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Abstract 
 
Many disease-related genotype variations (GVs) reside in non-gene coding regions and 
the mechanisms of their association with diseases are largely unknown. A possible 
impact of GVs on disease formation is to alter the spatial organization of chromosome. 
However, the relationship between GVs and 3D genome structure has not been studied 
at the chromosome scale. The kilobase resolution of chromosomal structures measured 
by Hi-C have provided an unprecedented opportunity to tackle this problem. Here we 
proposed a network-based method to capture global properties of the chromosomal 
structure. We uncovered that genome organization is scale free and the genomic loci 
interacting with many other loci in space, termed as hubs, are critical for stabilizing 
local chromosomal structure. Importantly, we found that cancer-specific GVs target 
hubs to drastically alter the local chromosomal interactions. These analyses revealed 
the general principles of 3D genome organization and provided a new direction to 
pinpoint genotype variations in non-coding regions that are critical for disease 
formation.  
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Introduction 
Genome-wide association studies have identified many genotype variations (GVs) 
associated with disease1. Many of these GVs occur in non-coding regions without 
altering protein sequences. Some GVs impact regulatory elements such as enhancer to 
affect gene expression involved in disease formation2. For the majority of non-coding 
GVs, the mechanisms of their association with diseases are unclear. Recent studies have 
shown that GVs disrupting boundaries of topological association domains (TADs)3,4 
lead to diseases5. However, the relationship between GVs and 3D genome structure has 
not been investigated at the chromosome scale.  
 
To tackle this problem, it requires better characterization of the spatial genome 
organization that can help to pinpoint GVs associated with erroneous alteration of 3D 
interactions between genomic loci in diseases. The recently developed Hi-C technology 
can measure spatial proximity between genomic loci in the same or different 
chromosomes3,4,6-9. However, despite the great advancement of determining the 3D 
chromosome structure from the Hi-C data8,10, it remains a daunting challenge to achieve 
a resolution that is sufficient for such an analysis. Here, we proposed to analyze the 3D 
genome organization using a network-based method, aiming to characterize the global 
properties of the chromosome structure and identify genomic fragments important for 
stabilizing spatial interactions. Using the recently available kilobase resolution Hi-C 
data in 7 human normal and cancer cell lines6, we found that the chromosome 
organization in the 3D space is scale-free and there exist hubs, genomic loci involved 
in interacting with many other loci. Such an organization is robust to random mutation 
but vulnerable to targeted mutations in hubs. Indeed, cancer-specific mutations did 
show significant enrichment in these hubs that drastically alter the local 3D spatial 
interactions. 
 
Results 
We downloaded the 5Kbp-resolution Hi-C data in 7 human cell lines6 (GM12878, 
HMEC, HUVEC, IMR90, NHEK, K562 and KBM7). As we were interested in 
understanding the conformational organization of individual chromosomes, we focused 
on identifying significant intra-chromosome interaction pairs, which are the majority 
of all interactions detected by Hi-C (see Methods). We assembled all the interaction 
pairs into a network, which is referred as Fragment Interaction Network (FIN). Each 
node is a 5Kbp fragment and each edge represents a 3D interaction.  
 
Degree distribution of FIN networks follows power law 
We first examined the degree distribution of FIN. We used different significance 
thresholds to select interaction pairs. We found that the network size is insensitive to 
threshold value. Table S1 shows that in the 7 cell lines around 90% fragments in the 
FINs constructed using the least and most stringent cutoffs (p-value=0.05 and e-20, 
respectively) are identical. We calculated the degree distribution for the FIN networks. 
Using a loose p-value cutoff of 0.05, the degree distribution is a mixture of scale-free 
and random network (Figure 1(a))11,12. Increasing the stringency of the p-value cutoff 
removed noisy interaction pairs and the degree distribution of the FIN networks follows 
a power-law, for example at a p-value cutoff of e-20 (Figure 1(a) and S1). Namely, the 
fraction of sites having 𝑘𝑘 connections in the network 𝑝𝑝(𝑘𝑘)  is proportional to 
𝑝𝑝(𝑘𝑘)~𝑘𝑘−𝜆𝜆 , where 𝜆𝜆  is a constant. This relationship was observed for all the 
161(=23*7) FIN networks of all the chromosomes in the 7 cell lines, and also chr9 and 
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chr22 considering Philadelphia chromosome in K562 (Figure S1). Philadelphia 
chromosome, which is a translocation between chr9 and chr22, has been observed most 
commonly associated with chronic myelogenous leukemia, and K562 is a leukemia cell 
line containing Philadelphia chromosome13. Importantly, 𝜆𝜆  is similar for all 
chromosomes in all the cell types (in the range between 1.75 and 2.37), except chr9 in 
K562 with 𝜆𝜆=3.07 (see below for discussion). This observation suggests that the 
overall FIN networks are similarly organized. Previous studies have shown that 
biological networks14 (protein-protein interaction networks15,16, metabolic networks17,18 
and gene transcription network19-21) are scale free and follow power law. Furthermore, 
residue-residue interaction networks for proteins22 also follow power law. The FIN 
networks constructed from Hi-C data, when noisy interactions are removed, clearly 
show the property of scale free, which further expands the generality of power law 
existing in biological systems. Thereinafter, all the analyses were performed on the FIN 
networks constructed using p-value cutoff of e-20. 
 
Effective Diameters of FIN networks are constant 
One of the important properties of scale-free network is that the network diameter value 
is insensitive to the number of nodes. Diameter is defined as the maximum distance in 
the network, where distance between two nodes in the network is the number of steps 
of the shortest path between them. Theoretically, the diameter (𝑑𝑑) of a random network 
scales as 𝑑𝑑~𝑙𝑙𝑙𝑙𝑙𝑙 , where 𝑁𝑁  is the number of nodes; in contrast 𝑑𝑑  of scale-free 
networks scales as 𝑑𝑑~𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙𝑙𝑙). In many real cases, the change of 𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙𝑙𝑙) is very 
small, almost negligible, and thus 𝑑𝑑  can be approximated as a constant23. As the 
maximum distance can be sensitive to noise, another more robust metric called effective 
diameter, which is 90 percentile of the distance distribution of the network, is 
commonly used to characterize networks24. For all but one FIN in all cell lines, we 
found that the effective diameter is almost a constant (Figure 1(b)). The only outlier is 
chr9 in K562 both with and without Philadelphia chromosome, whose effective 
diameter is significantly larger than all the other FINs (Figure 1(c), see below for 
discussion). It is worth of noting that the effective diameters of chr22 in K562, both 
with and without Philadelphia chromosome, are similar to the other chromosomes 
(Figure 1(c)), suggesting that the translocation is not the reason for the increase of 
effective diameter in chr9 of K562. 
  
FIN networks are robust to random attacks but vulnerable to targeted attacks 
We next investigated whether the FINs are robust. The robustness of a network is 
evaluated by the change of its effective diameter if some of its nodes are removed25. 
We simulated the scenarios of both random and targeted removal of nodes. After 
random removal of nodes, the effective diameters remain unchanged. In contrast, if the 
nodes are ranked by their connection degrees and the top ranked ones are removed from 
the network, the effective diameters are significantly increased (Figure 1(d) and S2). 
This observation suggests that FINs are robust to random attacks but vulnerable to 
targeted attacks.  
 
The degree distributions kept unchanged after random removal of nodes but 
significantly deviated from the original distribution after targeted removal of highly 
connected nodes (Figure 1(e)). Interestingly, the degree distribution of FINs in chr9 of 
normal cells after targeted removal of highly connected nodes is similar to that of chr9 
in K562 (Figure 1(f)). This observation suggests that the distinct features of chr9 in 
K562 may be caused by targeted removal of high-degree nodes. 
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Highly-connected nodes stabilize interactions between its neighbors 
We then investigated the impact of removing a node in FIN on the interactions between 
its neighbors (the nodes directly linked to it in at least one cell line). Note that in a 
particular cell line, a node can be linked or not linked to its neighbors. If interactions 
between a node and its neighbors are important for the interactions between its 
neighbors, two neighbor nodes would interact with each other if both of them interact 
with the common node or not interact with each other if either of them does not interact 
with the common node. For a given node in a particular cell line, we referred its 
interacting neighbors as partners and neighbors not interacting with the node in this cell 
line as non-partners (Figure 1(g)); we calculated the percentage of edges observed 
among partners and non-partners separately, and the ratio between the two percentages 
was called partner linking tendency (PLT) for the given node. PLT reflects the impact 
of a node to its neighbors in a cell line. If PLT of a node is larger than 1, interactions 
between the node and its neighbors facilitate interactions between its neighbors. PLTs 
for all the nodes in all the cell lines are shown in Figure 1(h). 82.3% of the PLTs are 
larger than 1, in which 63.9% are larger than 2 and 21.9% are larger than 5. This 
suggests that two nodes are more likely to interact with each other if both of them 
interact with a third node.  
 
This feature of FIN suggests that highly-connected nodes are important to the formation 
and stabilization of local chromosomal structure. Removing a high-degree node by 
targeted attack, which also removes all the edges with its partners, may disrupt 
interactions between its partner fragments that results in significantly reduced network 
size compared to the case if the interactions between its partner fragments are not 
affected (the former case is referred as removal with disruption and the latter as removal 
without disruption in Figure 1(i)). After a node is removed, the original network may 
be broken into several un-linked sub-networks or individual nodes and the network size 
is defined as the size of the largest sub-network (Figure 1(i)). The above analyses 
suggested that targeted removal of high-degree nodes may occur in chr9 of K562 and 
it is expected to observe significant reduction of network size. To quantify network size 
change, we performed a simulation in chr9 of GM12878 that only removed the high-
degree nodes without disruption, i.e. the edges between their partners were remained 
unchanged (Figure 1(j)). In the simulation we could remove a certain percentage of 
high-degree nodes but this percentage is unknown in K562. Therefore, we plotted 
network size versus effective diameter (an approximation of the removal percentage as 
they are highly correlated in Figure 1(d)) for direct comparison between simulations 
and K562. Figure 1(j) clearly shows that targeted removal of high-degree nodes disrupts 
the interactions between their neighbors in chr9 of K562.  
 
Hubs are buried inside and enriched with heterochromatin 
The above analyses indicate that the highly connected nodes, commonly referred as 
hubs, are crucial for the topological stability of the FIN network. We identified hubs in 
each FIN using a Z-score of its degree, 𝑍𝑍𝑖𝑖 = 𝑁𝑁𝑖𝑖−𝑁𝑁�

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
, where 𝑁𝑁𝑖𝑖 is the degree of the ith 

fragment, 𝑁𝑁� and 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 are average and standard deviation of degrees of all nodes in a 
chromosome of a cell line. We used a Z-score cutoff of 2.0 to select hubs that count for 
less than 10% of the total nodes (Table S2). Interestingly, 25.29% of hubs can be found 
in at least 5 cell lines, which is significantly larger than random sites (Table S3). This 
suggests that hubs are more conserved than random sites. 
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We then compared the enrichment of six core histone modifications (H3K27ac, 
H3K27me3, H3K4me1, H3K4me3, H3K36me3 and H3K9me3) between hubs and all 
other regions, referred as non-hubs, in the 121 cell lines/primary cells/tissues 
characterized by the NIH Roadmap Epigenetics Project26. Compared to non-hubs, hubs 
tend to be enriched with the heterochromatin mark H3K9me3 and depleted with all 
other marks. Consistently, we observed less TF binding and less open chromatin regions 
in hubs compared to non-hubs (Figure 2(a-h)). Furthermore, we collected the 8025 
common hubs found in all 7 cell lines (Figure 2(l)) and found only 27.4% of them 
overlapping with annotated RNA and protein gene regions (both exon and intron) 
including predicted and RefSeq gene regions (refFlat) downloaded from the UCSC 
genome browser27. This percentage is 33.9% for the union of all 87,324 hubs in the 7 
cell lines. As a comparison, gene regions overlap with 49.4% of all the 563,566 
fragments in the entire genome. These observations indicate that hubs of interactions 
tend to reside in heterochromatin regions with less transcriptional activity and avoid 
gene coding regions.  
 
We next investigated whether hubs are more buried than non-hubs. We roughly 
estimated the distribution of spatial neighbors for each node within a distance. Because 
the relationship between the average normalized Hi-C read counts are proportional to 
linear genomic distance (base pair) (Figure S3)7, the normalized Hi-C read counts 
between fragment pairs is an approximate of spatial distance measured in linear 
genomic distance. For example, if the average reads for all the pairs within 5Kbp linear 
genomic distance is 10, an interacting pair with a read count of 10 is roughly at the 
same spatial distance as those with 5Kbp linear genomic distance. Using this estimation, 
we counted the spatial neighbors for the fragments within various distance ranges. We 
found that hubs have much more spatial neighbors than non-hubs (Figure 2(i-k)), which 
suggests that the hubs are buried inside of the 3D chromosome structure.  
 
Cancer related mutations alter 3D structure 
Based on the above analyses, perturbation on the hubs of FIN may impact the 
interactions between its neighbors and thus the local chromosomal structure. As 
genotype variation (GV) provides a natural perturbation, we investigated the 
relationship between cell-type specific hubs and occurrence of genotype variations. We 
first identified all fragments that are identified as hubs in at least one cell line. If a 
fragment is not a hub in such as K562 but a hub in any other cell line, it is called a 
potential hub in K562. We then downloaded the B-allele frequency, which includes the 
occurrence of GV in K562, GM12878, HMEC, HUVEC and IMR90 from ENCODE28 
(total 1,197,917 GVs, DCC accession number ENCFF105JRY, https://www.encodepro 
ject.org/). Interestingly, we found K562-specific GVs are more enriched in the potential 
hubs (186 out of 2,012 potential hubs, i.e. 9.2%) compared to their occurrence in the 
entire chr9 (905 out of 28,242 fragments, i.e. 3.2%).  
 
As K562 is a leukemia cell line, we investigated whether K562-specific GVs are related 
to the node degrees, which would indicate the impact of disease-associated GV on the 
3D genome structure. We first calculated Z-score for each node's degree based on the 
degree distribution in each chromosome and each cell line so that the degrees of a node 
in different cell lines are comparable. We then determined the cell type specificity of 
the Z-score degree vector of each node (see Figure 3(a) and Methods). In the total 
563,566 nodes of the whole genome, we found that 38.3% showed no specificity, 12.3% 
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showed specificity in K562, and the largest of other specificities was 13.4% (Figure3 
(b) and Table S4). Then for each node, we calculated the correlation between the degree 
and the GV occurrence vectors. Among the 54,117 nodes having degree-GV Pearson 
correlation coefficients larger than 0.9 (referred as degree-GV-correlated nodes), 
24,229 (44.8%) were K562-specific; as a comparison, the largest percentage for another 
cell-type (HMEC) specificity was only 10.6% (5,743 nodes) (Figure 3(b) and Table S4). 
We repeated this analysis on nodes identified as hubs in at least one of the 7 cell lines 
and obtained 8,765 degree-GV-correlated-hubs, among which 5,379 (61.4%) were 
K562-specific compared to the largest percentage of 824 (9.4%) specific to other cell 
types (HMEC) (Figure 3(b) and Table S4 ).  
 
In these three sets of nodes (all nodes, degree-GV-correlated-nodes and degree-GV-
correlated-hubs), we also compared the percentage of K562-specific regions in one-
cell-type-specific group, which includes the nodes having significant higher degree in 
one cell line than in other cell lines (cell-type specific interaction formation), and four-
cell-type-specific group, which includes the nodes having significant lower degree in 
one cell line than in the others (cell-type specific interaction disruption). The 
percentages of K562-specifed nodes in one-cell-type-specific group are 45.5% in all 
nodes, 76.4% in degree-GV-correlated-nodes and 82.4% in degree-GV-correlated-hubs, 
respectively (Figure 3(c)). Similarly, the percentages of K562-specific nodes in four-
cell-type-specific group are 52.9% in all nodes, 85.1% in degree-GV-correlated-nodes 
and 79.6% in degree-GV-correlated-hubs, respectively (Figure 3(d)). The significant 
enrichment of K562-specific hubs remained to be true with different correlation cutoffs 
(Table S5). Taken together, our analyses suggested that K562-specific GVs are highly 
correlated with the node-degree change that alters the 3D chromosomal structure.  
 
In degree-GV-correlated-hubs, 6,545 out of 8,765 showed one-cell-type-specific 
(significant higher degree in one cell type, i.e. cell-type specific interaction formation) 
or four-cell-type-specific (significant lower degree in one cell type, i.e. cell-type 
specific interaction disruption). In each chromosome of every cell line, we calculated 
the percentage of disruption if the chromosome have at least 20 hubs that are either one-
cell-type-specific or four-cell-type-specific. We found that the ratios are in the range of 
0% and 18.6% (Figure 3(e) and Table S6) except chr9 of K562 with or without 
Philadelphia chromosome whose ratios are 47.56% and 47.50%, respectively (only the 
un-translocation part of chr9 is considered with Philadelphia chromosome). This 
observation clearly showed severe disruption of hubs shared by other 4 cell lines in 
chr9 of K562. 
  
Next, we analyzed the epigenomic data in K562-specific degree-GV-correlated-hubs. 
In K562 specific hub formation regions, such as chr1: 96395000-96400000, 
chr3:1395000-1400000, chr7:14535000-14540000, chr13:90715000-90720000, we 
observed enrichment of H3K9me3. Figure S4 (a) shows that chr1: 96395000-96400000 
has one K562 specific GV, rs4376787, and H3K9me3 is much higher than the other 
cell lines. The K562 specific hub disruption regions, such as chr2:168710000-
168715000, chr9:99735000-99740000, chr9:70980000-70985000 and chr11:550000-
555000, are associated with K562 specific TF binding or the change from inhibitive 
histone marks in normal cell lines to active marks in K562. Figure S4(b) shows that 
chr9:99735000-99740000 has two K562 specific GVs, cnvi0022063 and cnvi0015762. 
A DHS peak was found in K562 but not in any other cell line. Furthermore, several TFs 
bind to this region in K562 but not in GM12878 (Figure S4(b), TF ChIP-seq data were 
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only available in these two cell lines). We speculate that the GVs induce TF binding to 
the hubs in normal cells, which opens up the compact core of the chromatin structure 
leading to further changes of local spatial interactions and gene expression.  
 
Conclusion 
We present a new angle to analyze 3D genome organization, which is focused on 
characterizing the global properties of the network formed by interacting genomic loci. 
We showed that the organization of spatial chromosome structure is scale-free, which 
ensures the existence of hub loci involved in interactions with many other loci. The 3D 
structure of the chromosome can tolerate random attack but be vulnerable to targeted 
attack on hubs, indicating the importance of hubs in stabilizing spatial interactions. 
More interestingly, we found cancer-specific genotype variations are significantly 
enriched in the hubs, despite that the hubs are buried in heterochromatin regions inside 
chromosomes that are devoid of gene-coding regions. This finding suggests that GVs 
in non-coding regions may be associated with disease formation through altering local 
chromosome structure to impact disease-related gene expression. We speculate that 
chromosomes may fold upon the hydrophobic core formed by the hubs and mutations 
on these hubs can severely impair the functional 3D contacts on the chromosome 
surface where transcriptional activities occur. Our study provides a new way to identify 
disease-related GVs and understand the underlying mechanisms. 
 
Methods 
Evaluating significance of Hi-C interaction pairs 
We collected the raw reads, scale factor for vanilla coverage (VC) normalization and 
the expected normalized reads for interaction pairs from the Hi-C experiments provided 
by Rao et al. (GSE63525)6. The raw read, 𝑅𝑅𝑖𝑖𝑖𝑖, between fragment 𝐹𝐹𝑖𝑖 and 𝐹𝐹𝑗𝑗 was first 
divided by both of the scale factors 𝑆𝑆𝐹𝐹𝑖𝑖  and 𝑆𝑆𝐹𝐹𝑗𝑗  for VC normalization, 𝑅𝑅𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑅𝑅𝑖𝑖𝑖𝑖

𝑆𝑆𝐹𝐹𝑖𝑖𝑆𝑆𝐹𝐹𝑗𝑗
. Then we calculated the sequential distance between 𝐹𝐹𝑖𝑖 and 𝐹𝐹𝑗𝑗, and obtained the 

expected normalized reads for the distance 𝑅𝑅𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒  from the collection. Finally, the 

significance of the interaction between 𝐹𝐹𝑖𝑖 and 𝐹𝐹𝑗𝑗 was evaluated with the p-value for 
normalized read 𝑅𝑅𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 under Poisson distribution7 with an expectation equal to 𝑅𝑅𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒.  
 
Consideration of Philadelphia chromosome in K562 
When processing the Hi-C reads in K562, we took Philadelphia chromosome into 
account. Philadelphia chromosome is a reciprocal translocation between chr9 (9q34) 
and chr22 (22q11), which can be observed in K562. We stitched reads mapped to chr9 
and chr22 in the reference genome to construct new raw read matrixes for chr9 and 
chr22 containing the reciprocal translocation. Next, the raw reads were normalized with 
the scale factors for each fragment, downloaded from Hi-C paper. P-value was then 
calculated with the expected reads from the reference chromosome. The new chr9 is 
~10Mbp longer than the reference chr9. As the expected reads and the genomic distance 
follow a power-law1 (Figure S3), we fitted a linear model between logarithm of 
expected reads and logarithm of genomic distance, and estimated the expected reads 
for the longer genomic distance with the model. 
  
Characterizing hubs 
Peaks of six histone modifications (H3K4me1, H3K4me3, H3K27ac, H3K36me3, 
H3K27me3, and H3K9me3), DNaseI-seq and ChIP-seq for transcription factors (TFs) 
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were counted in the hubs. The peaks of DNaseI-seq data and ChIP-seq data for TFs 
were downloaded from the website of ENCODE (http://genome.ucsc.edu/encode). 
DNaseI-seq data included 125 cell types and ChIP-seq data included 49, 98, 77 TFs in 
H1 hESC, GM12878, and K562 cells, respectively. For the peaks of the six core histone 
modifications, we first collected the data from NIH Roadmap Epigenomics Project, and 
then called the peaks following the procedure in ref29: peaks for H3K4me1, H3K4me3, 
and H3K27ac were called using Homer program “findPeaks” with the style “histone”30, 
and peaks within 1kb were merged into a single peak; peaks for other marks 
(H3K36me3, H3K27me3 and H3K9me3) were called using the Homer program 
“findPeaks” with the options “-region –size 1000 –minDist 2500”.  
 
For each epigenomic mark, its peaks were overlapped with hubs or non-hubs. The 
number of cell types containing overlapped peaks was counted for each hub and non-
hub. Distributions of the enrichment were compared between hubs and non-hubs, and 
p-value was calculated using Wilcoxon test. 
 
Cell line specificity assignment 
The degree of each node (GM12878, HMEC, HUVEC, IMR90 and K562) was 
represented as a vector containing the degree values represented by z-scores in 5 cell 
lines that had both genotype variation and Hi-C data. In total there were 25=32 distinct 
vectors, including 2 with no cell type specificity (0,0,0,0,0), (1,1,1,1,1), 5 specific to 
one cell type (1,0,0,0,0), (0,1,0,0,0)…(0,0,0,0,1), 10 specific to two cell types 
(1,1,0,0,0), (1,0,1,0,0)…(0,0,0,1,1), 10 specific to three cell types (1,1,1,0,0), 
(1,0,1,1,0)…(0,0,1,1,1) and 5 specific to four cell types (1,1,1,1,0), 
(1,0,1,1,1)…(0,1,1,1,1). For each node, we calculated the Pearson correlation between 
the degree vector and these standard vectors. If the best correlation coefficient is larger 
than a threshold of 0.9, we assigned the node with the specificity of the standard vector. 
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Figure 1. Properties of Fragment Interaction Network (FIN). (a) The degree 
distribution of FIN composed of Hi-C interactions with p-value < 1*e-20. (b) The 
effective diameter of FIN remains almost unchanged with the increase of the network 
size. All FINs of the 23 chromosomes in GM12878 are shown as an example. The 
complete data are in Figure S4. (c) Chr9 in K562 is the only outlier of all 
chromosomes with a large effective diameter, while chr22 is similar to others. (d) 
Effective diameter remains unchanged with random removal of nodes in FIN and 
increases significantly with targeted removal. Chr1 in GM12878 is shown as an 
example and the complete data are in Figure S2. (e) Random removal of nodes does 
not change, while targeted removal significantly alters, the degree distribution (chr1 
in GM12878 shown as an example). (f) The degree distribution of chr9 in K562 is 
similar to those of chr9 of normal cell lines after targeted removal of high-degree 
nodes (chr9 of GM12878 shown as an example and the degree distributions while its 
top 10%, 20% and 25% of highest connected nodes were removed). (g) Definition of 
neighbor, partner and non-partner of a node. (h) The distribution of Partner Linking 
Tendency (PLT) for all the nodes in the 7 cell lines. Green bars, PLT<1.0; red bars, 
PLT>1.0. (i) Removal of a node with or without disrupting the interactions between 
its neighbors. Removal with disruption and removal without disruption refer to 
removing a node disrupting and not disrupting interactions between its neighbors, 
respectively. Removal with disruption decrease the network size more significantly 
than removal without disruption. (j) The relationship between the number of nodes 
and effective diameter with targeted removal without disruption. The red dot 
represents chr9 of K562, whose size is much smaller than the simulated removal 
without disruption. 
Figure2. Characterization of hubs in all FINs in all seven cell lines. (a)-(h) 
Comparison of epigenomic signals between hubs and non-hubs. a. H3K27ac, b. 
H3K27me3, c. H3K4me1, d. H3K4me3, e. H3K9me3, f. H3K36me3, g. TF ChIP-seq 
peaks, h. DNaseI hypersensitivity sites (DHS); Data are obtained from the NIH 
Roadmap Epigenetics Project2, including 125 cell types. (i)-(k) Spatial neighbor 
distribution of hubs and non-hubs within various distance ranges. i. 0-5 Kbps; j. 5-10 
Kbps; k. 10-15 Kbps.(l) The percentage of gene regions overlapped with whole 
genome, union of hubs (hubs appeared in at least one cell type) and common hubs 
(hubs appeared in all cell lines). Numbers above the histogram are the number of 
nodes overlapped with gene coding regions and the total number of nodes in that 
category (in parenthesis). 
Figure 3 (a) Cell line specificity of node degree and genotype variation (GV). In this 
example, the node has high degree in GM12878 and low degree in other cell lines, a 
profile coincident with the GV profile with a SNP in GM12878. (b) The distribution of 
all cell-line specificities in All-nodes, Degree-GV-correlated-nodes and Degree-GV-
correlated-hubs.(c) The distribution of one-cell-line-specificities, i.e. cell-type specific 
interaction formation, in All-nodes, Degree-GV-correlated-nodes and Degree-GV-
correlated-hubs. (d) The distribution of four-cell-line-specificities, i.e. cell-type specific 
interaction disruption, in all-node, Degree-GV-correlated-nodes and Degree-GV-
correlated-hubs. (e) The distribution of hub formation and disruption in chromosomes 
and cell lines. All the data are shown in Table S4. 
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