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 27 

Abstract 28 

Numerous studies have identified prognostic genes in individual cancers, but a thorough pan-29 

cancer analysis has not been performed.  In addition, previous studies have mostly used 30 

microarray data instead of RNA-SEQ, and have not published comprehensive lists of 31 

associations with survival.  Using recently available RNA-SEQ and clinical data from the The 32 

Cancer Genome Atlas for 6,495 patients, we have investigated every annotated and expressed 33 

gene's association with survival across 16 cancer types.  The most statistically significant 34 

harmful and protective genes were not shared across cancers, but were enriched in distinct gene 35 

sets which were shared across certain groups of cancers.  These groups of cancers were 36 

independently reconstructed by unsupervised clustering of Cox coefficients (a measure of 37 

association with survival) for individual genes or for gene programs.  This analysis has revealed 38 

unappreciated commonalities among cancers which may provide insights into cancer 39 

pathogenesis and rationales for co-opting treatments between cancers. 40 

Main article text 41 

Introduction 42 

Led by The Cancer Genome Atlas, unprecedented efforts have been made to understand the 43 

molecular basis of cancer (http://cancergenome.nih.gov).  Using standardized procedures, the 44 

TCGA Research Network has used whole genome sequencing, exome sequencing, RNA-SEQ, 45 

small RNA-SEQ, bisulfite-SEQ, and reverse phase arrays to identify the pathways commonly 46 

altered in different cancers (Brennan et al. 2013; Cancer Genome Atlas 2012a; Cancer Genome 47 

Atlas 2012b; Cancer Genome Atlas Research 2011; Cancer Genome Atlas Research 2012; 48 

Cancer Genome Atlas Research 2013a; Cancer Genome Atlas Research 2013b; Cancer Genome 49 

Atlas Research 2014a; Cancer Genome Atlas Research 2014b; Cancer Genome Atlas Research 50 

2014c; Cancer Genome Atlas Research 2014d; Cancer Genome Atlas Research et al. 2013a).  As 51 

a result, we now know the most commonly mutated genes in dozens of cancers and can use this 52 

information to give patients targeted therapeutics. 53 

Whereas well established statistical techniques exist for identifying mutations which are drivers 54 

instead of simply passengers (mut-drivers), identifying copy number aberrations, methylation 55 

changes, or non-coding mutations that alter expression of a gene and result in a growth 56 

advantage (epi-drivers) are more difficult to identify and represent a "dark matter" of cancer 57 

(Vogelstein et al. 2013).  Although it currently is challenging to identify epi-drivers which lead 58 

to development of a cancer (tumorigenesis), by correlating these changes to survival it is possible 59 

to detect their role in disease progression (pathogenesis), which is one of main goals of cancer 60 

research. 61 
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Of the possible genomic measures that can be correlated with survival, gene expression has been 62 

shown to be the strongest predictor of survival (Zhao et al. 2015), which is intuitive given that 63 

gene levels together with protein levels and posttranslational modifications are the final readout 64 

of the different possible alterations in a cell and are the final effectors of phenotype.  To date 65 

many attempts have been made to identify genes whose expression is associated with survival to 66 

either identify markers that can predict patient survival or to identify mechanisms of 67 

pathogenesis (Chen et al. 2007; Valk et al. 2004; van de Vijver et al. 2002).  One of the success 68 

stories of this approach is the identification of HER2 in breast cancer patients and the 69 

development of herceptin (Bange et al. 2001).  This story also highlights the complications 70 

treatment regimens can have on interpreting survival data.  Whereas HER2 overexpression used 71 

to predict poor survival for breast cancer patients, because of the progress of personalized 72 

medicine these patients now do well and HER2 would not show up as a prognostic marker in a 73 

data set with HER2 positive patients on herceptin.  While treatments may introduce a 74 

confounding variable in understanding a disease, the ultimate goal of cancer studies is to 75 

improve patient outcome, and adding treatment to the equation adds more information and 76 

provides an opportunity to study genes in the context of the current standard of care. 77 

The vast majority of studies to identify prognostic genes have focused on a single disease and 78 

have utilized microarrays instead of RNA-SEQ.  In addition, these studies often only publish a 79 

small set of genes that together most significantly stratify patients.  Even the TCGA Research 80 

Network publications do not provide lists of genes associated with survival.  cBioPortal does 81 

allow users to make Kaplan Meier plots for most of the cancers which contain survival 82 

information, but users still have to input one gene at a time, leaving one to wonder where 83 

researchers should go to find the genes which are most highly correlated with survival for their 84 

disease of interest. 85 

Through the TCGA Network, RNA-SEQ has only very recently become available for thousands 86 

of human cancer samples.  RNA-SEQ has multiple advantages over microarray data, including 87 

having a higher dynamic range, no probe affinity effects, ability to identify novel transcripts, and 88 

lower and consistently falling cost.  We took advantage of the availability of this data to 1) 89 

investigate the ability of RNA-SEQ to associate expression with clinical outcome in a range of 90 

cancers, 2) perform the largest analysis of prognostic genes to date, and 3) provide every gene's 91 

correlation with survival for hypothesis testing and further investigations by the scientific 92 

community.  In addition, attempts are now being made to identify commonalities between 93 

cancers with the hope that this type of analysis may be able to identify treatments that can be co-94 

opted for a molecularly similar cancer.  Given that only survival correlations integrate treatment 95 

with the genomic data, prognostic genes represent an exclusive window for understanding how 96 

different cancers in the context of their individualized treatments relate to one another.  The 97 

analysis identified reproducible groupings of cancers based on prognostic genes.  This study 98 

serves as a starting point for better understanding how survival data can be used to understand 99 

the commonalities and differences of cancers. 100 
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Materials and methods 101 

Code and files 102 

All of the Python and R code used to generate the figures and tables in this study, including 103 

intermediate and final files, tables, and figures, is available at 104 

https://github.com/OmnesRes/pan_cancer.  All scripts were run on a HP dv7t laptop with an i7-105 

3820QM processor and 16GB of RAM running Windows 7, Python 2.7.5, and R 3.0.1. 106 

Construction of multivariate Cox models 107 

RNA-SEQ and clinical data were downloaded from the TCGA data portal, https://tcga-108 

data.nci.nih.gov/tcga/.  For each cancer, survival information was parsed from the 109 

"clinical_follow_up" files and "clinical_patient" file, and for each patient the most recent follow 110 

up information found in the multiple files was kept.  Sex, age, and histological grade data were 111 

extracted from the "clinical_patient" file.  For each cancer, only patients that had a follow up 112 

time greater than 0 days and had complete clinical information were included in the model.  113 

TCGA has used two different methods of reporting expression values, RSEM and RPKM.  114 

RPKM is simply the reads per kilobase per million mapped reads, while RSEM is a normalized 115 

value outputted by the RSEM software (Li & Dewey 2011).  For each cancer, only genes which 116 

had a median RSEM value greater than 1 (for RNASeqV2), or median RPKM value greater than 117 

.1 (for RNASeq), and had 0 expression in less than one fourth of patients were included in the 118 

analysis.  RNASeq uses a different gene annotation file from RNASeqV2, and because 119 

RNASeqV2 represents the most recent analysis, for RNASeq analyses only those genes present 120 

in the RNASeqV2 gene annotation file were included.  Multivariate Cox models were run with 121 

the coxph function from the R survival library, and the equation for each model is shown in 122 

Table S1.  Grade information was included in the model by separate terms, which were either 1 123 

or 0, and model input gene expression values were inverse normal transformed.  If a patient had 124 

replicates for their primary tumor, those expression values were averaged prior to inverse normal 125 

transformation.  The scripts for performing Cox regression for each cancer are named 126 

"cox_regression.py". 127 

Gene set analysis 128 

For each cancer, the 250 most significant protective genes and 250 harmful genes were inputted 129 

separately into MSigDB with the "positional genes sets", "chemical and genetic perturbations", 130 

"canonical pathways", "KEGG gene sets", "microRNA targets", "transcription factor targets", 131 

"cancer modules", "GO biological process", and  "oncogenic signatures" sets selected: 132 

http://www.broadinstitute.org/gsea/msigdb.  The FDR q-value threshold was set at .05 and the 133 

top 100 enriched gene sets were saved, except for the 250 protective genes in BLCA, which only 134 

contained 27 overlaps below .05. 135 

Normalization of Cox coefficients 136 
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In order to compare the Cox coefficients between cancers we robustly scaled the negative and 137 

positive coefficients, x, to their 5th and 95th percentile values, respectively, using the following 138 

sigmoidal normalization function: 139 

 140 
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 141 

where �� and �� are the 5th and 95th percentile values of the negative and positive Cox 142 

coefficients, respectively.  The implementation of this code is present in the files named 143 

"normalizing_coeffs.py", and all the normalized coefficients are listed in Table S1. 144 

Construction of gene programs 145 

Gene programs from Table S4 of (Hoadley et al. 2014) were used.  In general a nonredundant set 146 

of genes from gene sets which had a Pearson correlation of at least .9 (Hoadley et al. 2014) was 147 

generated for each program.  The exact gene sets used are listed in Table S3.  Lists of genes for 148 

the gene sets were obtained from http://www.broadinstitute.org/gsea/msigdb and (Fan et al. 149 

2011). 150 

Results 151 

Cancers vary in number of prognostic genes 152 

In order to perform the most comprehensive cancer analysis possible, we selected TCGA cancers 153 

that had sufficient numbers of patients with RNA-SEQ data and mature clinical follow up 154 

information, and did not contain any publication restrictions.  This resulted in us studying a total 155 

of 16 cancers, 10 of which were present in the original pan-cancer initiative (Cancer Genome 156 

Atlas Research et al. 2013b): acute myeloid leukemia (LAML), bladder urothelial carcinoma 157 

(BLCA), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), glioblastoma 158 

multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell 159 

carcinoma (KIRC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and 160 

ovarian serous cystadenocarcinoma (OV), and 6 cancers which have been the focus of limited 161 

individual or pan-cancer studies: cervical squamous cell carcinoma and endocervical 162 

adenocarcinoma (CESC), brain lower grade glioma (LGG), kidney renal papillary cell carcinoma 163 

(KIRP), liver hepatocellular carcinoma (LIHC), skin cutaneous melanoma (SKCM), and stomach 164 

adenocarcinoma (STAD). 165 

We were interested in the effect a gene has on prognosis independent of factors such as tumor 166 

grade and age of a patient.  To achieve this we used a multivariate Cox proportions hazards 167 

model (Cox 1972), which is a standard regression method for studying survival data (Claus et al. 168 
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2015; Gyorffy et al. 2013; Wu & Stein 2012; Zhang et al. 2013).  For every cancer, a model was 169 

generated separately for each gene, with the number of covariates depending on the cancer.  170 

Unlike microarray data, RNA-SEQ data has extreme values which may affect regression.  To 171 

account for this we inverse normal transformed the expression values of each gene, which has 172 

been shown to increase the sensitivity and specificity for multivariate regression with RNA-SEQ 173 

data (Zwiener et al. 2014).  Age and sex are also included in every model, and when a cancer 174 

contained strong histological grade information, grade was also included.  If a patient was 175 

missing any of this information they were excluded from the analysis, and only primary tumors 176 

were considered, with the exception of SKCM, where metastatic tumors make up a large 177 

proportion of the patients. 178 

A Cox model provides a p-value for each term in the model, indicating the significance of its 179 

association with the clinical outcome, and we recorded the p-values for every gene analyzed for 180 

the 16 different cancers.  As can be seen in Table 1, there is a wide distribution among cancers in 181 

the number of genes that reached a Benjamini-Hochberg False Discovery Rate (FDR) adjusted p-182 

value of less than or equal to .05.  This can also be seen by looking at a distribution of the raw p-183 

values for the different cancers (Fig. 1a and Fig. S1).  This has important implications for 184 

understanding the significance of a gene being associated with survival in a specific cancer.  For 185 

example, selecting a gene at random a researcher studying LGG has a 50% chance of being able 186 

to claim the gene is associated with survival, while a researcher studying STAD only has an 8% 187 

chance (using raw p-values).    188 

Two factors that are known to be associated with power of a Cox model are sample size and 189 

number of events (deaths); however looking through Table 1 it is difficult to find a pattern that 190 

can explain why certain cancers have more significant expression level based prognostic genes 191 

(EPGs) than other cancers.  For example, BRCA has around twice the number of patients of any 192 

other cancer, but only has 30 EPGs that meet a FDR cutoff.  In contrast, KIRP has a fourth the 193 

number of patients of BRCA but has 2,415 EPGs.  In addition, LUAD and LUSC have similar 194 

numbers of patients, median survivals, and events, yet have a large difference in number of  195 

EPGs.  Interestingly, it has been shown that the number of prognostic genes for a cancer can be 196 

significantly different depending on whether microarray data or RNA-SEQ data is used (Yang et 197 

al. 2014), but that cannot be the explanation here.  It is possible that the different numbers of 198 

EPGs between cancers are due to intra-disease heterogeneity and/or treatment differences that 199 

are not accounted for in the Cox model and are acting as confounding variables, or differences in 200 

the amount of transcriptional dysregulation between cancers. 201 

Protective and harmful genes display opposite expression patterns 202 

The Cox model also provides a coefficient for each term, which is related to its contribution to 203 

the hazard ratio.  A positive coefficient indicates that the gene increases the hazard ratio, i.e. high 204 

expression of the gene correlates with earlier patient death, while a negative coefficient indicates 205 

that expression of the gene is protective.  Using the cancer with the highest number of EPGs 206 
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(LGG), we clustered patients with the 100 most significant genes which were harmful and the 207 

100 most significant genes which were protective, and this revealed two broad clusters of 208 

patients: (1) those with high expression of harmful genes and low expression of protective genes, 209 

and (2) those with high expression of protective genes and low expression of harmful genes (Fig. 210 

1b).  As expected, a Kaplan Meier analysis with these two groups revealed that cluster 2 has a 211 

much higher survival than cluster 1 (Fig. 1c).  This result has important implications for trying to 212 

find gene sets which can most accurately predict patient survival.  The similar expression 213 

patterns indicate that there are numerous combinations of genes that would only differ slightly in 214 

their ability to predict survival, making the identification of a ‘best’ set of genes somewhat 215 

meaningless.  In addition, given that each gene individually had a p-value less than or equal to 216 

1.4E-8, it is unlikely these patterns are due to chance but rather are explained either by common 217 

underlying gene regulatory pathways or by these genes being members of common cellular 218 

pathways. 219 

Unlike LGG, some of the other cancers in the analysis yielded a much lower number of EPGs.  220 

While it might be tempting to disregard the results in these cancers, we checked if there are 221 

patterns of expression in the most significant good and bad genes like that observed for cancers 222 

with a high number of EPGs.  Clustering of the patients of STAD, which has one of the lowest 223 

numbers of EPGs, with the 100 most significant harmful genes, and the 100 most significant 224 

protective genes, again divided patients into two broad clusters.  Interestingly, a Kaplan Meier 225 

analysis on these two groups showed a very significant prognostic difference with a p-value of 226 

2.73E-6 (Fig. 1c).  This indicates that despite the fact that none of the genes in STAD meet a 5% 227 

FDR cutoff, they still contain important biological information.   As a result, further analyses 228 

included all the cancers regardless of their numbers of EPGs. 229 

Cancers do not share prognostic genes, but do share gene sets 230 

We next tested whether the most significantly prognostic genes were shared across cancers.  231 

However, there is very little overlap among the 100 most significant genes across the 16 cancers, 232 

consistent with previous results obtained from an analysis of four cancers (Yang et al. 2014) 233 

(Fig. 2a).  Given the apparent co-regulation of the most significant genes in each cancer, we 234 

reasoned that although individual genes were not shared, maybe the genes were a part of gene 235 

sets which were shared between cancers.  In addition, given that the harmful genes had an 236 

opposite pattern of expression from the protective genes, we hypothesized that they are regulated 237 

differently and would be enriched in different gene sets.  To investigate this we took the 250 238 

most significant harmful genes and 250 most significant protective genes in each cancer, and 239 

separately found the 100 most enriched gene sets through MSigDB (Subramanian et al. 2005).  240 

Consistent with the idea that harmful and protective genes are regulated differently, there was 241 

very little overlap between the 100 gene sets found with 250 harmful genes and the 100 gene sets 242 

found with 250 protective genes for a given cancer (Fig. 2b).  In addition, the fact that even the 243 

protective and harmful gene sets from cancers with a low number of EPGs show almost no 244 
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overlap reinforces the idea that prognostic genes in these cancers still contain biologically 245 

significant information. 246 

Next we assessed the extent to which these protective and harmful gene sets overlapped between 247 

the different cancers.  The extent of overlap was investigated separately for the 100 harmful gene 248 

sets and 100 protective gene sets (Fig. 2c, 2d).  Overall there was more overlap between the 249 

harmful gene sets, and there were three cancers which clearly shared a high number of harmful 250 

gene sets, LUAD, LIHC, and KIRP.  Investigating these overlaps further showed that the three 251 

cancers shared 58 gene sets, and LUAD and KIRP shared 85 gene sets (Fig. 2e).  Looking at the 252 

overlaps of the protective gene sets, the largest overlap was between COAD and LUSC, and 253 

these cancers also shared gene sets with GBM (Fig. 2f). 254 

We next asked what are the most common harmful and protective gene sets across cancers.  255 

Table S2 shows frequency of every gene set, with gene sets that were shared between harmful 256 

and protective sets within a single cancer marked in bold as they may be nonspecific.  As might 257 

be expected, the most common gene sets observed for harmful genes were associated with poor 258 

differentiation and metastasis.  In contrast, the protective gene sets were enriched for apoptosis 259 

and good differentiation.  Although when possible the grade of the tumor was included in the 260 

Cox model, and therefore should not be a confounding variable, it is possible that histological 261 

grade does not completely account for the differentiation of a tumor, indicating the importance of 262 

genomics for accurate profiling. 263 

Cancers can be clustered by gene and gene program Cox coefficients 264 

To date different cancers have been compared to each other through mRNA levels, miRNA 265 

levels, protein levels, networks, copy number alterations, DNA methylation, somatic mutations 266 

or some combination of these (Akbani et al. 2014; Ciriello et al. 2013; Hamilton et al. 2013; 267 

Hoadley et al. 2014; Kandoth et al. 2013; Knaack et al. 2014).  The Cox coefficients in my 268 

analysis contain a level of information not present in any of these data types, and consequently 269 

can potentially reveal similarities or differences between cancers that were not appreciated 270 

before.  Therefore we sought to attempt to cluster cancers using Cox coefficients of genes instead 271 

of expression levels.  Because the Cox models for the different cancers contain different numbers 272 

of covariates, and different strengths of gene expression correlation to survival, the range of 273 

values of the Cox coefficients vary between cancers.  To correct for this, we normalized the 274 

coefficients for each cancer using a sigmoidal function which robustly scaled both negative and 275 

positive coefficients to their 95th percentile values (see methods).  In addition, whereas every 276 

gene has an expression value, only significant prognostic genes have Cox coefficients 277 

appreciably above or below 0.  Performing clustering with large numbers of nonsignificant genes 278 

which all have very similar values for every cancer will only add noise to the clustering. As a 279 

result, the clustering was limited to genes which had a FDR less than or equal to .05 in at least 280 

four of the sixteen cancers. 281 
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Hierarchical clustering of the 16 cancers was performed with the sigmoidal normalized Cox 282 

coefficients of this set of genes (Fig. 3).  The clustering grouped LIHC, LUAD, and KIRP 283 

together, which were the same cancers that shared the highest number of harmful gene sets.  In 284 

addition, GBM, COAD and LUSC clustered together, which were the cancers that had the 285 

highest number of protective gene sets overlap.  The fact that two separate methods, using 286 

different sets of genes, were able to find similar groupings of cancers suggests that the 287 

similarities between the cancers in each group is robust and possibly biologically significant. 288 

We next tested whether there were established pathways that distinguished the groupings of 289 

cancers from each other.  Using a list of nonredundant gene programs that have been shown to 290 

distinguish cancers from one another on the basis of expression levels (Hoadley et al. 2014), we 291 

sought to distinguish cancers using Cox coefficients of pathways.  For each pathway the average 292 

sigmoidal normalized Cox coefficient was calculated in each cancer.  Because a Cox coefficient 293 

can be positive or negative, if a pathway has some genes which are protective and some genes 294 

which are harmful, the average Cox score will be near zero.  In addition, if a pathway only 295 

contains genes which are not prognostic, all of those Cox scores will be near zero and the 296 

pathway score will be near 0.  The only way for a pathway to have a positive or negative score is 297 

for it to contain prognostic genes which are either consistently protective or consistently harmful. 298 

Hierarchical clustering was performed with the Cox scores for these 22 gene programs (Fig. 4).  299 

The values were column scaled to highlight which gene programs are most important for each 300 

cancer.  Overall the same groupings that were seen with gene sets and individual genes were 301 

recapitulated from clustering the Cox scores of gene programs, with LUAD, KIRP, and LIHC 302 

again forming a cluster and COAD, LUSC, and GBM grouped together.  In the 303 

LUAD/KIRP/LIHC group poor prognosis is associated with high proliferation rates and 304 

glycolysis, while good prognosis is associated with apoptosis and a dependence on oxidative 305 

phosphorylation.  In contrast, for GBM/LUSC/COAD, proliferation is protective while genes 306 

associated with the EGF response predict poor survival. 307 

The analysis also found cancer specific protective/harmful pathway enrichments that are 308 

consistent with known cancer biology.  For example, in KIRC the highest intensity gene program 309 

is "fatty acid oxidation", and KIRC is a cancer that is known to depend on dysregulation of 310 

metabolism and is a classic example of the "Warburg effect" (Linehan et al. 2010).  The results 311 

show that patients with high expression of genes utilizing oxygen survive longer, which 312 

underscores the importance of a metabolic shift in this cancer.  As another example, EGFR is the 313 

most commonly mutated gene in GBM (Brennan et al. 2013), and in our analysis increased 314 

EGFR activity is associated with poorer outcomes.  BLCA and SKCM, which are known for 315 

being responsive to immunotherapy, both benefit from increased interferon response and an 316 

immune cell signature which is likely a proxy for immune cell infiltration. 317 

Discussion 318 
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Cancer researchers are increasingly looking to focus on factors which have clinical significance, 319 

and many different resources now allow researchers to identify if a protein of interest has clinical 320 

implications, including OMIM, dbSNP, ClinVar, cBioPortal, FINDbase, and others (Hamosh et 321 

al. 2005; Landrum et al. 2014; Papadopoulos et al. 2014; Smigielski et al. 2000).   Despite this, it 322 

currently is not possible to find comprehensive lists of genes which are associated with survival 323 

in different cancers.  Using recently available RNA-SEQ and clinical data from the TCGA for 324 

6,495 patients, we correlated every expressed annotated gene to survival in 16 different cancers, 325 

providing the scientific community with thousands of highly significant genes for further study.   326 

There is an unexpectedly large variation between cancers in the number of statistically 327 

significant prognostic genes, which should be used to inform our evaluation of prognostic genes 328 

from different cancers.  For example, a significant p-value for a gene from a cancer such as LGG 329 

or KIRC should not be surprising, given the thousands of genes that survive a stringent p-value 330 

cutoff in these tumors (Table 1, Fig. 1a, Fig. S1).  In contrast, weaker p-values for predicting 331 

prognosis in cancers such as STAD or COAD are still biologically important although they have 332 

no genes that pass a stringent p-value threshold for biological significance (Table 1, Fig. 1a,c). 333 

RNA-SEQ is a relatively new technology, and its ability to identify prognostic genes in many 334 

cancers has not been explored.  Although the number of expressional level based prognostic 335 

genes (EPGs) varied among cancers, regardless of the cancer we identified expression profiles 336 

which significantly separated patients into high risk and low risk groups.  One of the main 337 

advantages of RNA-SEQ over microarrays is the ability to identify unannotated transcripts.  In 338 

fact, recent studies have investigated the expressions of pseudogenes and long noncoding RNAs 339 

in large numbers of TCGA RNA-SEQ data sets (Han et al. 2014; Iyer et al. 2015).  It would be 340 

interesting to see if these transcripts show the same trends as protein coding genes across these 341 

cancers. 342 

This comprehensive analysis of prognostic genes allowed us to explore the ability of the 343 

prognostic genes themselves, enriched gene sets, and Cox coefficients (a measure of strength of 344 

correlation to better or worse survival) to identify similarities and differences among cancers.  345 

The most prognostically significant genes were not shared between cancers.  However, 346 

protective genes and harmful genes are enriched in very different gene sets, and there were large 347 

overlaps of these gene sets for LUAD, LIHC, and KIRP, and for COAD, LUSC, and GBM.  The 348 

groupings of these cancers were recapitulated by clustering with both Cox coefficients of 349 

individual genes, and average Cox coefficients of gene programs, suggesting that these findings 350 

are biologically significant and that this is an effective strategy for incorporating genomic and 351 

clinical data to compare cancers. 352 

Although it is important not to mistake a correlation for causation, the analysis suggests 353 

intriguing insights into the pathogenesis of different cancers.  For example, currently EGFR 354 

inhibitors are recommended for LUAD patients with EGFR mutations, but EGFR mutations are 355 

rare in LUSC and patients with mutations do not respond well to tyrosine kinase inhibitors (Chiu 356 
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et al. 2014).  Despite this, response rates to EGFR inhibitors for LUSC studies are threefold 357 

higher than expected (Chiu et al. 2014), suggesting that although EGFR itself may not be 358 

mutated, responders may still have a cancer which is dependent on EGFR signaling.  This is 359 

consistent with the gene program analysis in this paper, where EGFR response was most strongly 360 

associated with poor survival in LUSC, and LUSC was consistently associated with GBM, which 361 

is a cancer known for EGFR dysreguation.  This suggests that using a measure of EGFR activity 362 

other than mutational status could be used to find LUSC patients that would benefit from a 363 

tyrosine kinase inhibitor.  In addition, this type of analysis may be used to suggest treatments for 364 

cancers which are not well studied.  For example, KIRP does not have successful treatments and 365 

there is a current search for drugs which may be of benefit (Schuller et al. 2015).  This analysis 366 

suggests that the pathogenesis of KIRP is very similar to LIHC and LUAD, indicating that 367 

treatments currently used for those cancers may be co-opted for KIRP. 368 

This analysis is among the first attempts at using clinical correlations to compare cancers.  369 

Although we utilized the most up to date information possible, well established statistical 370 

techniques, and obtained robust findings, there are many ways this type of analysis can be 371 

improved.  For example, it is now being recognized that cancer is not a single disease, but rather 372 

a group of molecularly and clinically distinct diseases which share a tissue of origin.  Through a 373 

combination of genomic measurements, the TCGA Research Network has divided individual 374 

cancers into four or five subtypes, for example GBM has been divided into proneural, neural, 375 

classical, and mesenchymal subtypes (Brennan et al. 2013).  Currently, clear subtypes have not 376 

been found for all 16 of the cancers in this study, and for many cancers dividing the cancers into 377 

the subtypes would result in a loss of power due to the limited number of patients.  However, as 378 

these classifications are refined and the number of patient samples continues to grow, a natural 379 

extension of this study would be to repeat it for individual subtypes, which would potentially 380 

decrease the heterogeneity of the data.  In addition, treatment is one the largest confounding 381 

variables in survival analyses, but the TCGA pharmacological data is currently incomplete 382 

making it impossible to incorporate this information into the model.  Despite these current 383 

limitations, this study has shown that incorporating clinical information into pan-cancer analyses 384 

is capable of yielding insights into cancer pathogenesis that have thus far been unappreciated by 385 

other methods.   386 
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Legends 559 

Figure 1 560 

Distinct expression patterns of protective and harmful prognostic genes 561 

(A) Raw gene p-value distributions from multivariate Cox models for a cancer with high number 562 

of expressionally prognostic genes (EPGs; LGG, left), and a cancer with low number of EPGs 563 

(STAD, right). Distributions for the other 14 cancers are displayed in Fig. S1. (B) Unsupervised 564 

hierarchical clustering (Pearson correlation distance metric) of patients using the inverse normal 565 

transformed expression values from the 100 most significant protective genes and 100 most 566 

significant harmful gene for LGG, left, and STAD, right. (C) Kaplan Meier plots comparing 567 

survival times for the two broad clusters of patients identified in B and logrank p-values for 568 

LGG, left, and STAD, right. 569 

 570 

Figure 2 571 

Overlaps of prognostic genes and gene sets 572 

(A) Heatmap displaying the overlaps between cancers of the 100 most significant genes of each 573 

cancer. (B) Overlaps within cancers of the 100 most significantly enriched gene sets for 574 

protective genes, and the 100 most significantly enriched gene sets for harmful genes. (C,D) 575 

Overlaps between cancers of the 100 most significantly enriched gene sets for harmful genes (C) 576 

and protective genes (D). (E) Venn diagram showing the overlaps of the 100 harmful gene sets 577 

for LIHC, LUAD, and KIRP. (F) Venn diagram showing the overlaps of the 100 protective gene 578 

sets for COAD, GBM, and LUSC. 579 

 580 

Figure 3 581 

Clustering of cancers using gene Cox coefficients 582 

Clustering of genes and cancers using the sigmoidal normalized Cox coefficients of a list of 583 

genes that had an FDR less than or equal to .05 for at least four cancers. Pearson correlation 584 

distance metric was used for both row and column clustering, and Cox coefficients were row 585 

scaled (z-score). 586 

 587 

Figure 4 588 
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Clustering of cancers using gene programs 589 

Using an established list of gene programs (see methods and Table S3), cancers and gene 590 

programs were clustered using the means of sigmoidal normalized Cox coefficients of the genes 591 

present in each program. Pearson correlation distance metric was used for both row and column 592 

clustering, and the average Cox coefficients were column scaled (z-score). 593 

Table 1 594 

Characteristics of datasets and patients included in this study 595 

Events are the number of deaths in the data set. Age is the average age and is in years. Median 596 

survival is in days. The median survival for KIRP could not be calculated. 597 

 598 
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