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Abstract. We present a dynamical model of drug accumulation in bacteria. The
model captures key features in experimental time courses on ofloxacin
accumulation: initial uptake; two-phase response; and long-term acclimation. In
combination with experimental data, the model provides estimates of import and
export rates in each phase, the time of entry into the second phase, and the decrease
of internal drug during acclimation. Global sensitivity analysis, local sensitivity
analysis, and Bayesian sensitivity analysis of the model provide information about
the robustness of these estimates, and about the relative importance of different
parameters in determining the features of the accumulation time courses in three
different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas
aeruginosa. The results lead to experimentally testable predictions of the effects of
membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug
accumulation. A key prediction is that a sudden increase in ofloxacin accumulation

in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.

Author Summary. Bacteria live or die depending on how much antibiotic gets
inside them. Using a simple mathematical model, detailed information about drug
import and export can be teased out of time courses of internal drug levels after a
sudden exposure. The results suggest that membrane permeability can suddenly
decrease during exposure to drug, accompanied by an increase, rather than a

decrease, in the internal drug level.
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Introduction

Drug resistance in bacteria can be increased by efflux pump systems [1], and pump
inhibition has emerged as a strategy for overcoming drug resistance [2]. Many
details of how efflux pumps work are still unclear, however. In particular,
quantitative information about how efflux influences drug accumulation in bacteria

is still scarce [3].

Drug accumulation is a key factor in obtaining a quantitative understanding of
resistance. For example, predictions of minimum inhibitory concentrations (MICs)
of B-lactams in Escherichia coli were obtained by equating the steady state
periplasmic drug concentration with a periplasmic binding protein inhibitory
concentration [4]. A predicted MIC was calculated as the external concentration that
would yield the accumulated internal inhibitory concentration in steady state,
considering flux terms from membrane permeation and -lactamase degradation.
MIC predictions also have been made considering the action of efflux pumps on
cephalosporins [5] and B-lactams [6] in E. coli. These predictions were accompanied
by estimates of efflux pump kinetic constants (i.e., Kn and Viuax values), providing an

explicit connection between efflux and resistance.

Time-dependent drug accumulation studies also have yielded insight into drug
transport [7-9]. Diver et al. [8] found exposure of E. coli to five different quinolones

induced a rapid ~10 sec uptake followed by a ~30 min phase of more gradual
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accumulation. Similar two phase behavior was seen by Asuquo and Piddock [7] in
accumulation of fifteen different quinolones in E. coli, Pseudomonas aeruginosa, and
Staphylococcus aureus [7]. The experiments of Asuquo and Piddock [7] highlighted
exposure to ofloxacin, which exhibited apparently different accumulation behavior
in each species (Fig. 1). Whereas drug levels appeared to plateau in E. coli (Fig. 1A)
and S. aureus (Fig. 1C) levels in P. aeruginosa gradually decreased at longer times

(Fig. 1B), suggesting an acclimation process.

Mathematical modeling has provided substantial insights into accumulation of 3-
lactams [4,6], cephalosporins [5], and tetracycline [9] in E. coli. Quinolone
accumulation, however, has not yet been analyzed in the context of a mathematical
model. Here we present a mathematical model of drug accumulation and use it to
analyze experimental data on accumulation of the quinolone ofloxacin in E. coli, S.
aureus, and P. aeruginosa [7]. The analysis yields estimates of permeation and efflux
rates, the time of entry into the second phase of the response, and the rate of
decrease of drug during acclimation. We also perform global sensitivity analysis,
local sensitivity analysis, and Bayesian sensitivity analysis of the model. The
sensitivity analyses provide information about the robustness of parameter
estimates and enable assessment of the relative importance of the short-term

response and long-term acclimation in different bacterial species.

The results lead to experimentally testable predictions of membrane permeability

and drug efflux, which influence drug resistance. A key prediction is that an increase
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in E. coli and S. aureus drug accumulation is accompanied by a decrease in
membrane permeability. Overall the results indicate the utility of mathematical
modeling and sensitivity analysis in obtaining new insights into drug accumulation

in bacteria.

Results

Model behavior

Both the E. coli (Fig. 1A) and P. aeruginosa (Fig. 1B) behavior clearly show two
phases of drug accumulation dynamics, which is captured by our model of drug
accumulation (Methods). The model also allows for the possibility of acclimation in
the second phase; this was initially added to capture the longer-time (~10-60 min)
behavior of P. aeruginosa (Fig. 1b). Although S. aureus data initially appeared to
involve only one phase (Fig. 1C), the modeling and sensitivity analysis later revealed

a significant two-phase behavior, with acclimation.

The relationship between the model parameters and the model behavior is
illustrated in Fig. 2. After exposure at t = 0, the first phase begins, where cellular
antibiotic levels rise and relax toward an asymptotic value a1. The relaxation in this
phase is exponential with rate 1. At time t = 1, the second phase begins, where
antibiotic levels may either rise or fall towards a new asymptotic value a,. The

relaxation in this phase is initially dominated by exponential relaxation with rate 3.
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Later, acclimation can dominate the dynamics, specified by modulation of (32 by the
factor [1+ 6(t- T)] (or, equivalently, modulation of a; by [1+ §(t- T)]1; see
Discussion). Together these features capture the full set of salient behaviors

exhibited by the experimental data on ofloxacin accumulation [7] (Fig. 2).

Parameter estimates

Optimal parameter values were estimated by fitting the model to data on ofloxacin
accumulation in E. coli, P. aeruginosa, and S. aureus. The fits were performed
assuming the same measurement error for each data point within the same curve
(Methods). Reasonable fits were obtained for all datasets (Fig. 1), with an optimal

value of the goodness of fit ¥2/NDF of 0.98, 1.5, and 0.74 for E. coli, P. aeruginosa,

and S. aureus, respectively. Values of 1, B2, and < for E. coli and S. aureus were
surprisingly similar (Table 1) given the visible differences between the two datasets
(Fig. 1); the parameter values for P. aeruginosa differed from the other two cases
(Table 1). E. coli exhibits two phases of accumulation with little apparent long-term
acclimation, consistent with the low value of 8. P. aeruginosa shows a stronger
acclimation response, corresponding to the higher value of 8. S. aureus exhibits a

degree of acclimation (8) that is intermediate between E. coli and P. aeruginosa.

Sensitivity analysis results
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We applied three types of sensitivity analysis to the model: global sensitivity
analysis (GSA), local sensitivity analysis (LSA), and Bayesian sensitivity analysis
(BSA). The GSA yielded a fine-grained assessment of the importance of each
parameter in determining the model behavior at each time point. The LSA indicated
parameters that are responsible for the principal variations in the immediate
neighborhood of the optimal values. The BSA provided a detailed picture of the
shapes of probability distributions of parameters in a more extended range about
the optimum than for the LSA, including correlations that arise due to the nature of
the model equations. Semi-quantitative sensitivity rankings of parameters for each
case are presented in Supplementary Table S1; the detailed results are described

below.

Global Sensitivity Analysis (GSA)

GSA results were obtained using log-uniform prior distributions over the ranges in
Table 2. The results for E. coli (Fig. 3A,B) and S. aureus (Fig. 3E,F) are similar, due to
the identical priors (Table 2) and the similarity in the optimal parameter values for
these cases (Table 1). The “main effect” index (a.k.a. the first-order sensitivity index)
quantifies the contribution to the variance of the model of each parameter alone,
while averaging over variations in other parameters, whereas the “total effect” index
quantifies the change in the variance of the model caused by the investigated
parameter and its interactions with any of the other parameters (Methods). Both the

main effect and total effect are measured on a scale from 0 to 1 for each parameter.
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As a reference for the following paragraphs, a: and a2 correspond to the initial
steady-state level of antibiotic in the first and second phase; 1 and 32 correspond to
the relaxation rates at the entry into the first and second phase; t is the time of entry

into phase 2; and 0 is the rate constant associated with acclimation.

For E. coli and S. aureus, the main effect of a1, az, and B1 is high, and the main effect
of B2, T, and 0 is low (Figs. 34, 3E). The total effect of a1, 1, az, and T is high, and the
total effect is low for (32 (especially at later times) and 6 (Figs. 3B, 3F). The total
effect of a1 remains high at long times, despite being associated with the first phase;
this is because the prior for T spans the entire range 0-3600 s, enabling the first

phase to extend to long times in the analysis.

For P. aeruginosa, the main effect of a1, az, and 0 is high, and the main effect of 1, B2,
and t is low (Fig. 3C). The total effect of a1, az, T, and 8 is high, and the total effect of
B1 and B2 is low (Fig. 3D). The increased importance of 6 for P. aeruginosa compared
to E. coli and S. aureus is consistent with the more pronounced acclimation response
(Fig. 1). The low importance of 1 and 32 is consistent with the unbounded upper
limit due to the step-like transitions in P. aeruginosa; in comparison, the behavior of
E. coli and S. aureus shows more gradual relaxations with improved sampling (Fig.

1), leading to increased importance of $1 and fz .

Local sensitivity analysis (LSA)
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The LSA results are presented using the eigenvectors and eigenvalues of the
covariance matrix of model parameters (Methods). The eigenvectors are visualized
in columns of colored squares in Fig. 4, ordered in importance from left to right
using the eigenvalues (Table 3; sensitivity values correspond to -Logio(A), where A
is the eigenvalue). For all cases, the first two eigenvectors are dominated by a; and
az, indicating that these are the most sensitive parameters. For E. coli, the third
eigenvalue is more than 10-fold larger than the first eigenvalue (corresponding to a
lower sensitivity), with an eigenvector that is dominated by <. The lowest
sensitivities correspond to combinations of 1, f2, and 0. For P. aeruginosa, the third
eigenvalue is 50-fold larger than the first, and corresponds to 8. The lowest
sensitivities correspond to B1, B2, and t. For S. aureus, the third eigenvalue is 100-
fold larger than the first, and corresponds to 1. The lowest sensitivities correspond
to combinations of 31, §, and <. The relatively low sensitivity of T in the LSA is
consistent with the very sharp transition between the two phases, as the precise
value of T is ill-determined between the discretely sampled time points. The higher
sensitivity of t for E. coli is consistent with the extrapolation of the phase 2

relaxation curve to a more precise value of t.

Bayesian sensitivity analysis (BSA)

We used BSA with Markov Chain Monte Carlo (MCMC) sampling (Methods) to obtain
insight into probability distribution functions (PDFs) of parameter values (Figs. 5-7).
Because the measurement errors were not available for individual data points, we

used an arbitrary error of 1 ng/mg for each data point (Methods). The resulting
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PDFs therefore should not be interpreted as actual posterior PDFs, but only as
indicators of: (1) the overall shape of the distributions; (2) the relative degree to
which different parameters are constrained; and (3) the relative degree and nature

in which different parameters are correlated.

The parameters {1, B2, and T in P. aeruginosa have relatively flat PDFs that deviate
substantially from a normal distribution (Fig. 6). Sharpening the likelihood function
by decreasing the errors 10-fold led to sharper PDFs for peaked distributions
(Supplementary Figs. S1-S3) while maintaining similarly flat distributions for these
parameters (Fig. S2), providing evidence that the flat distributions are not an

artifact of the sampling.

The individual PDFs for the parameters of both E. coli (Fig. 5) and S. aureus (Fig. 7)
all show peaks, which is justification for the providing the estimates for all
parameters in Table 1 (the distribution of 32 for S. aureus is truncated at low values
due to the restricted range of the prior; however, the peak clearly falls within the
range of the prior when the likelihood function is sharpened (Supplementary Figure
S3)). The range of the values of 2 and § among the MCMC sampled points (an
indicator of the width of the PDFs) is greater than for other parameters (Table 4),
indicating that estimates of $2 and 0 are less reliable (there is a noticeable tail in the
a; distribution for E. coli, but the range of 0.14 Logio units is still sufficiently narrow
to provide an estimate). The pairwise scatter plots indicate relatively strong

correlations between az and both 2 and 0. These correlations follow from Eq. (4), in

10
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which both 3z and & appear in factors that multiply az; a weaker correlation
between 0 and 32 is explained by the same term. The correlations involving 6 are
only substantial when § is sufficiently large; this is because the effect of 8 is
negligible when it is smaller than about 10-> s'1 (Eq. 4, considering the experiment
duration of 3600 s). In addition, 31 appears in the term modulating a1 in Eq. (4),

explaining a weak correlation between these two.

Like for E. coli and S. aureus, the PDFs of a1, az, and 0 for P. aeruginosa show peaks
(Fig. 6), justifying the entry of estimates in Table 1. In addition the PDF for T,
although flat, is confined to a very narrow range, leading to an estimate in Table 1.
The lack of a peak for T can be understood by the sharp, step-like increase (Fig. 1B)
combined with the discrete sampling in time; i.e., the step can be located anywhere
between the time points that mark the increase, with approximately equal
probability. Step-like increases in accumulation also lead to high uncertainty in both
B1and P2 (Table 4); these parameters can assume essentially any value that is large
enough to enable the antibiotic to rise between the time points that mark the
increase, with equal probability. Like for E. coli and S. aureus, a; and 0 are correlated
for P. aeruginosa; however, compared to E. coli and S. aureus, increased uncertainty

masks any underlying correlations involving 1 and f32.

Predictions of permeability, net efflux rate, and accumulation factor

11
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We used Egs. (5)-(7) to predict the values of parameters that directly characterize
permeation, net efflux, and the degree of drug accumulation. The predictions are
quantified in the form of the permeability a; in each phase i, the net efflux rate ¢;,
which is defined as the portion of the specific export rate not associated with
permeation, and the accumulation factor, ¢;, which is the fold-increase of antibiotic
concentration inside the cell compared to the external concentration. A positive
value of € is associated with a net efflux and a value ¢<1, while a negative value is
associated with a net trapping of drug and a value ¢>1. The total value of € can be
determined by a combination of individual positive or negative fluxes, potentially
involving multiple mechanisms including efflux pumps and drug binding to DNA

(Discussion).

The resulting predictions of «;, €;, and ¢; are shown in Table 5. Predictions of a; and
&i for P. aeruginosa are provided as lower bounds, following from the entries for ; in
Table 1. The true reliability of the predictions of ¢; depends both on the robustness
of the estimation of a; (Sensitivity analysis results) and the uncertainty in the factor
used to convert ap to ng/mg dry weight units (Methods). The reliability of the

predictions of a;, €; additionally depends on the robustness of the estimation of f3..

The predictions of permeability behavior are strikingly similar for E. coli and S.
aureus. At early times, the permeability is high, corresponding to about a 5.5 s half-
equilibration time for E. coli, and a 1.5 s half-equilibration time for S. aureus (o1

from Table 5). The permeability then decreases dramatically after about 12.5

12
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minutes (t from Table 1): by a factor of ~50 for E. coli and a factor of ~100 for S.
aureus (a2/o1 from Table 5). In addition, the value of € at both early and late times is
negative for both E. coli and S. aureus, and the values of ¢ are greater than one,

indicating a net trapping of antibiotic.

In contrast to E. coli and S. aureus, the values of ¢ are less than one for P. aeruginosa,
indicating a net efflux of antibiotic. The lower bound of o, for P. aeruginosa is
consistent with E. coli and S. aureus but the lower bound of «. is higher by a factor
0(10). The upper bounds of € for P. aeruginosa are consistent with the estimates for

E. coli and S. aureus.

Discussion

The present modeling and analysis of ofloxacin accumulation time courses indicates
that E. coli and S. aureus exhibit a similar two-phase ofloxacin accumulation
behavior. Whereas the two-phase behavior for E. coli was easily visible in the data,
for S. aureus it was only detected as a result of the BSA. Even though the change in
antibiotic level entering phase 2 is small for S. aureus, the BSA indicates a clear peak
in the posterior distributions of all of the influx and outflux parameters, increasing

confidence in the two-phase model for this case (Fig. 7).

The contribution of sensitivity analysis to the present study was substantial. The
BSA enabled us to identify a significant two-phase model for S. aureus that we were
unable to detect in the data by eye. In addition, the BSA enabled us to identify

correlations in the data that are consistent with the way the parameters work

13
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together in the model. We also note that the lack of individual error estimates for
each data point in the present study prevented calculation of true posterior PDFs;
the availability of error estimates for future datasets will enable a substantial
increase in the information provided by the BSA. The sensitivity analysis also
enables a quantitative means of distinguishing of important from unimportant
parameter values in the modeling. This further enables a degree of confidence to be
associated with results based on the quantitative analysis, which can be used to
assess which predictions are more or less likely. Some aspects of the sensitivity
analysis confirm what is already apparent in just looking at the data, such as the
increased importance of 0 for P. aeruginosa compared to E. coli; however, even in
this case, it provides quantitative measures that can enable obvious results to be
obtained automatically. Automation will become increasingly important as we
increase the number of data sets being analyzed. In addition, future data sets might
not be as straightforward to interpret by eye, and the present study serves as an
example that demonstrates the consistency of the sensitivity analysis with the
interpretation of a relatively clear-cut case, so that the methods can be applied with

increased confidence to cases where the interpretation might not be so obvious.

The rapid initial accumulation of ofloxacin in E. coli, P. aeruginosa, and S. aureas has

been cited as evidence that these bacteria lack a substantial permeability barrier for
fluoroquinolones [7]. Our modeling supports the high permeability at early times in
the accumulation dynamics. The permeation rates in Table 5 lead to a half-

equilibration time for ofloxacin permeation of 5.5 s into E. coli, <18 s into P.

14
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aeruginosa, and 1.5 s for S. aureus. These values are similar to the expected 5 s half-
equilibration time for permeation of norfloxacin across a lipid bilayer [10]; as
measured in Ref. [7], the apparent partition coefficient of ofloxacin is 4-fold greater
than that of norfloxacin, so their permeabilities across the cytoplasmic membrane

are expected to be within a similar range.

In contrast with the early time behavior, after about 12.5 mins, both E. coli and S.
aureus show a predicted 50-to-100-fold decrease in permeability (Table 5). This
sudden decrease in permeability only was detected using the modeling and was not
detected in the prior qualitative analysis of the data [7]. One way to test this
prediction is to shift the cells to a medium with radiolabeled drug, looking for a
difference in labeled drug accumulation in phase 1 versus phase 2. At this point we
can only speculate about the mechanism. E. coli is gram negative, whereas S. aureus
is gram positive, suggesting the common decrease in permeability does not involve
the outer membrane. That the permeability rates are consistent with diffusion
across the cytoplasmic membrane indicates that the decrease in permeability is not
necessarily be associated with transporters. It is possible that the sacculus, a mesh
structure common to both E. coli and S. aureus, might be involved in a decrease in
permeability. The ability of the sacculus to allow translocation of proteins as large as
25 kDa [11] or 100 kDa [12] would seem to rule out a role for the sacculus by itself,
as ofloxacin has a molecular weight of 361 Da, and should ordinarily freely diffuse
across the mesh. However, the sacculus is associated with a comparable mass of
other biomolecules in both gram negative and positive bacteria [13] [14]. If ~98%

of the mesh were to become blocked somehow, it could explain the ~50-fold

15


https://doi.org/10.1101/030908
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/030908; this version posted October 20, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

aCC-BY 4.0 International license.

decrease in permeability for E. coli.

For E. coli and S. aureus, the values of the accumulation factor ¢>1 indicate net
trapping of antibiotic. The trapping is weak for E. coli in phase 1 ($1=1.09) and
becomes stronger in phase 2 ($2=2.29). Compared to E. coli, the trapping is stronger
in S. aureus for both phases: $1=2.93 and ¢,=3.75. For P. aeruginosa, the values of
¢<1 indicate a net efflux of antibiotic that is stronger in phase 1 ($1=0.39) than in

phase 2 (¢2=0.72).

Several individual effects can combine to determine whether there is a net trapping
or efflux of antibiotic. Targeted experiments will be required to determine the role
of specific mechanisms, but we can gain some insights by assuming that an
important effect favoring trapping is the immobilization of antibiotic on DNA. This
effect can be estimated using the dissociation constant Kp = 633 uM reported by
Shen et al. [15] for nonspecific binding to DNA of norfloxacin at high concentrations
(10-1000 uM). Assuming roughly 2.1 genome equivalents per cell [16], a volume of
1.25 fL, and 4.7 x 106 bp per chromosome yields an estimated DNA bp concentration
in E. coli [D] = 1.3 x 10% uM. Then, assuming the Kp for norfloxacin applies to
ofloxacin and that each bp can bind one drug molecule yields a fraction of DNA-
bound drug of 1/(1+Kp/[D]) = 0.95, or a mobile fraction of just 0.05. In this case, the
contribution of permeability to the outflow would be only 5% of that assumed in Eq.
(6), leading to an increase in efflux by 0.95a. This translates into an increase in the

specific efflux rate by 0.12 s1 for E. coli in phase 1.
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351 Based on the above estimates, despite the small negative value of the net efflux

352  parameter €1 (=-0.011 s'1) in Table 5, due to the effect of trapping by DNA binding,
353  we expect the underlying rate of efflux in E. coli to be 0.11 s'1 (=0.12 s1-0.011 s°1),
354  which is comparable to the rate of permeation. To assess the importance of efflux in
355  S. aureus, we use similar reasoning as for E. coli, noting that the net efflux parameter
356 &1 is-0.326 s'1 and the effective permeability o is 0.495 s1 (Table 5). Assuming the
357 same degree of trapping in S. aureus as in E. coli yields a contribution 0.48 s'1 and an
358 estimated specific efflux rate of roughly 0.15 s'1 (= 0.48 s'1 - 0.326 s'1) in phase 1,
359  which is close to the value for E. coli. In contrast to E. coli, however, where the efflux
360 rate is comparable to the inflow rate, in S. aureus the efflux rate is less than 1/3 of

361 the inflow rate.

362 The estimated specific efflux rates in phase 1 of 0.11 s-1 for E. coli and 0.15 s for S.
363 aureus can be used to estimate the rate of outflow of drug due to efflux. Multiplying
364 Dby aiyields an outflow of 3.5 ng/mg/s (= 0.11 s'1 x 32 ng/mg) for E. coli, and 10

365 ng/mg/s (= 0.15s1x 66.6 ng/mg) for S. aureus. Dividing by the molecular weight of
366 ofloxacin (361.368 g/mol) yields 0.0097 nmol/mg/s for E. coli and 0.028

367 nmol/mg/s for S. aureus. These values are similar to the Ve value of 0.0235 + 0.003
368 nmol/mg/s found by Lim and Nikaido [6] for efflux of nitrocefin from E. coli, and are
369 much lower than the value of 1.82 + 0.85 nmol/mg/s found for cephaloridine efflux
370 from E. coli in the same study. Therefore our predictions are consistent with the Vpax
371 for efflux of ofloxacin in E. coli and S. aureus being similar to the Vyax for efflux of

372  nitrocefin in E. coli.
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In addition to DNA binding, differential permeability of ionic subspecies of ofloxacin
or Mg2+ chelates of ofloxacin might also influence the balance of inflows and
outflows [10]. These effects can easily lead to two-fold or greater accumulation or
exclusion of antibiotic [10]. In addition to the predicted change in membrane
permeability, therefore, changes in DNA binding, efflux, pH, and the availability of
Mg2+ all might potentially be linked to the two-phase behavior of ofloxacin

accumulation.

Because we predict that the underlying efflux rate is comparable to the inflow rate
in E. coli, we also predict that efflux plays an important role in ofloxacin
accumulation. In contrast, for S. aureus, we predict efflux plays a less important role
in ofloxacin accumulation, because the efflux rate is predicted to be substantially
lower than the inflow rate. For P. aeruginosa, we are unable to make predictions
based on quantitative estimates of rate constants, due to uncertainty in the key
parameter values in Table 1 and Table 5. However, because the internal
concentration of antibiotic is predicted to be less than the external concentration (¢
< 1in Table 5), we predict that efflux is important in P. aeruginosa accumulation of

ofloxacin.

Both P. aeruginosa and S. aureus exhibit a visible slow decrease in accumulated drug
during the second phase (Fig. 1). The model captures this decrease in terms of the
parameter 8 which increases . by a factor [1 + §(t — 7)] in Eq. (3). Mechanisms for
increasing p include enhancing efflux (e.g., by increased expression of pumps) or

decreasing trapping (e.g., by chromosome remodeling that results in a decrease in
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drug binding to DNA). Importantly, the combination of Eq. (4) and Eq. (5) indicate
that 8 can be interpreted alternatively as decreasing a.; by a factor [1 + §(t — 7)] 7.
Thus, in addition to an increase in efflux or a decrease in trapping, the acclimation
behavior can be attributed to a decrease in permeability (e.g., through the
hypothetical mechanisms described above). Additional experiments targeted at the
mechanism of decrease will be required to determine the cause of the acclimation

response.

Ofloxacin is bactericidal at the concentration of 10 mg/L used in the experiments [7],
which might have important implications for the interpretation of the results. If
nonviable cells are excluded from the analyzed pellet after centrifugation (e.g.
because they have been lysed and remain suspended), the accumulation data simply
correspond to viable cells, and the interpretation is straightforward. If nonviable
cells are included in the pellet, the interpretation depends on the relative
populations of viable and nonviable cells. According to Ref. [7], 5 mins after
exposure in phosphate buffer, the viable count of E. coli decreased by 0.74 Logio
units, the count of P. aeruginosa decreased by 0.45 Logio units, and the count of S.
aureus decreased by 0.4 Logio units. These data indicate that in all cases, the number
of viable cells decreases by at least 2.5-fold after 5 mins. At the longest times, 60
mins after exposure, the values were 2.06, 3.75, and 0.54 Logio units, respectively,
indicating that the number of viable cells of E. coli and P. aeruginosa decreases by at
least 100-fold over the course of the experiment. These results indicate that if

nonviable cells are included in the analyzed pellet, the behavior should be
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dominated by the nonviable cells; indeed, trapping of antibiotic in nonviable cells
removes antibiotic from the environment and can increase the chance of survival of

neighboring viable cells, leading to a fitness advantage at the population level.

That the model matches the data well (Fig. 1) is consistent with the interpretation
that the behavior is predominantly due to one type of cell, either viable or nonviable.
However, the Kkilling kinetics do indicate that the number of viable cells is still not
negligible at early times for all cells, and at late times for S. aureus. In addition,
including the effect of antibiotic on cell growth and death will be critical to
connecting the present results to drug resistance. Future work should therefore
include investigating an expanded dynamical model that includes subpopulations of
viable and nonviable cells, including the dependence of cell growth (for
bacteriostatic effect) and death (for bactericidal effect) on intracellular antibiotic
concentration. Including the antibiotic effect (e.g., via the target inhibitory
concentration [4-6]) is essential for understanding the relation between the amount
of accumulated drug and antibacterial activity, as they are not necessarily correlated
[7]. In particular, Nagano and Nikaido [5] used mathematical modeling to predict
MIC values of drugs for E. coli, and to show how efflux pump deletion or
overexpression might not change the MIC value of drugs that are nevertheless

strong efflux pump substrates.

[t is interesting to consider the importance of models of drug accumulation in light

of a recent survey of physical properties of active compounds in a drug screening
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collection and their relation to whole cell antibacterial activity [17]. The survey
reported on the difficulties encountered in simultaneously optimizing both
biochemical potency and antibacterial activity, and concluded that “what is clearly
needed is greater insight into medicinal chemistry strategies which optimize
transport through porins and decrease efflux through the prolific efflux pumps.”
Together, the findings reported here and elsewhere [5,6] suggest that mathematical
modeling of drug accumulation can provide these insights, and thus can be a key

tool in enabling antibacterial medicinal chemistry.

Materials and Methods

Model

Our dynamical model of drug accumulation lumps together transport across the

inner and outer membranes. This is appropriate as the drug target is in the

cytoplasm, there are no data on drug accumulation in the periplasm, and we wish to

use the same model for gram positive or negative bacteria. We note that this

lumping does not prevent the interpretation of results in light of differences

between the outer and inner membranes (Discussion).

The time dependence of accumulated drug a(t) is modeled using
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da(t)
dt

= a(t)a, — B(t)a(t) (1)

where a, is the environmental antibiotic concentration, a(t) is the specific rate of
increase, and [(t) is the specific rate of decrease. The term “specific” is used to
indicate that the rate constant is multiplied by the antibiotic concentration. We
assume o(t) corresponds to the permeability, although it also can include active
transport. We assume (t) corresponds to both active and passive transport,
although it also can include degradation and cell growth. Cell growth in E. coli occurs
by a constant cell size extension [18], which is consistent with including cell growth
in B. If included, assuming a 42 min doubling time, cell growth would contribute a
specific rate of 2.75 x 10-# s°1; this is orders of magnitude smaller than the values of
B at early times (Table 1), when growth is expected to be highest, and is at least 4-
fold smaller than the values of 8 at early times (Table 1), when growth is expected to
be lowest. Ignoring cell growth therefore is a reasonable approximation in the

present study, although it might be necessary to include it in other studies.

Equation (1) was developed assuming that only viable cells are analyzed. This
corresponds to the case when nonviable cells are disrupted and are excluded from
pellet after centrifugation in Ref. [7]. Even when nonviable cells are not excluded
from analysis (Discussion), Eq. (1) applies to viable cells when the external
antibiotic level is low and there is a negligible fraction of nonviable cells at all times.
If nonviable cells are included in the pellet and there is a negligible fraction of viable

cells at all times, Eq. (1) will still be relevant but will instead describe accumulation
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in the nonviable cells. If both viable and nonviable cells are analyzed and there is an
intermediate drug concentration, the model should be extended to include both

viable and nonviable cells, with population dynamics (Discussion).

To model the data in Fig. (1), we assume o(t) and (t) both switch rapidly from a
constant value in phase 1 to a different constant value in phase 2. The import rate

a(t) is given by

_(ay, t<rt
a(t) = {az, t=>7 (2)

where a1 applies to the early phase of the accumulation dynamics (t<t), and o>

applies to the late phase (t = 1).
The export rate (t) is given by

_ B, t<T
BO={p 0 5t— o) io (3

where 31 applies during the early phase (t<t), B2 applies during the late phase (t=T),

and § is the fractional rate of increase of export during the later phase.

Assuming rapid relaxation (f2) compared to acclimation (8) in phase 2 yields
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e F1ta(0) + (1 — e P1t)ay, t<rt

a(t) =19 g-p:(t-Dg(p) + [1- e—ﬁz(t—r)]%, t>T (4)
505
506 where ai= a1 a./ B1, and az2= a2 a./ B2.
507
508 Given additional assumptions, the a and [3 parameters can be used to derive
509 permeation and net efflux rates (see below). The 6 parameter models long-term
510 acclimation by, e.g., gene regulation.
511
512  Parameter estimation
513
514 Parameter estimation for Eq. (4) was performed using published experimental time
515 courses of ofloxacin accumulation in E. coli, P. aeruginosa, and S. aureus [7]. Data
516 points were extracted from Figure 1 in Ref. [7]. Numerical solutions to Eq. (4) were
517  obtained for each data point using functions defined in Mathematica Version 10
518 (Wolfram Research, Inc., Champaign, IL). Errors for each individual data point were
519 notavailable, and were therefore estimated using the maximum values given for
520 norfloxacin in Ref. [7]: £12.5, £11.6, and +9.7 ng/mg for E. coli, P. aeruginosa, and S.
521 aureus, respectively. To obtain error estimates for ofloxacin, these maximal errors
522  were scaled using the initial rapid phase concentration entries in Tables II, III, and
523 IV of Ref. [7], and were then divided by two. The following were the resulting
524  estimated errors for each data point: 2.3 ng/mg for E. coli, 0.75 ng/mg for P.

525 aeruginosa; and 4.35 ng/mg for S. aureus. We also performed the fits using the
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maximal errors as the estimates, without dividing by two; however, we favored
using the half-maximal errors for the following reasons: (1) the maximal values are
very likely overestimates; and (2) the half-maximal values yielded %2/NDF values
close to 1, whereas the maximal values yielded values substantially lower than 1.
The choice of errors between these cases merely resulted in a different overall

scaling %2 and did not influence the optimal parameter values obtained in the fits.

A standard x2/NDF was used as a goodness of fit measure between the model and
the data, using a number of degrees of freedom NDF = number of data points minus
six parameters. The x2/NDF was minimized with respect to values of ai, az, 81, B2, 5,
and t using the FindMinimum method, assuming a(0)=0. The values of a1, az, 1, B2,
0 were varied over twelve decades. For E. coli and P. aeruginosa, the value of T was
varied from 0-10,000 s (covering the full span of each 3,600 s time course) to seek
an optimal solution. For S. aureus, optimization was initially performed for t =
10,000 s (a time beyond the last data point), as the behavior appeared to be one
phase. A more thorough investigation of the parameter space using Bayesian
sensitivity analysis (BSA), however, revealed a relatively weak but significant two-
phase response, with a value of t that is similar to E. coli. Therefore the optimization
for S. aureus also was performed varying t from 0-10,000 s. Mathematica
workbooks and experimental data for all cases are available in a compressed

archive in the Supporting Information.

Sensitivity analysis methods
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549

550 All sensitivity analyses were performed using the open source code Model-Analysis
551 and Decision Support (MADS), developed at Los Alamos National Laboratory

552 (http://mads.lanl.gov).

553

554  Global Sensitivity Analysis (GSA): We performed variance-based GSA [19], which
555 decomposes the variance of the output into parts ascribed to different input

556  parameters using a Fourier Haar decomposition [20,21]. Both the “main effect “ and
557  the “total effect” results presented here for each input parameter were calculated
558 using the Sobol Monte Carlo algorithm [22] using about 10°¢ independent model
559  evaluations drawn from log-uniform distributions defined by Table 2. We found that
560 this number of samples was sufficient to achieve convergence for the estimated
561 quantities. The ranges in Table 2 were chosen arbitrarily to encompass the optima
562  in Table 1 while exploring a reasonably broad region of parameter space and

563  satisfying the requirement of rapid relaxation (32) compared to acclimation (0) in
564 phase 2 for Eq. (4).

565

566  Local Sensitivity Analysis (LSA): LSA has a rich history of use in assessing the

567  robustness of biochemical network model behavior to changes in parameter values
568 [23,24].In LSA, the local gradients of the model output are calculated with respect
569  to model parameters at a fixed point (the point with the lowest x2). Here we use the
570 gradients to define a covariance matrix of variations [25]. We used a finite

571 difference method requiring a limited number of model evaluations (equal to the
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number of unknown parameters). As a result, we obtain a gradient matrix J (i.e. the
Jacobian) with dimensions [m x n] where m is the number of model parameters and
n is the number of model inputs (we use logarithmic derivatives, to obtain an
analysis in terms of dimensionless parameters). Each component of the J matrix
represents the local sensitivity of each model parameter to each model output [25].
We analyze the covariance matrix C of model parameters which is computed as C =
[JTJ]-1. The covariance matrix is analyzed using eigenanalysis where eigenvectors
and eigenvalues of the covariance matrix are explored. How dominant (important)
is each eigenvector depends on the respective eigenvalues; the smaller the
eigenvalue, the higher the importance of the eigenvector. The components of each
eigenvector represent the contributions of each model parameter to the
simultaneous variation of multiple parameters: the larger the absolute value of the
components, the larger the contribution. Model parameters with a large
contribution in dominant eigenvectors are important (sensitive) model parameters.
Model parameters with large contribution in non-dominant eigenvectors are
unimportant (insensitive) model parameters. If several model parameters have an
important contribution in a single eigenvector, these model parameters are
correlated. If these contributions have the same sign, the correlation is positive. If

these contributions have opposite signs, the correlation is negative.

Bayesian Sensitivity Analysis (BSA): Posterior probability density functions (PDFs) of
the model parameters given observed data (Figs. 5-7) were obtained following

Bayes’ theorem [26,27]. The PDFs were obtained using a log-uniform prior with the
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595 ranges indicated in Table 2, with a likelihood function defined as e‘Xz/Z, using an
596  arbitrary error value of 1 ng/mg for each data point. The error was decreased to 0.1
597 ng/mg to demonstrate the effect of sharpening the likelihood function in
598 Supplementary Figs. S1-S3. The BSA was performed using the Robust Adaptive
599  Metropolis Markov Chain Monte Carlo (MCMC) algorithm [28]. Analysis was
600 performed using sample sizes of 104, 105, and 10%; we found a sample size of 106
601 yielded adequate sampling. The posterior PDF scatter plots (off-diagonal panels in
602  Figs. 5-7) show an overlay of individual counts; the extent of the plots reflects the
603  parameter range over which 106 random samples can fall. The posterior parameter
604 ranges in Table 4 were obtained by identifying the minimum and maximum
605 parameter values among 106 points sampled using the MCMC. (The values in Table 4
606 mustbe interpreted in light of the fact that the range might increase with increasing
607 number of samples, and that the precise values can change depending on differences
608 insampling, e.g., using different random number seeds.) The histograms (diagonal
609 panels in Figs. 5-7) indicate the shape of the individual marginalized PDFs using the
610 number of counts on the y-axis.
611
612  Predictions of permeability, net efflux rate, and accumulation factor
613
614  Estimation of the model parameters enables prediction of permeability and efflux
615 rates. Given a,, the specific import rate a; in each phase i may be calculated as

a; = aifi/ao. (5)

616
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617  Assuming the import is due to permeation, a; is the permeability. Next, assume the
618  specific export rate 8 is a sum of contributions from permeability, « and other
619 effects. The other effects are then captured by the difference € between 3 and o:
620

& =pi—a. (6)
621
622  When &>0, outward flow is enhanced compared to permeation, and &; indicates a net
623  efflux. When €i<0, the outward flow is decreased compared to permeation, and ;
624 indicates a net trapping of drug.
625
626  Finally, the accumulation factor ¢ is used as a measure of the degree to which
627 antibiotic is either accumulated in or expelled from the cell. It is given by
628

¢ = a;/a,. (7)
629
630 If ¢; < 1 the internal antibiotic concentration is less than the external antibiotic,
631  which is associated with net efflux (&i>0). If ¢p; > 1 the internal antibiotic exceeds
632  the external antibiotic, which is associated with net trapping (&i<0).
633
634  Egs. (5)-(7) are only valid under the same assumptions as for Eq. (4). Predictions of
635 a;and g are only meaningful using reliable estimates of both a; and (3;. In contrast,
636  ¢;can be predicted just with estimates of a; and ao.

637
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The predictions use the environmental drug concentration aoin ng drug/mg dry
weight units. The external ofloxacin concentration in the experiments was 10 mg/L
[7]. To convert to ng/mg dry weight units, following Ref. [29], we used a buoyant
density of 1.1 g/mL and a 31% dry weight for E. coli, a buoyant density of 1.2 g/mL
and a 48% dry weight for P. aeruginosa (transferred from P. putida), and assumed a
buoyant density of 1.1 g/mL and a 40% dry weight for S. aureus. This yielded
conversion factors of 0.341 (mg drug/L)/(ng drug/mg dry weight) for E. coli, 0.528
for P. aeruginosa, and 0.440 for S. aureus. The uncertainty in the dry weight fraction
for S. aureus should be estimated at about 25%, given the range spanned by E. coli
and P. aeruginosa. This introduces uncertainty in the predictions beyond those

indicated by the sensitivity analysis alone.
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Figure Captions

Figure 1. Ofloxacin accumulation data (open squares) with model fits (solid lines).
A) E. coli. B) P. aeruginosa. C) S. aureus. Each data point is assumed to have the same
measurement error, estimated from the maximum values reported for norfloxacin
in Ref. [7] (vertical bars). The external drug concentration of 10 mg/L is shown in
each panel in ng/mg units (dashed straight lines), converted using the factors
derived from the buoyant densities and dry fraction (Methods). The x-axis is plotted

using a log scale, reflecting the time sampling of the data.

Figure 2. Behavior of the model and connection to parameters.

Figure 3. Global sensitivity analysis results for E. coli (A, B); P. aeruginosa (C, D); and
S. aureus (E, F) models. The left panels (A, C, E) show the main effect results, and the
right panels (B,D,F) show the total effect results. Color code: a1 (cyan); a2 (yellow);

B1 (magenta); B2 (green); & (lavender); and t (red).

Figure 4. Local sensitivity analysis (LSA) results for A) E. coli; B) P. aeruginosa; and
C) S. aureus. Columns correspond to eigenvectors, ordered left to right from the
most to the least sensitive, as in Table 3. Rows correspond to parameters, with
labels indicated at the left. The strength and sign of the coefficient of each parameter

with each eigenvector is indicated using the color code in the legend to the right.

Figure 5. Bayesian sensitivity analysis for E. coli. Pairwise parameter PDFs are
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shown using scatter plots in off-diagonal panels; Monte Carlo sampled points
illustrate the extent of the PDFs in the space of parameter values indicated on the x-
and y-axes. Panels in transposed positions within the grids contain identical
information with the x- and y-axes swapped. PDFs for individual parameters are
shown on the diagonals using histograms, with the number of counts in each bin

(out of 10° total samples) indicated on the y-axis.

Figure 6. Bayesian sensitivity analysis for P. aeruginosa. Plots of posterior PDFs for

parameter values and pairwise distributions are as in Fig. 5.

Figure 7. Bayesian sensitivity analysis for S. aureus. Plots of posterior PDFs for

parameter values and pairwise distributions as in Fig. 5.

Figure S1. Bayesian sensitivity analysis for E. coli using a sharpened likelihood
function. The analysis and presentation is the same as in Fig. 5, but using a 10-fold

lower error value.

Figure S2. Bayesian sensitivity analysis for P. aeruginosa using a sharpened
likelihood function. The analysis and presentation is the same as in Fig. 6, but using

a 10-fold lower error value.

Figure S3. Bayesian sensitivity analysis for S. aureus using a sharpened likelihood
function. The analysis and presentation is the same as in Fig. 7, but using a 10-fold

lower error value.
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Tables

Table 1. Estimated parameter values obtained after fitting the model to data on
ofloxacin accumulation in different bacteria.
a1 az B1(1/s) B2(1/s) &(1/s) T (s)

(ng/mg) (ng/mg)

E. coli 32.0 67.1 0.116 0.00125 0.000048 772
P. aeruginosa 7.43 13.7 >0.12 >0.12 0.000314 44.5
S. aureus 66.6 85.2 0.169 0.0014 0.000091 740

aEntries using ‘>’ represent lower bounds.

35


https://doi.org/10.1101/030908
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/030908; this version posted October 20, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

790 Table 2. Parameter ranges used for prior distributions for GSA and BSA (Log1o
791 transformed values). Units of parameters are as in Table 1.

Logio a1 Logioaz  LogioB:1 LogioB2 Logi06 LogioT

E. coli
min 0 0 -3 -3 -7 0
max 2 2 0 0 -3.5 4

P. aeruginosa

min 0 0 -1 -1 -7 0
max 2 2 4 4 -2 4
S. aureus
min 0 0 -3 -3 -7 0
max 2 2 0 0 -3.5 4
792
793
794
795
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Table 3. Sensitivities calculated from eigenvalues corresponding to each eigenvector

from LSA. Sensitivity values are calculated as -Logio(A), where A is the eigenvalue.

The connection of each eigenvector to the model parameters is visualized in Fig. 4.

Eigenvector #

1

E. coli P.aeruginosa S. aureus

3.6

3.5

2.4

1.7

1.3

-1.0

3.7

2.7

2.0

-1.9

-6.7

-11.8

3.6

3.1

1.5

1.2

0.5

-1.2
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807  Table 4. Minimum and maximum values of parameters among 10° random samples

808 obtained by BSA MCMC (Logio transformed values). Units for parameters are as in

809 Table 1.
Logio a1 Logioaz LogioB1  Logio B2 Logi06 LogioT
E. coli
min 1.49 1.75 -1.05 -3.00 -7.00 2.81
max 1.52 1.90 -0.80 -2.57 -3.90 2.94
range 0.03 0.14 0.25 0.43 3.10 0.13
P. aeruginosa
min 0.76 1.08 -1.00 -1.00 -3.75 1.53
max 0.97 1.18 4.00 4.00 -3.28 1.69
range 0.21 0.10 5.00 5.00 0.47 0.16
S. aureus

min 1.82 1.88 -0.84 -3.00 -4.53 2.76
max 1.83 1.98 -0.69 -0.77 -3.80 2.96
range 0.01 0.10 0.15 2.23 0.73 0.20

810

811

812
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Table 5. Predicted accumulation factors (¢), permeabilities (), and net efflux ()

rates.

E. coli 1.09
P. aeruginosa  0.39

S. aureus 2.93

b2
2.29
0.72

3.75

ai (1/s)

0.126

>0.0392

0.495

aEntries with a ‘>’ indicate a lower bound.

39

az (1/s)
0.0029
>0.072a

0.0053

€1 (1/s)
-0.011
>(a

-0.326

€2 (1/s)
-0.0016
>(a

-0.0039
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