’  cell.      Factors  that  contribute  to  these  rate  

constants could potentially be experimentally identified by manipulating expression of 

known components of this pathway, and examining the impact on the network behavior.  
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Novel therapies designed to target these rate constants could involve boosting or reducing 

the expression/activity of these key factors. 

 

The application of this model to clinical data from HIV-1 patients could yield valuable 

insights into HIV-1 immunity and pathogenesis.  HIV-1 infection results in a wide range 

of outcomes in terms of viral loads, immune responses, and disease progression.  If 

parameter values can be derived for individual patients, these parameters could be 

examined for correlation with any of these clinical outcomes.  For example, do non-

progressors and rapid progressors have different parameter sets that can potentially 

contribute differences in the course of clinical infection?   Some evidence suggests that 

this may indeed be the case - females  mount  an  intrinsically  stronger  IFNα  response  than  

males, and also exhibit stronger early control of HIV-1 [35–38].   The dynamics of early 

acute HIV-1 infection, and the resulting innate immune response, likely contains valuable 

information  relating  to  the  IFNα  response  of  individual  patients  that  could  be  analyzed by 

a version of this model, but unfortunately, data from this phase of infection have been 

difficult to obtain, since most patient are not diagnosed until they have entered the 

chronic phase of infection.   

 

An  important  consideration  for  IFNα-related  therapy  is  that  IFNα  may  play  different  and  

potentially opposing roles at different times during HIV-1 infection.  Recent data suggest 

that  while  IFNα  and  pDCs  do  indeed  limit  HIV-1/SIV levels during early infection, they 

may also promote CD4 T cell depletion  at  later  times,  possibly  due  to  IFNα-induced 

upregulation of apoptosis [39].  However,  administration  of  high  doses  of  IFNα  to  SIV-
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infected African green monkeys, which naturally tolerate infection, does not enhance 

CD4 T cell loss or pathogenesis [40].  Furthermore,  blockade  of  IFNα  signaling  in  SIV-

infected Rhesus Macaques leads to higher viral loads and more rapid disease progression 

[10].  Therefore,  it  is  unclear  if  future  models  of  IFNα’s  role  in  clinical  infection  will have 

to  incorporate  this  feature  of  IFNα’s  behavior  in  order  to  accurately  model  the  disease  

process.   

 

Our model should also be considered in the light of some inherent caveats.  For example, 

the model relies on mass-action interactions to simulate the innate immune response to 

infection.  While this may accurately model responses in well-mixed compartments such 

as the blood, it may not be applicable to immune responses in solid tissues such as lymph 

nodes  or  mucosal  surfaces.      IFNα  may  also  have  additional indirect mechanisms of 

influencing the course of infection, such as helping to promote immune responses by 

Natural killer (NK) cells or lymphocytes [41,42].  Also, the results of this manuscript rely 

on an immortalized cell line that may behave differently than primary human CD4 T cells 

in vivo.  Furthermore, HIV-1 employs several countermeasures against inhibitory ISGs, 

and different virus strains may exhibit differential  sensitivity  to  IFNα  [31].  Currently this 

model  does  not  consider  the  contribution  of  endogenous  IFNα  to  the  course  of  infection.  

In vivo,  the  endogenous  IFNα  response  is  driven  by  plasmacytoid  DCs  (pDCs),  and  future  

development of this model to analyze clinical data from HIV-1 patients will likely require 

the  incorporation  of  pDCs  and  endogenous  IFNα.    Our  model  also  makes  several 

assumptions that may not fully reflect details of HIV-1 infection, such as assuming that 

infected and uninfected CD4 T cells have equivalent division rates. 
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Nevertheless, this study represents the first attempt to analyze the interaction of the innate 

immune system with HIV-1 from a computational perspective, and demonstrates that 

quantitative estimates for the parameters that regulate  IFNα’s  potency  can  be  derived  

from experimental data.  As such, these findings should serve as a valuable starting point 

for future studies investigating the dynamics of the host innate immune response to HIV-

1. 
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Materials and methods: 

 

Cells and viruses. 

 

CEM 5.25 cells and GHOST-X4 cells were obtained from Dan Littman (NYU). These 

cells were maintained in RPMI or DMEM media respectively with 10% fetal calf serum, 

glutamine, and penicillin/streptomycin.  An integrated LTR-GFP cassette present in the 

genomic DNA of these cells facilitates expression of Green Fluorescent Protein (GFP) 

upon HIV-1 infection. 

 

The HIV-1 strain used was NL4-3, a CXCR4-tropic subtype B strain [43].  The pNL4-3 

plasmid was obtained from aidsreagent.org.  To generate stocks of infectious virus, 10ug 

of plasmid was transfected into subconfluent 10cm plate of HEK-293FT cells 

(Invitrogen) using Mirus LT-1 reagent (Mirus Bio).  At 4hrs post-transfection, medium 

was replaced.  At 2 days post-transfection, the supernatant was harvested, clarified by 

low-speed centrifugation, then filtered through 0.45uM filter.  The samples were then 

aliquoted and frozen at -80C.  The titer of the stock was the determined by focus-forming 

assay. 

 

For experimental infections, CEM-5.25 cultures were first  exposed  to  IFNα  for  6  hrs,  

then infected with NL4-3 at a multiplicity of 0.1 focus-forming unit per cell for 1hr.  The 

virus  inoculum  was  then  removed  and  replaced  with  fresh  media  containing  IFNα.    The  
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infected cells were then plated in 96 well plates at approximately 100 cells/uL.  At 24h 

intervals a small fraction of the media (10%) was removed and replaced with media 

containing  fresh  IFNα. 

 

Focus forming assays. 

 

GHOST-X4 cells were plated at 10000 cells per well in a 96 well plate.  A ten-fold 

dilution series of each supernatant sample was made and 100ul of each dilution was used 

to innocculate GHOST-X4 cells.  At 3dpi, the supernatant was removed and the cells 

were fixed in 4% paraformaldehyde (PFA).  The plate was then analyzed by fluorescence 

microscopy and the number of GFP+ foci per well was counted.  This was then used to 

calculate the concentration of focus-forming units (FFU) per mL in each of the original 

supernatant samples. 

 

Flow cytometry 

Cell samples from infected CEM-5.25 cultures were fixed in 2% PFA for 20 minutes, 

then diluted in phosphate buffered saline (PBS) and analyzed on an Accuri C6 flow 

cytometer.  The total concentration of CD4 T cells, and the percentage of infected cells 

(% GFP+), was calculated for each original sample. 

 

Interferon 

Human  IFNα2a  was  obtained  from  Sigma  Aldrich,  reconstituted  in  PBS,  and  stored  at  -

80C. 
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Computational analyses. 

Model fitting, simulation, and other computational analyses were done using the Python 

programming language. The system of differential equations was integrated using 

SloppyCell [43]. Model fitting was done by solving a weighted nonlinear least squares 

problem. Let xijlt represent the data collected for species i  at interferon level j, in replicate 

l at time point t. Let yijt(k) be the corresponding model prediction for that species, 

interferon level, and time point, with parameters k. The weighted least squares problem is 

to minimize the fit error: 

 

 

The measurement variance, σij
2, was estimated by first measuring the variance across 

replicates at each time point, and then averaging these variances over time points. The 

nonlinear squares problem was solved using random-restart optimization. For each 

random-restart run, optimization was doing using the L-BFGS-B optimization routine 

[44,45]. Optimization was started from 25 randomly selected initial values, and then the 

final parameters were chosen as those that produced the lowest cost across all 25 runs. 

 

Confidence intervals for the best-fit parameters were found using the profile likelihood 

method [46]. The parameter confidence intervals reported here are simultaneous 95% 

confidence intervals. 
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Model comparison was done using two complementary methods: AIC and nonparametric 

confidence intervals on fit error. AIC provides a model comparison that incorporates the 

number of parameters, but requires assuming a normal noise model. Nonparametric 

confidence intervals were estimated using the percentile bootstrap, so do not require any 

assumption about the noise distribution. To determine if a difference in fit error between 

two models was statistically significant at the p<0.05 level, 95% confidence intervals 

were computed for the difference in fit errors. If this 95% confidence interval contained 

zero, it indicated that the difference in model fit was not statistically significant at the 

0.05 level. If the confidence interval did not contain zero, it indicated that the difference 

in model fit was statistically significant. 
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