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Abstract. We present a dynamical model of drug accumulation in bacteria. The
model captures key features in experimental time courses on ofloxacin
accumulation: initial uptake; short-term response; and long-term adaptation. In
combination with experimental data, the model provides estimates of import and
export rates in each phase, the latency in the short-term response, and the rate of
increase in efflux during adaptation. Global sensitivity analysis, local sensitivity
analysis, and Bayesian sensitivity analysis of the model provide information about
the robustness of these estimates, and about the relative importance of different
features of the accumulation time courses in three different bacterial species:
Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results
lead to experimentally testable predictions of membrane permeability and drug
efflux and trapping, which influence drug resistance. A key prediction is that an
increase in E. coli ofloxacin accumulation is accompanied by a decrease in
membrane permeability, suggesting that, depending on changes in other factors,

decreasing permeability is not always an effective drug resistance strategy.

Author Summary. Bacteria live or die depending on how much antibiotic gets

inside them. Using a simple mathematical model, detailed information about drug
import and export can be teased out of time courses of internal drug levels after a
sudden environmental exposure. The results reveal that blocking diffusion across

the membrane is not always an effective drug resistance strategy for bacteria.
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Introduction

Drug resistance in bacteria can be increased by efflux pump systems [1], and pump
inhibition has emerged as a strategy for overcoming drug resistance [2]. Many
details of how efflux pumps work are still unclear, however. In particular,
quantitative information about how efflux influences drug accumulation in bacteria

is still scarce [3].

Drug accumulation is a key factor in obtaining a quantitative understanding of
resistance. For example, predictions of minimum inhibitory concentrations (MICs)
of B-lactams in Escherichia coli were obtained by equating the steady state
periplasmic drug concentration with a periplasmic binding protein inhibitory
concentration [4]. A predicted MIC was calculated as the external concentration that
would yield the accumulated internal inhibitory concentration in steady state,
considering flux terms from membrane permeation and -lactamase degradation.
MIC predictions also have been made considering the action of efflux pumps on
cephalosporins [5] and B-lactams [6] in E. coli. These predictions were accompanied
by estimates of efflux pump Michaelis-Menten kinetic constants (i.e., Km and kcat

values), providing an explicit connection between efflux and resistance.

Time-dependent drug accumulation studies also have yielded insight into drug
transport [7-9]. Diver et al. [8] found exposure of E. coli to five different quinolones

induced a rapid ~10 sec uptake followed by a ~30 min phase of more gradual
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accumulation. Similar two phase behavior was seen by Asuquo and Piddock [7] in
accumulation of fifteen different quinolones in E. coli, Pseudomonas aeruginosa, and
Staphylococcus aureus [7]. Whereas drug levels appeared to plateau in E. coli and S.
aureus, levels in P. aeruginosa gradually decreased at longer times, suggesting an

adaptation process [7].

Mathematical modeling has provided substantial insights into accumulation of beta-
lactams [4,6], cephalosporins [5], and tetracycline [9] in E. coli. Quinolone
accumulation, however, has not yet been analyzed in the context of a mathematical
model. Here we present a mathematical model of drug accumulation and use it to
analyze experimental data on accumulation of the quinolone oxfloxacin in E. coli, S.
aureus, and P. aeruginosa [7]. The analysis yields estimates of permeation and efflux
rates, the latency in the short-term response, and the rate of increase in efflux
during adaptation. We also perform global sensitivity analysis, local sensitivity
analysis, and Bayesian sensitivity analysis of the model. The sensitivity analyses
provide information about the robustness of parameter estimates and enable
assessment of the relative importance of the short-term response and long-term

adaptation in different bacterial species.

The results lead to experimentally testable predictions of membrane permeability
and drug efflux and trapping, which influence drug resistance. A key prediction is
that an increase in E. coli drug accumulation is accompanied by a decrease in

membrane permeability, illustrating that decreasing permeability, although
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85 commonly associated with increased drug resistance [10], is not always an effective
86  drug resistance strategy for bacteria. Overall the results indicate the utility of
87  mathematical modeling and sensitivity analysis in obtaining new insights into drug
88 accumulation in bacteria.
89
90 Results
91
92  Model behavior
93
94  Our model of drug accumulation (Methods) was designed to describe two phases of
95  drug accumulation dynamics, with long-term adaptation in the second phase (Fig. 1).
96  After exposure att = 0, the first phase begins, where cellular antibiotic levels rise
97  and relax toward an asymptotic value ai. The relaxation in this phase is exponential
98  with rate (1. At time t = T, the second phase begins, where antibiotic levels may
99  eitherrise or fall towards a new asymptotic value az. The relaxation in this phase is
100 initially dominated by exponential relaxation with rate .. Later, adaptation can
101  dominate the dynamics, following [1+ §(t- T)]-1. Together these features capture the
102  full set of behaviors exhibited by the experimental data on ofloxacin accumulation
103 [7] (Fig. 2).
104
105  Parameter estimates

106
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Parameter values were estimated by fitting the model to data on ofloxacin
accumulation in E. coli, P. aeruginosa, and S. aureus. Following Ref. [7], the fits were
performed assuming a uniform measurement error. (Rough error estimates for the
data, inferred from the values given for the norfloxacin, are: 4.6 ng/mg for E. coli; 1.5
ng/mg for P. aeruginosa; and 8.7 ng/mg for S. aureus.) Reasonable fits were
obtained for all datasets (Fig. 2). Parameter values varied substantially for different
bacteria (Table 1), as expected given the differing behaviors. E. coli exhibits two
phases of accumulation with little apparent long-term adaptation, consistent with
the low value of 8. P. aeruginosa shows a stronger adaptation response,
corresponding to the higher value of 8. S. aureus exhibits a single phase response
without adaptation, consistent with the value of t being greater than the longest

time point.

Sensitivity analysis results

Sensitivity analysis is a technique for evaluating how variations in the output of a
mathematical model are related to variations in the model inputs. We used
sensitivity analysis to assess the importance of different model parameters in
determining the antibiotic accumulation behavior. We performed three independent
analyses using: global sensitivity analysis (GSA), local sensitivity analysis (LSA), and
Bayesian sensitivity analysis (BSA). For each analysis, the time courses using the

optimal parameter values were used as reference behaviors.


https://doi.org/10.1101/030908

bioRxiv preprint doi: https://doi.org/10.1101/030908; this version posted November 7, 2015. The copyright holder for this preprint (which was

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Global sensitivity analysis. GSA explores the sensitivity of the model output within
the entire (prior) parameter space of the model inputs. We performed variance-
based GSA [11], which decomposes the variance of the output into parts ascribed to
different input parameters using a Fourier Haar decomposition [12,13]. Both the
“total effect” and “main effect” for each input parameter were calculated using the
Sobol Monte Carlo algorithm [14]; here we focus on the total effect results. The prior
range of the input parameters was defined using uniform logarithmic distributions

given in Table 2.

GSA results for E. coli, P. aeruginosa, and S. aureus are shown in Figure 3. For E. coli,
B1 exerts the highest total effect initially, followed by a1, T, and az. The effect of (32
never dominates, but is substantial at early times. The sensitivity to 6 is low at all
times. For P. aeruginosa, a: exerts the highest total effect initially, followed by T and
az. In contrast with E. coli, the sensitivity to § is high for P. aeruginosa, while both (31
and 32 show low sensitivity. For S. aureus, 1 exerts the highest total effect early on,
shifting to a; and then t at later times. The effects of a2 and 32 are smaller by

comparison. Like for E. coli, the sensitivity to & is low.

Local sensitivity analysis. LSA has a rich history of use in assessing the robustness of
biochemical network model behavior to changes in parameter values [15,16]. In LSA,
the local gradients of the model output are calculated with respect to model
parameters at a fixed point. Here we use the gradients to define a covariance matrix

of variations [17] (Methods), and interpret the LSA in terms of the eigenvalues and
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eigenvectors of the covariance matrix. Small eigenvalues are associated with

parameter combinations that show higher sensitivity.

We performed LSA on the P. aeruginosa model, for comparison to the GSA. Each
eigenvector in the LSA is strongly associated with a single parameter (Fig. 4a),
facilitating the interpretation. The three smallest eigenvalues (Fig. 4b) are those
associated with ai, az, and 6 (corresponding to eigenvectors 1-3 in Fig. 4a),
indicating that the sensitivity of the model to these parameters is relatively high.
The parameters 1, 2 and T are associated with orders of magnitude higher

eigenvalues, indicating that the sensitivity to these parameters is relatively low.

Bayesian sensitivity analysis. BSA estimates the probability density functions
(pdf’s) of the model parameters given observed data and measurement errors using
Bayes’ theorem [18,19]. Like GSA, BSA requires prior distributions of the model
inputs. The more sensitive is the model parameter, the more constrained is the

posterior pdf compared to the prior pdf.

Figure 5 shows Bayesian sensitivity analysis for the P. aeruginosa model. Here, the
Bayesian analysis identifies a Markov-Chain Monte Carlo (MCMC) sample of models
that are consistent with the observed data, assuming a uniform measurement error [7].
The histograms along the diagonal represent the posterior pdf’s of the model parameters
constrained by the model observations. Each dot in the off-diagonal scatter plots

represents a model-parameter set from the final MCMC sample. Some of the parameters,
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ai, az, and § appear to have peaked distributions, indicating a sharpened sensitivity
within the posterior range. The probability density of T is uniform at longer times and
zero at shorter times. The distributions of 31 and B2 are flat, and, therefore they are less
sensitive parameters. The scatter plot between az and 6 is extended along the az-6

direction, indicating that these parameters are correlated.

Experimentally testable predictions of permeability and efflux

We used Egs. (5) and (6) to predict permeability and efflux given the estimated
parameters. The predictions are quantified in the form of the efflux rate, €(t), which
is defined as the portion of the specific export rate not associated with permeation,
and the accumulation factor, ¢(t), which is defined as a(t)/B(t), the ratio of the
permeability to the export rate. Depending on the sign of g(t), qualitatively different
mechanisms are at work: a positive value is associated with efflux, while a negative

value is associated with trapping.

The resulting predictions of €(t) and ¢(t) are shown in Table 4. The robustness of
these predictions depends on the robustness of the estimation of a1 and 31, for t<r,
and a; and (2, for t=T. According to the sensitivity analysis, the estimates of some of
these parameters are not robust, yielding unreliable predictions for some of the P.
aeruginosa and S. aureus values. For completeness, the unreliable predictions are

listed in Table 4, but are enclosed in parentheses.

Discussion
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Interpretation of sensitivity analysis results

Global Sensitivity Analysis: Results obtained using the GSA suggest that the relative
importance of the various model parameters in determining the output behavior of
the simulations differs for E. coli, P. aeruginosa, and S. aureus (Figure 3). However,

there are also some similarities. In most cases, a 1 and (31 are important only at very

early-times right at the beginning of the data collection. This suggests that proper

estimation of a 1 and 1 requires accurate early-time measurements. In all cases, the
sensitivity of a1 and 1 diminishes over time. Also in all cases, the sensitivity of a 1
increases with time. The temporal behavior of (3, sensitivity is very different in all
three cases: 2 is relatively important at early times for the case of E. coli; B2 is
unimportant for the case of P. aeruginosa; and the 3, sensitivity peaks at the mid-
times for the case of S. aureus. Interestingly, the parameter 6 is important only for
the case of P. aeruginosa. The temporal behavior of t sensitivity is similar for the
case of E. coli and P. aeruginosa (Tt sensitivity is decreasing with time), but very

different for the case of S. aureus (T sensitivity is increasing with time).

Local sensitivity analysis: The global and local sensitivity analyses yield similar
results for P. aeruginosa. Both analyses identify a1, az, and § as sensitive model
parameters. However, the global and local sensitivity analyses produce different

sensitivity estimates related to the parameter t. The model is sensitive to this

10
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parameter according to GSA but not according to LSA. This suggests that when all
the model parameters are at their optimal values, small deviations in t values have a
small impact on the optimal solution. However, away from the optimal point in the

parameter space, T is an important parameter in determining the model behavior.

Bayesian sensitivity analysis: BSA provides information how well the model

parameters are constrained. For the case of P. aeruginosa (Fig 5), the parameters a1,
az, 6 and t are well-constrained and, therefore, sensitive model parameters. This is
consistent with GSA, which is expected because both analyses are global in their
nature. BSA also suggests correlation between estimates for az and 8. The other
model parameters are not correlated. The correlation is supported by the similarity
in the time dependence of az and & sensitivities as shown in Figure 3b. Some of the
parameters, a1, az, and 8, have peaked posterior distributions, indicating a most
probable value at the maximum. The parameter t is considered to be sensitive
because the posterior range (from ~1.6 to ~1.68) is smaller than the prior range (0
— 4; all the values are log,, transformed and presented in Tables 2 and 3). However,
the posterior distribution within this range is relatively flat (i.e. uniform). The flat
distribution leads to a small sensitivity of the model to changes in this parameter

using LSA.

Interpretation of predictions of permeability and efflux

11
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For E. coli, the values of the accumulation factor ¢>1 indicate trapping of antibiotic.
The trapping is weak for t<t and becomes stronger at t=t. The greater magnitude of
o compared to € values indicates that the permeability dominates the response. For
P. aeruginosa, the values of ¢<1 indicate that efflux of antibiotic is important. For S.

aureus, the value ¢>1 indicates a net trapping of antibiotic, like E. coli. In contrast to
E. coli, the comparable magnitudes of o and € indicate that permeability and

trapping are roughly equally important in during the whole time course.

The predictions suggest efflux is unimportant in the response of E. coli and S. aureus
to ofloxacin. Permeation and trapping instead dominate the response. In contrast,
efflux is predicted to be important in the response of P. aeruginosa to ofloxacin. The
initial accumulation is less than what would be expected by permeation alone,
indicating an efflux effect. In addition, the antibiotic level slowly decreases after the
initial uptake, indicating an increase of efflux with time, presumably due to an

adaptive response involving pump production.

The predictions for E. coli are especially intriguing. The response involves a ~50-
fold decrease in permeability about 800 seconds after exposure, which would
naively be expected to increase resistance [10]. However, the decrease in
permeability is accompanied by a ~10-fold decrease in trapping. Because the
decrease in trapping is less than the decrease in permeability, the result is an

increase, rather than a decrease, in antibiotic accumulation.

12
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Similar to the subtle connection found here between permeability and resistance,
Nagano and Nikaido [5] used mathematical modeling to show how efflux pump
deletion or overexpression might not change the MIC value of strong efflux pump
substrates. It is interesting to consider these findings in light of a recent survey of
physical properties of active compounds in a drug screening collection and their
relation to whole cell antibacterial activity [20]. The survey reported on the
difficulties encountered in simultaneously optimizing both biochemical potency and
antibacterial activity, and concluded that “what is clearly needed is greater insight
into medicinal chemistry strategies which optimize transport through porins and
decrease efflux through the prolific efflux pumps.” Together, the findings reported
here and elsewhere [5,6] suggest that mathematical modeling of permeation and

efflux can be a key tool in enabling antibacterial medicinal chemistry.

Our results indicate that detailed, quantitative analysis of antibiotic accumulation
time courses using mathematical modeling can yield new insights and
experimentally testable predictions about mechanisms of drug resistance. The
sensitivity analysis provides basis for distinguishing important from unimportant
predictions. The predictions imply that decreasing permeability is not always an
effective strategy for bacteria to increase drug resistance. This outcome in particular
provides an example of the potential pitfalls involved in reasoning about structure-
function relations in biochemical networks [21], and reinforces the need for

incorporating mathematical modeling into strategies for fighting drug resistance.

13
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Overall this study illustrates the key role that mathematical modeling and sensitivity

analysis can play in deep interpretation of experimental data in biology.

Materials and Methods

Model

The time dependence of accumulated drug a(t) is modeled using

da(t)
dt

= a(t)a, — B(t)a(t) (1)

where a, is the environmental antibiotic concentration, a(t) is the specific import
rate, and B(t) is the specific export rate. Here and elsewhere the terms “import” and
“export” refer to combined effects of passive and active transport, and the term
“specific” is sometimes used to indicate that the rate constant is multiplied by the
antibiotic concentration. Both a(t) and (t) may change depending on the phase of

the response. The import rate «(t) is given by

(@, t<T
a(t) = {az, t=>7 (2)

where a1 applies to the initial phase of the accumulation dynamics (t<t), and a

applies to the later phase (t = 1).

14
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The export rate (t) is given by

_ B, t<T
BO={p 0 5t— o) to (3

where 1 applies during the initial phase (t<t), B2 applies during the later phase

(t=1), and § is the fractional rate of increase of export during the later phase.
Assuming 6 << Bzand §(t — 7) < 1yields

e F1ta(0) + (1 — e P1t)ay, t<rt

a(t) =19 g-p:(t-Dg(p) + [1- e-ﬁz(t—r)]% t>1 )

where ai= a1 do/ B1, and az= az a./ B2.
Given additional assumptions, the a and § parameters can be used to derive
permeation and efflux or trapping rates (see below). The & parameter models long-

term adaptation by, e.g., gene regulation.

Parameter estimation

15
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Parameter estimation for Eq. (4) was performed using published experimental time
courses of ofloxacin accumulation in E. coli, P. aeruginosa, and S. aureus [7]. Data
points were extracted from Figure 1 in Ref. [7]. Numerical solutions to Eq. (4) were
obtained for each data point using functions defined in Mathematica Version 10
(Wolfram Research, Inc., Champaign, IL). As the estimated errors were the same for
all data points [7], an unweighted mean squared deviation (MSD) between the
model and the data was used as a target function for fitting. The MSD was minimized
with respect to values of ai, az, 81, B2, §, and t using the FindMinimum method,
assuming a(0)=0. The values of a1, az, B1, B2, 6 were varied over twelve decades. For
E. coli and P. aeruginosa, the value of Tt was varied from 0-10,000 s (covering the full
span of each 3,600 s time course) to seek an optimal solution. For S. aureus,
optimization was performed for t = 10,000 s. Mathematica workbooks and
experimental data for all cases are available in a compressed archive in the

Supporting Information.

Sensitivity analysis methods

All analyses were performed using the open source code Model-Analysis and
Decision Support (MADS), developed at Los Alamos National Laboratory

(http://mads.lanl.gov).

Global Sensitivity Analysis (GSA): For our analysis, we used the Sobol Monte Carlo

algorithm [14]. The algorithm estimates the total and main effect for each model

16
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parameter. The total effect is the total contribution to the output model variance to a
given model parameter, including all the combined effects caused by its interactions
with any other model parameter. The main effect measures the impact of varying a
single model parameter by itself. The total and main effect can be very similar when
the model parameters are independent. Sobol Monte Carlo algorithm was
performed using about 10¢ independent model evaluations. Additional analyses (not
presented) demonstrated that the number of model evaluations is sufficient to

achieve converges for the estimate quantities.

Local Sensitivity Analysis (LSA): We used a finite difference method requiring a
limited number of model evaluations (equal to the number of unknown parameters).
As a result, we obtain a gradient matrix J (i.e. the Jacobian) with dimensions [m x n]
where m is the number of model parameters and n is the number of model inputs.
Each component of the ] matrix represents the local sensitivity of each model
parameter to each model output [17]. We analyze the covariance matrix C of model
parameters which is computed as C = [JT]]-1. The covariance matrix is frequently
analyzed using eigenanalysis where eigenvectors and eigenvalues of the covariance
matrix are explored. How dominant (important) is each eigenvector depends on the
respective eigenvalues; the smaller the eigenvalue, the higher the importance of the
eigenvector. The components of each eigenvector represent the contributions of
each model parameter to the simultaneous variation of multiple parameters: the
larger the absolute value of the components, the larger the contribution. Model

parameters with large contribution in dominant eigenvectors are important

17


https://doi.org/10.1101/030908

bioRxiv preprint doi: https://doi.org/10.1101/030908; this version posted November 7, 2015. The copyright holder for this preprint (which was

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(sensitive) model parameters. Model parameters with large contribution in non-
dominant eigenvectors are also unimportant (insensitive) model parameters. If
several model parameters have important contribution in a single eigenvector, these
model parameters are correlated. If these contributions have the same sign, the
correlation is positive. If these contributions have opposite signs, the correlation is

negative.

Bayesian Sensitivity Analysis (BSA): The BSA was performed using the Robust
Adaptive Metropolis Markov Chain Monte Carlo algorithm [22]. To assess the
sensitivity of the model parameters to the model outputs we compared the prior
and the posterior pdf’s of the model parameters (Table 2 and 3, respectively). High
sensitivity parameters show a posterior pdf that is substantially narrower than the

prior pdf.

Prediction of permeability and efflux

Estimation of the model parameters enables prediction of permeability and efflux
rates. Given a,, the specific import rates may be calculated as a1 = a1 $1/a0, and az =
az B2/a.. Assuming the import is due to permeation, a1 and a; are the permeabilities.
Next, assume the specific export rate (t) is a sum of contributions from

permeability, a(t) and other effects, g(t), leading to
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_ b1 — ai, t<T
&) = {/32[1 LSt -D]—a, t>7T (5)

When g(t)>0, outward flow is enhanced compared to permeation, and g(t) is
associated with efflux. When g(t)<0, the outward flow is decreased compared to
permeation, and g(t) is associated with trapping. The accumulation factor ¢(t) =

a(t)/B(t) is used as a measure of the importance of efflux or trapping. It is given by

a,/a,, t<rt
$@t) = {az/ao [11+ S(t—1)], t=1 (6)

Egs. (5) and (6) are only valid under the same assumptions as for Eq. (4).

Predictions of €(t) are only meaningful using reliable estimates of both a1 and 31 for
t < T, or both az and (32 for t =2 T. In contrast, ¢(t) can be predicted without estimates

of B1 or 2.

The predictions involve information about the environmental drug concentration
and the conversion of estimates a1 and a2 from ng/mg dry weight units (Table 1) to
mg/L units. The environmental ofloxacin concentration in the experiments was 10
mg/L [7]. To convert a1 and a2 to mg/L units, following Ref. [23], we used a buoyant
density of 1.1 g/mL and a 31% dry weight for E. coli, a buoyant density of 1.2 g/mL
and a 48% dry weight for P. aeruginosa (transferred from P. putidae), and assume a

buoyant density of 1.1 g/mL and a 40% dry weight for S. aureus. This yielded
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413  conversion factors of 0.341 mg dry weight/L for E. coli, 0.528 mg dry weight/L for P.
414  aeruginosa, and 0.440 mg dry weight/L for S. aureus.

415
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Figure 1. Behavior of the model and connection to model parameters.
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495  Figure 2. Fits of models to ofloxacin accumulation data. A) E. coli. B) P. aeruginosa. C)
496  S. aureus. Following Ref. [7], the data are assumed to have a uniform measurement
497  errors: 4.6 ng/mg for E. coli; 1.5 ng/mg for P. aeruginosa; and 8.7 ng/mg for S.

498  aureus.
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Figure 3. Global sensitivity of the model behavior to changes in parameter values for
A) E. coli, B) P. aeruginosa, and C) S. aureus models. Sensitivity is quantified using
the total effect measure in GSA. Color code: a1 (cyan); az (yellow); 1 (red); B2

(green); & (pink); and T (grey).
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519  Figure 4. Local sensitivity analysis for P. aeruginosa. (A) Eigenvector components
520  associated with each model parameter. (B) Eigenvalues for each eigenvector,
521 numbered in decreasing importance from left to right. The LSA identifies a; as the

522  most important model parameter because it contributes strongly to eigenvector 1,
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523 and identifies 3z as the least important because it contributes strongly to
524  eigenvector 6.
525

526
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527

528 Figure 5. Bayesian sensitivity analysis for P. aeruginosa. The histograms along the
529 diagonal represent the posterior pdf’s of the model parameters constrained by the
530 model observations. Off-diagonal subplots are scatter plots where each dot is a
531 model-parameter set from the final MCMC sample. The horizontal axes define
532  the parameter ranges (Table 3). The vertical axes along the diagonal plots define
533 the frequency of occurrence. The vertical axes along the off-diagonal plots also

534  define the parameter ranges (Table 3).
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537 Tables
538
539 Table 1. Estimated parameter values obtained after fitting the model to data on
540  ofloxacin accumulation in different bacteria.
a1 az B1(1/s) B2(1/s) 8(1/s) T (s)

(ng/mg) (ng/mg)

E. coli 32.0 67.1 0.116  0.00125 (0.0000484) 772
P. aeruginosa  7.43 13.7 (0.682) (3.01)  0.000314 445
S. aureus 68.71 (16.8) 0.149  (0.0119) (0) (104)

541
542  aNumbers in parentheses are unreliable according to the sensitivity analysis. They

543  areincluded only for completeness.

544
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545  Table 2. Prior parameter ranges (logio transformed values).

546
a az Bi1(1/s) Bz2(1/s) &(1/s) T (s)
(ng/mg)  (ng/mg)
min 0 0 -1 -1 -7 0
max 2 2 4 4 0 4
547
548
549
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550 Table 3. Posterior parameter ranges based on Bayesian sensitivity analysis for P.
551 aeruginosa (logio transformed values).
552
a1 az B1(1/s) B2(1/s) &(1/s) T (s)
(ng/mg)  (ng/mg)
min 0.8 1.11 -1 -1 -3.65 1.6
max 0.92 1.16 4 4 -3.4 1.68
553
554
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555 Table 4. Predicted accumulation factors (¢), permeabilities (a), and efflux (¢ >0) or

556  trapping (¢ <0) rates.

557
(<) o(t=1) a1 (1/s) az(1/s) e(t<t) (1/5) e(t=T) (1/5)
E. coli 1.09 2.29 0.13 0.0029 -0.011 -0.0016
P. aeruginosa® 0.39 0.72 (0.27) (2.2) (0.41) (0.83)
S. aureus? 3.02 (0.74) 0.45 (0.01) -0.30 (0.0031)
558

559  aNumbers in parentheses are unreliable according to the sensitivity analysis. They
560 areincluded only for completeness.

561

562

563
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