
Quantifying the unobserved protein-coding variants in human populations provides a 

roadmap for large-scale sequencing projects 

 

James Zou1, Gregory Valiant2, Paul Valiant3, Konrad Karczewski4,5, Siu On Chan6, Kaitlin 

Samocha4,5, Monkol Lek4,5, Exome Aggregation Consortium7, Shamil Sunyaev5,8, Mark Daly4,5,9, 

Daniel G MacArthur4,5,9 

1Microsoft Research, One Memorial Drive, Cambridge MA, USA 

2Computer Science Department, Stanford University, Palo Alto CA, USA 

3Computer Science Department, Brown University, Providence RI, USA 

4Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA 

5Broad Institute or MIT and Harvard, Cambridge MA, USA 

6Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong, China. 

7Exome Aggregation Consortium (ExAC), Cambridge MA, USA 

8Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston MA, 

USA 

9Department of Medicine, Harvard Medical School, Boston MA, USA 

 

 

Introduction 

Recent efforts aggregating the genomes and exomes of tens of thousands of individuals have 

provided unprecedented insights into the landscape of rare human genetic variation1,2 and 

generated critical resources for clinical and population genetics. The recently announced U.S. 

Precision Medicine Initiative raises the prospect of growing these databases to encompass 

hundreds of thousands of human genomes. In the context of these ambitious efforts, it is important 

to quantify the power of large sequencing projects to discover rare functional genetic variants3. In 

particular, we need to understand, as we sequence ever larger cohorts of individuals, how many 

new variants we can expect to identify and their expected allele frequencies. Accurate estimates 

of these quantities will enable better study design and quantitative evaluation of the potential and 

limitations of these datasets for precision medicine.  

  

Results 

Predicting the number of new variants we expect to identify in larger cohorts requires accurate 

estimates of allele frequencies of all the genetic variation in the human population, including the 
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rare variants that have not been observed in the current sequencing cohorts4–6. The population 

frequencies of the unobserved rare variants determine the discovery rate of new variants as the 

cohort sizes increase. We developed a new method, UnseenEst, to estimate the frequency 

distribution of all variants using the observed site frequency spectrum (SFS) of the current cohort. 

The method is based on linear program estimators of the SFS7, and our mathematical analysis 

shows that it enables accurate extrapolation of the SFS from current data to cohort sizes more than 

an order of magnitude larger (Supplementary Information).  

 

Protein-coding variants represent the most readily interpretable and medically relevant slice of 

human genetic variation, and have been assessed in large sample sizes through the widespread 

application of exome sequencing approaches2. We leveraged data from the Exome Aggregation 

Consortium (ExAC)8 to estimate the discovery rates of different classes of protein coding variants 

in larger cohorts. We validated UnseenEst by training it on random 10% of the alleles in ExAC 

and then used the estimated frequency distribution to predict the number of distinct variants that 

we can identify in the entire ExAC cohort. For every variant type (Supp. Figure 1) and every 

population (Supp. Figure 2), UnseenEst accurately predicted the number of unique variants that 

were identified in the entire ExAC cohort as well as the empirical SFS of ExAC (Supp. Table 1).  

 

From the full ExAC dataset, we generated a cohort of 33778 healthy individuals that matched the 

ancestral population breakdown of the 2010 U.S. Census (Supp. Table 2). We trained UnseenEst 

on this U.S. Census-matched cohort and predicted the frequency distributions of variants in the 

entire population (Supp. Figure 3). In particular, we estimated the number of distinct variants we 

expect to identify in cohorts of up to 500K individuals. These results provide a quantitative 

framework to evaluate the power and limitations of precision medicine initiatives in discovering 

rare coding variants. 

   

We categorized the variants by their predicted functional consequence—synonymous, missense, 

and loss-of-function (LoF), which is defined as point substitutions that introduce stop codons or 

disrupt splice donor/acceptor sites (Figure 1a). The discovery rate of LoF variants is the lowest, 

reflecting the fact that LoFs are likely to be deleterious and hence tend to occur comparatively 

rarely in the healthy population. With 500K individuals, we expect to identify 400K distinct LoF 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2015. ; https://doi.org/10.1101/030841doi: bioRxiv preprint 

https://doi.org/10.1101/030841
http://creativecommons.org/licenses/by-nc-nd/4.0/


variants or 7.5% of all possible LoF point mutations in the human exome. In the same cohort, we 

expect to identify 3.4 million synonymous and 7.5 million missense variants, corresponding to 

18% and 12% of possible synonymous and missense variants respectively. These estimates 

indicate that the discovery rates of rare LoF, missense and synonymous variants are far from 

saturation, even with 500K individuals. We note that slightly higher numbers of distinct 

synonymous and missense variants (Supp. Figure 4) would be discovered if the 500K individuals 

were instead sampled from the same ancestral composition as the current ExAC cohort, which 

contains higher fractions of South and East Asian individuals than the U.S., indicating that the 

overall discovery rate of rare variants can be boosted by optimizing the population composition of 

the sequencing cohort.  

 

We additionally classified the variants by their biochemical properties (Figure 1b). With the 34K 

individuals of the current cohort, we can already identify close to 50% of all possible variants at 

CpG sites (the most highly mutable substitution class), and the discovery rate for this class of 

variant quickly saturates as cohorts grow larger. Transversions, in contrast, are discovered much 

more slowly—attaining 7.6% of all possible transversions with 500K individuals—which is 

consistent with their much lower mutation rate. We further applied UnseenEst to quantify the 

number of distinct missense variants we expect to discover in specific gene families of interest, for 

example genes near GWAS hits and known drug target genes (Supp. Figure 5). Missense mutations 

in drug target genes are particularly suppressed, suggesting that these genes are more likely to be 

essential to humans.  

 

LoF variants likely disrupt the normal function of genes and by studying individuals carrying such 

variants, we can quantify the phenotypic consequence of disrupting particular genes. Therefore, a 

catalogue of the number of human alleles harboring candidate LoF variants for each gene is an 

important resource for drug development and disease diagnosis. We applied UnseenEst to estimate 

the LoF frequency of genes in the U.S. population (Figure 1c, Supp. Figure 6). About 2900 genes 

have LoF allele frequency lower than 10-5, consistent with strong intolerance to inactivation, 

whereas 1700 genes are expected to harbor LoF variants in at least 0.1% of the population. With 

250K individuals, we expect to identify 14K genes that harbor LoFs in at least 10 individuals, 

substantially expanding the current catalog of 10K such genes in ExAC (Figure 1d, Supp. Figure 
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7). We estimate that the discovery rate of these genes with multiple LoF occurrences will saturate 

around 16K, providing an upper bound on the number of genes that can tolerate LoF variants on 

one allele. 

 

Discussion 

We describe a framework for estimating the power of sequencing cohorts to discover protein-

coding variants. We apply it to the largest available collection of sequenced individuals to estimate 

the discovery power of much larger cohorts such as the ones proposed by the Precision Medicine 

Initiative. While our predictions here assumed that the samples are representative of the U.S. 

demography, UnseenEst can be directly applied to estimate the discovery rate of cohorts with 

different ancestral composition. Our results show that sequencing a cohort of 500K randomly 

selected U.S. individuals would provide access to over 12% of all possible missense variants and 

7.5% of all possible LoF variants, thereby permitting exploration of a substantial fraction of human 

biological diversity.      
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Figure 1. Predictions for the number of unique variants in 500K individuals. We trained 

UnseenEst on the U.S. Census-matched ExAC cohort (“current”) and predicted the number of 

unique variants we expect to find in up to 500K individuals. The number of unique variants in the 

cohort were estimated for synonymous, missense and lose-of-function (LoF) variants in (a), and 

for CpGs, transitions and transversions in (b). The shaded regions correspond to one standard 

deviation around the estimates. (c) A gene is classified as LoF on a given allele if that allele 

contains at least one variant that introduces a stop codon, disrupts a splice donor/receptor site, or 

disrupts the reading frame. Genes are partitioned into bins based on their LoF allele frequencies: 

less than 10-5, 10-5 to 10-4, 10-4 to 10-3, and greater than 10-3. The y-axis indicates the number of 

genes with LoF allele frequency belonging to each bin. Error bars correspond to one standard 

deviation. (d) Estimated number of genes with at least 10 and 20 LoF alleles.  
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Supplementary Figure 1. Using 10% of the ExAC alleles to predict the number of 

unique variants in the entire ExAC cohort. Each panel corresponds to one variant type. 

For each variant type, we applied UnseenEst on 10% of the ExAC alleles (5919 

individuals) to predict the number of unique variants that we would expect to observe in a 

cohort of size less than or equal to ExAC (59198 individuals). The blue curves are the 

average predictions over the different 10% sub-samples and the blue shaded regions 

correspond to one standard deviation from the average. The red curves are the actual 

number of unique variants observed in ExAC. For all variant types, the predicted number 

of unique variants is in good agreement with the observed number of unique variants.  
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Supplementary Figure 2. Using 10% of the alleles in each ExAC population to 

predict the total number of observed variants. For each of the ExAC populations, we 

trained UnseenEst on random 10% of the alleles and applied it to predict the total number 

of unique variants in the entire population. The x-axis of each panel indicate the number 

of individuals of that population; the first mark (e.g. 5919 in (a)) indicate the size of the 

training set and the last mark (e.g. 59198 in (a)) is the total cohort size of that population 

in ExAC. The blue curves are the average predictions over the different 10% sub-samples 

and the blue shaded regions correspond to one standard deviation from the average. The 

red curves are the actual number of unique variants observed in ExAC. For all variant 

types, the predicted number of unique variants is in good agreement with the observed 

number of unique variants. 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2015. ; https://doi.org/10.1101/030841doi: bioRxiv preprint 

https://doi.org/10.1101/030841
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplementary Figure 3. UnseenEst estimated allele frequencies. UnseenEst was 

trained on the U.S. Census matched ExAC cohort and the synonymous (a), missense (b), 

LoF (c) and CpG (d) allele frequencies were estimated for the US population. The 

variants are grouped into bins based on allele frequency: less than 10-5, 10-5 to 10-4, 10-4 

to 10-3, and greater than 10-3. The y-axes indicate the log10 number of variants in each 

bin. The error bars correspond to one standard deviation. 
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Supplementary Figure 4. Predicted number of unique variants in cohorts of size up 

to 500K individuals with the same demographic distribution as the ExAC dataset. 

The x-axis indicates the number of individuals in the cohort and the y-axis indicates the 

fraction of possible variants that we expect to observe at in a cohort of that size. We 

trained UnseenEst on the full ExAC dataset and made the predictions for synonymous 

(grey), missense (orange) and loss-of-function (brown) variants.  
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Supplementary Figure 5. Predicted number of unique missense variants in gene 

families. We trained the model on the cohort that matches U.S. demographics and 

predicted the fraction of possible missense variants in each gene family that we can 

expect to observe in cohorts of size up to 500K individuals. (a) Recessive genes (red) and 

dominant genes (blue). (b) All genes (red) and genes with cerebral specific expression 

(blue).  (c) Genes associated with GWAS loci (red) and drug target genes (blue).  
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Supplementary Figure 6. Validation of the estimated number of genes with at least 

10 LoF alleles. We trained UnseenEst on random subsamples of 10% of the alleles in the 

U.S. Census matched cohort and applied it to estimate the number of genes with at least 

10 LoF alleles in the entire cohort. The red curve is the actual number of genes with at 

least 10 LoF alleles and the blue curve is the average predictions over the different 

subsamples. The shaded blue region corresponds to one standard deviation of the 

predictions. 
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Supplementary Figure 7. Discovery rate of LoF genes in non-Finnish Europeans. 
Estimated number of genes with at least 10 LoF alleles in non-Finnish Europeans as a 

function of the sample size. The number of genes with at least 10 LoF alleles saturates 

around 16K genes, in agreement with the saturation level of LoF genes in the U.S. 

Census-matched population (Figure 1d). 
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 Allele counts 

 

     

 0-10 10-100 100-1000 >1000 

All variants ExAC 6.55M 0.57M 0.17M 109422 

All variants predicted 6.59M (0.57M) 0.55M (0.09M) 0.18M (0.01M) 109391 (55) 

Syn ExAC 1.22M 0.13M 40571 27499 

Syn predicted 1.19M (0.12M) 0.13M (0.02M) 40658 (2042) 27446 (187) 

Mis ExAC 2.67M 0.21M 52794 27539 

Mis predicted 2.63M (0.23M) 0.22M (0.03) 51957 (2180) 27352 (178) 

LoF ExAC 0.11M 4300 782 240 

LoF predicted 0.11M (0.01M) 4196 (789) 775 (76) 225 (12) 

 

 

Supplementary Table 1. Observed and predicted allele counts. Blue rows are the 

number of ExAC variants with empirical allele counts in bins of 0-10, 10-100, 100-1000, 

and greater than 1000. Red rows are the predicted allele counts based on UnseenEst 

trained on 10% of the samples. The standard deviations are shown in the parentheses.  
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                                       Number of individuals 

 

 Non-

Hispanic 

white 

Latino African-

American 

East Asian South 

East Asian 

Total 

US 

Census 

(2010) 

 

196,817,552 

(65.8%) 

50,477,594 

(16.9%) 

37,685,848 

(12.6%) 

10,953,102 

(3.7%) 

3,374,478 

(1.1%) 

299,308,574 

(100%) 

ExAC 

 

 

35897 

(61%) 

5693  

(9.7%) 

4994 

(8.5%) 

4255 

(7.2%) 

7919 

(13.5%) 

58758 

(100%) 

ExAC 

census 

adjusted 

22212 

(65.8%) 

5693 

(16.9%) 

4253 

(12.6%) 

1249 

(3.7%) 

371 

(1.1%) 

33778 

(100%) 

 

Supplementary Table 2. The number of individuals by ancestry. The top row shows 

the number of individuals of each ancestry in the 2010 U.S. Census. The middle row 

shows the ancestry composition of the ExAC cohort. The bottom row shows the number 

of individuals of each ancestry in the ExAC cohort that was adjusted to match the 2010 

U.S. Census.  
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Supplementary Note for UnseenEst

1 Preliminaries

Given the genetic variation observed in a sample of individuals, what can one infer about all the
genetic variation across the entire population? We introduce a robust, general, and theoretically
sound algorithm, UnseenEst, for accurately quantifying the distribution of frequencies of all the
genetic variation, including the ones that we have not observed in the current samples, based on
the sequences from surprisingly small sets of individuals. This estimated distribution of frequen-
cies can then be leveraged to yield accurate estimates of a number of useful properties, including
accurate estimates of the number of new variants that are likely to be observed in larger cohorts
of individuals.

We begin by formalizing the model in which we are working, and describe the sense in which our
algorithm recovers the distribution of variant frequencies. The core of our approach is a linear
programming (LP) based algorithm, and we discuss the intuition behind this method. We then
establish the performance guarantees of our algorithm, proving that, with high probability, it will
recover an accurate estimate of the true frequency distribution, and yields accurate predictions for
the number of new variants that will be observed in larger samples.

The model. Let S denote a particular variant class of interest. For example, S can correspond
to all possible missense mutations in a gene family. Each possible variant s ∈ S is associated with
a probability ps, which is the probability that an allele contains s. We model all the alleles as
independent and all variants as independent. Hence the ps’s are the parameters of independent
Bernoulli random variables. When we sample an allele, we obtain an independent draw from the
Bernoulli at each s, s ∈ S. In a sample of k alleles, the frequency of observing variant s is distributed
according to bin(ps, k).

Definition 1.1. Given P ≡ {ps : s ∈ S}, its histogram is a mapping hP : (0, 1]→ N∪{0}, where
hP (x) = |{s : s ∈ S and ps = x}|. Informally, h(x) is the number of variants with probability x.
The histogram represents all of the information of P except for the labels of the variants.

In this work, we are interested in accurately recovering the histogram hP . For the purpose of
estimating any property of the ps’s that does not depend on the specific labels of the variants
themselves, the histogram, hP , contains all of the useful information. Such properties are referred

1
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to as symmetric as they are unaffected by ’renaming’ the variants. The following examples illustrate
several interesting symmetric properties:

Examples:

• The total number of variants that occur with probability more than c is a symmetric property,
and is given by

∑
x>c:h(x)>0 h(x).

• The expected number of unique variants that will be observed in a sample of k alleles is a
symmetric property, and is given by

∑
x:h(x)>0 h(x) Pr[bin(x, k) > 0].

• The expected number of unique variants that will be observed more than 10 times in a sample
of k alleles is a symmetric property, and is given by

∑
x:h(x)>0 h(x) Pr[bin(x, k) > 10].

Because our goal is to recover an accurate approximation of the histogram hP , it will be useful to
define a metric on histograms to provide a concrete notion of what it means for two histograms to
be “similar”.

Definition 1.2. Given two histograms, g and h, assume without loss of generality that
∑

x:g(x)>0 x ·
g(x) ≤

∑
x:h(x)>0 x · h(x). The generalized relative earthmover distance between them, denoted

R(g, h), is defined to be
∣∣∣∑x:h(x)>0 x · h(x)−

∑
x:g(x)>0 x · g(x)

∣∣∣ plus the minimum over all schemes

of moving the mass of histogram g to yield h′, where

• h′ is any histogram such that
∑

x:h′(x)>0 x · h′(x) =
∑

x:g(x)>0 x · g(x) and h′(x) ≤ h(x) ∀x;

• the cost, per unit mass, of moving from probability value x to probability y is | log x
y |.

Note that the amount of mass in histogram g at probability value x is given by x · g(x).

The following example illustrates this definition.

Example 1.3. Let h denote the histogram representing 200 variants that each occur with probability
1/100. Hence h(1/100) = 200, and for all x 6= 1/100, h(x) = 0. Let g denote the histogram
consisting of 50 variants with probability 1/100, and 300 variants that occur with probability 1/200,
hence g(1/100) = 50, and g(1/200) = 300. Note that both histograms have the same total mass, since

200· 1
100 = 50· 1

100 +300· 1
200 . The relative earthmover distance satisfies R(h, g) = 3

2 | log 1/100
1/200 | =

3 log 2
2 ,

since g can be obtained from h by moving 3/2 mass from probability 1/100 to probability 1/200 to
yield histogram g.

The generalized relative earthmover distance allows for comparisons of histograms with different
total masses, which is necessary since the inferred histogram from data will typically have a slightly
different mass from the true distribution. Intuitively, relative earthmover also highlights the im-
portance of estimating the rare variants well: mistaking variants with frequency 10−5 for frequency
10−6 suffers substantial distance cost. The other main reason for using the relative earthmover

2
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distance is that many properties of interest are Lipschitz continuous with respect to this distance:
if two histograms are close in relative earthmover distance, then they have similar property values.
In particular, if we guarantee that, with high probability, our algorithm recovers an estimate of the
underlying histogram that is accurate in relative earthmover distance, then estimates of properties
that we obtain from the recovered histogram will be accurate.

The following proposition, whose proof is given in Section 6.3 illustrates this point, and shows that
if two histograms are close in relative earthmover distance, then the expected number of variants
that will be observed in any given sized sample will be correspondingly similar.

Proposition 1.4. Given two lists of probabilities P = {ps ∈ S} and Q = {qs : s ∈ S}, let
E[Sk,P ] =

∑
s∈S Pr[bin(ps, k) > 0] denote the expected number of variants observed in a sample

of k alleles with the distribution of frequencies given by P , and let E[Sk,Q] denote the analogous
quantity corresponding to frequencies Q. Then, for any k > 3,

|E[Sk,P ]− E[Sk,Q]| ≤ k ·R(hP , hQ),

where R(hP , hQ) is the generalized relative earthmover distance between the histograms correspond-
ing to P and Q.

In analogy to the histogram hP giving us a label-less representation of the true underlying P = {ps},
it is convenient to have a label-less representation of the observed variant counts from a sample
of alleles. To this end, we define the fingerprint of the observed variants, which is also known as
the site frequency spectrum (SFS) in genetics, or the “pattern” of the sample in some statistics
contexts.

Definition 1.5. Given sample X of k alleles, the associated fingerprint, F = (F1,F2, ...) is the
“histogram of the histogram” of X. Formally, F is the vector whose ith component, Fi, is the
number of variants in S that occur exactly i times in sample X.

Remarks on the model. Our model assumes that all the variants are independent random vari-
ables. Population demography and linkage disequilibrium introduce correlations especially between
the common genetic variants. For the common variants, UnseenEst uses the empirical frequency
to accurately estimate the true population frequency. For the very rare variants, which Unseen-
Est tries to estimate while using the independence assumption, this assumption is also a better
approximation of the real data.

While the discussion here focuses on estimating the histogram of genetic variation, UnseenEst
is an general approach to estimate the histogram and statistical properties of any finite lists of
probabilities {p1, ..., pn} from independent Bernoulli samples, and can have broad applications
beyond genetics. Note that

∑
s ps can be significantly smaller or larger than 1.
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2 The UnseenEst Algorithm

We partion the variants into two classes: common variants and rare variants. In our applications,
variants with empirical allele frequency above 1% are defined to be common. With current cohorts
of 10s of thousands of alleles, we are likely to have observed all the common variants and the
empirical allele frequencies of the common variants should be very close to the true population
frequencies. Therefore we focus the efforts of the algorithm on estimating the frequencies of rare
variants.

Given a sample of k alleles and the associated fingerprint F , we truncate the fingerprint to only
the rare variants with frequency less than 1%, i.e. we consider {Fi : i

k ≤ 0.01}. For the common
variants with frequency above 1%, we simply use their empirical frequency as an estimator of the
true frequency. On the truncated fingerprint, we solve the following linear program for variables
corresponding to h(x), x ∈ X for a finite mesh of probabilities X.

Algorithm UnseenEst.

Input:

• Fingerprint F from k alleles.

• A set of probability values X = { 1
1000k , α

1
1000k , ..., α

i 1
1000k , ..., 0.01}. We use α = 1.05.

• n = upper bound on the number of possible variants.

Output: histogram {h(x) : x ∈ X} ∪ {Fi : i
k > 0.01}.

Solve for h(x), x ∈ X, to minimize the objective function

∑
i: i
k
≤0.01

1√
1 + Fi

∣∣∣∣∣Fi −∑
x∈X

h(x) · bin(x, k, i)

∣∣∣∣∣
subject to the constraints

h(x) ≥ 0,
∑
x∈X

h(x) ≤ n and
∑
x∈X

x · h(x) =
m

k

where m ≡
∑

i: i
k
≤0.01 i · Fi is the total number of observed variants with empirical frequency

less than or equal to 1%.

For a given histogram h,
∑

x∈X h(x) · bin(x, k, i) is the expected number of variants observed i
times in k alleles. The objective function of the LP captures how much this expected number of
variants deviates from the empirical number of variants observed i times (represented by the entries
of the fingerprint Fi). The term 1√

1+Fi
normalizes the deviation by the standard deviation. The

constraints enforce that h(x) ≥ 0, namely that there can not be a negative number of variants that
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arise with a given probability, and that the total sum of the probabilities matches the empirical
estimate of the sum of the probabilities. Note that m

k is a very accurate estimator of
∑
ps for large

k. In practice, we found it sufficient to use the probability mesh X with geometrically increasing
probabilities with rate α = 1.05. Using a smaller α can marginally improve accuracy at the cost
of run-time. UnseenEst is very efficient; on the ExAC dataset (described below) the computation
took less than 10s on a standard laptop.

Estimating the number of unique variants. Given the estimated histogram h produced by
UnseenEst, the expected number of unique variants in a sample of k alleles is∑

x:h(x)>0

h(x)(1− (1− x)k).

2.1 Performance Guarantees

For the performance guarantees, we analyze the slightly modified linear program below. To simplify
the notations, we set the constants B,C,D such that

0.1 > B > C > B(
1

2
+D) >

B

2
> D > 0.

Given as input an untruncated fingerprint Fi of m total variants generated from k alleles, the linear
program algorithm is
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Algorithm UnseenEst2.

Input: fingerprint F from k alleles, n = upper bound on the number of possible variants,
and m =

∑
i i · Fi is the total number of variants observed in k alleles.

• Define the set X ≡ { 1
m2 ,

2
m2 , ...,

mB+mC

m }.

• For each x ∈ X, define the associated LP variable h(x).

Output: histogram h with support on X.

Solve for h(x), x ∈ X, to minimize the objective function

mB+mC∑
i=1

1√
1 + Fi

∣∣∣∣∣Fi −∑
x∈X

h(x) · bin(x, k, i)

∣∣∣∣∣
subject to the constraints

h(x) ≥ 0,
∑
x∈X

h(x) ≤ n

∑
x∈X

x · h(x) +

m∑
i=mB+2mC

i

k
Fi =

m

k
.

For each integer j ≥ mB + 2mC , set h( jk ) to Fj .

The UnseenEst2 algorithm satisfies the following guarantee.

Theorem 2.1. Let n be the support size (the number of possible variants), k be the number of
alleles sequenced, and P = {ps} denote the true distribution of the variant frequencies with

∑
ps

the expected number of variants per allele. For sufficiently large n, with probability at least 1 −
e−(k

∑
ps)Ω(1)

, the algorithm will return a histogram g satisfying:

R(hP , g) ≤ O(
√
δ
∑

ps),

where δ = n
(k

∑
ps) log(k

∑
ps)

and the ‘O’ notation hides an absolute constant.

The above theorem, together with Proposition 1.4 implies the following corollary:

Corollary 2.2. Let n be the support size (the number of possible variants), k be the number of
alleles sequenced and

∑
ps is the expected number of variants per allele. Given a sample of k alleles,

with probability at least 1 − e−(k
∑
ps)Ω(1)

, the algorithm estimates the expected number of unique
variants that will be observed in a sample of k′ alleles to within additive error

k′ ·
(∑

ps

)( 1

(k
∑
ps)0.4

+O

(√
n

(k
∑
ps) log(k

∑
ps)

))
.
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One interpretation of the above corollary is that the estimate of the expected number of unique
variants will be accurate, relative to the total expected number of observed variants, k′

∑
ps,

provided n < (k
∑
ps) log(k

∑
ps). For comparison, the naive algorithm that attempts to learn the

distribution P will only be accurate in the regime where n < k
∑
ps.

3 Datasets

We used the exome sequencing data from the Exome Aggregation Consortium (ExAC) [1]. This
dataset consists of high-quality sequencing of the protein-coding regions in the genome (exomes)
from 60706 healthy individuals. Consistent with the ExAC analysis, we considered only regions of
the exome with sufficient sequencing depth: each nucleotide must be covered by at least 10 reads
in at least 80% of all ExAC individuals.

Loss-of-function (LoF) variants. We define LoF variants to be single-nucleotide substitu-
tions that introduce a stop codon in the reading frame or disrupts a splice donor or receptor
site. We do not include insertion/deletions (indels) in the class of LoF variants. Variant anno-
tation was performed using the Variant Effect Predictor (VEP) v81 on Gencode v19 and genome
build GRch37. LoF annotation was performed using LOFTEE (version 0.2; available at avail-
able at https://github.com/konradjk/loftee) plugin to VEP. While early stop codon and splice
donor/receptor disruptions often lead to truncated proteins, this does not imply that the protein
has lost all of its function. Our annotation of LoF variants does not explicitly assess protein function
and hence serves only as a proxy for the true deleteriousness of the variant.

Upper bound on the number of possible variants. A natural way to interpret the discovery
rate of a given variant class is to calculate, among all possible variants in this class, what fraction
of them do we expect to observe at a given sample size. To estimate an upper bound for the total
number of possible variants in each class, we first identified all the nucleotides for which we have
sufficient read coverage (at least 10 reads in at least 80% of all ExAC individuals). Then at each
well-covered nucleotide we identified the number of possible variants that belongs to a given class.
For example, if the reference genome at a particular nucleotide is A, then there are two possible
transversions (A → C and A → T) and one possible transition (A → G). The upper bound for
the number of possible transversions is then calculated as the sum of the possible transversions
across all well-covered nucleotides (which is just 2 times the number of well-covered nucleotides),
and similarly for other variant classes. The upper bound on the number of possible variants in each
variant class in the ExAC data is given below.
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Variant class Upper bound on the # of possible variants

LoF 5,720,461

CpG 2,086,001

synonymous 18,762,312

missense 63,986,829

missense in cerebral genes 4,204,277

missense in dominant genes 3,678,497

missense in drug target genes 1,908,788

missense in GWAS genes 12,517,761

missense in recessive genes 5,628,661

transitions 45,824,366

transversion 91,648,732

For each variant class, we divided the number of unique variants we expect to identify by this upper
bound to obtained the fraction of possible variants observed at a given cohort size. As technology
improves in future sequencing projects, we expect the well-covered regions of the exome to increase
and hence the number of identified variants to also increase.

LoF genes. We used the same set of 18225 genes as in the ExAC analysis [1]. Briefly, we summed
all exon level variant counts across Gencode v.19 canonical transcripts. If an exon had a median
depth < 1, the variant counts for that exon were not included in the total for the transcript. We
then removed all transcripts where no variants were observed. We also removed the outliers whose
observed synonymous and missense counts deviated significantly from the expected. This left 18225
for which ExAC had high-quality data.

We associated with each gene, g, a Bernoulli random variable with probability pg, which corresponds
to the probability that an allele of the gene contains at least one LoF variant as defined above or
at least one insertion-deletion (indel) that disrupts the reading frame. The presence of such a LoF
variant or indel is a proxy for true loss-of-function and does not necessarily mean that the gene is
entirely non-functional on that allele. For example, if the LoF variant introduces a stop codon near
the 3’ end of the gene, then the corresponding truncated protein may still retain some functions.

UnseenEst can be applied to estimate the histogram of any set of probabilities {pg}, and hence it
directly applies in this setting. On the U.S. Census matched cohort, we assign a gene 1 on an allele
if it has at least one LoF variant or frame-shift indel. Otherwise it is assigned a 0. The fingerprint
Fi here corresponds to the number of genes that are LoF in exactly i alleles. We trained UnseenEst
on this gene-level fingerprint.

Gene lists. We describe the curation of the various gene lists below.

• Dominant genes: 691 OMIM disease genes deemed to follow autosomal dominant inheri-
tance according to [2][3].
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• Recessive genes: 1163 OMIM disease genes deemed to follow autosomal recessive inheri-
tance according to [2][3].

• GWAS genes: 2801 genes that are the closest 3’ and 5’ genes to GWAS hits in the NHGRI
GWAS catalog as of February 9, 2015.

• Drug target genes: 460 genes whose protein products are known to be the mechanistic
targets of drugs; curated from [4][5].

• Genes with cerebral specific expression: 979 genes with cerebral specific expression
downloaded from [6].

4 Validation experiments

We performed multiple experiments to validate the prediction accuracy of UnseenEst.

Accuracy of allele frequency estimation. For each class of variant (synonymous, missense,
LoF, CpG) we randomly partitioned all the ExAC alleles into ten groups. We trained UnseenEst
on the site frequency spectrum of one partition (i.e. 10% of the alleles) and used the model to
predict the allele frequency distribution of the entire ExAC cohort. We grouped variants into 4
frequency bins: 1) variants that occur in 0-10 alleles; 2) variants that occur in 11-100 alleles; 3)
variants that occur in 101-1000 alleles; and 4) variants that occur in more than 1000 alleles. We
repeated this procedure for each of the ten random partitions and computed the average and the
standard deviation for the number of variants predicted to belong to each bin. These estimates are
compared with the observed number of variants in each bin in ExAC.

Accuracy of the estimated number of unique variants. For each variant class, we randomly
sampled 10% of the alleles and applied UnseenEst on the SFS of this subsample to estimate the
histogram ĥ of the variant frequencies. For any positive integer k, the number fo unique variants
we expect to see in k alleles is

∑
p h(p)(1− (1− p)k). As before, we compute the average and the

standard deviation of the estimates across the different 10% subsamples. To produce the ‘true’
discovery rate, we create a random ordering of all the ExAC alleles. Then for each k less than the
ExAC cohort size, we count the number of unique variants observed in the first k alleles.

Accuracy of gene LoF frequency. We randomly partitioned the alleles into ten subsets. For
each subset with 10% of the alleles, we generated the gene-level LoF fingerprint from this subsample.
We trained UnseenEst on this subsampled fingerprint and compared the predicted number of genes
with at least 10 LoF alleles with that of the observed in the entire ExAC data. The mean and
standard deviations of the predictions were computed from the 10 different partitions.
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5 Related works

While our algorithm and analysis are closely related to the approach in [7][8], there are important
differences in the model. In [7], we have an unknown discrete distribution P on n elements and we
have k independent samples from P . This model was motivated by the classic problem of estimating
the vocabulary size of Shakespeare from a sample of his works [9]. The discrete distribution setting
can be reformulated by associating with each element s an independent Poisson random variable
poi(ps), where ps is the weight of P for s. Here, unlike in our model,

∑
s ps = 1. The number of

times that s appears in k samples is distributed according to poi(k · ps). In our genetics model, the
number of times that a variant s appears in k alleles is distributed according to bin(ps, k). While
poi(k · ps) and bin(ps, k) both have expectation k · ps, the Poisson has a slightly larger variance.
Because the number of elements n is potentially very large, this difference between Poisson and
Binomial aggregates over all the elements and can give rise to substantial differences in the expected
fingerprints between the two models.

Recently, [10] also proposed using linear program to estimate the discovery rate of new variants.
They solve two linear programs with hypergeometric coefficients, to estimate the upper and lower
bounds on the number of unique variants at a given sample size that are consistent with the
observed site frequency spectrum. Under the infinite genome assumption (i.e. there are infinitely
many possible variants), [10] showed that there exist solutions to these two linear programs. The
approach of [10] tries to identify the range of the number of unique variants that is consistent
with the observed data, though it does not guarantee how wide this interval is and whether it
concentrates around the true value in general. Our linear program is guaranteed to produce a
histogram that is close to the true SFS. Moreover our analysis makes explicit the dependence on
the sample size k and the frequency distribution ps which was not present in [10].

Bayesian approaches have also been applied to estimate the number of unseen variants [11] [12].
Other approaches based on the jackknife estimator have also been applied to similar settings [13][4].
In [11], the mutation probabilities of the variants are assumed to be i.i.d. samples from a Beta(a, b)
prior, where the hyperparameters a, b are fitted from data. A limitation of this approach is that it
requires parametric forms for the distribution of variant frequencies, which requires some model of
demography and selection. For example, the Beta prior used in [11] is a reasonable assumption for
neutrally evolving variants but may not be appropriate for deleterious mutations. The advantage
of UnseenEst is that it does not require any modeling assumption about selective pressure and
demographic history, i.e. it is non-parametric. Theorem 2.1 applies in all settings where the
independence assumption is a reasonable approximation.

6 Proofs of the Guarantees

The proof of Theorem 2.1 for UnseenEst2 has three main components. First we show that given
a sample of k alleles from the above model, with high probability the empirical fingerprint Fi’s
are close to their expected values

∑
ps
h(ps) · bin(ps, k, i). This sample of k alleles is what we

call a faithful sample. Next we show that given a faithful sample, the histogram of the true
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distribution, h(p), rounded so as to be supported on the set X of discrete probability values, is a
point in the plausible region of the linear program in UnseenEst2. Intuitively the plausible region
captures all the histograms that can plausibly generate the observed SFS. The last component of
the proof will argue that any two points in the plausible region must be close in generalized relative
earthmover distance. This completes the proof because the solution returned by the linear program
in UnseenEst2 is in the plausible region and hence must be close in relative earthmover distance to
the rounded true histogram, which is close to the true histogram.

The proof of Theorem 2.1 follows the steps of the proof of Theorem 2 in [7]. We have to replace
calculations involving Poisson distributions with Binomials in the appropriate places. We also have
to rescale all the earthmoving costs by

∑
ps. We provide explicit analysis where our proof differs

from that of [7]; otherwise we refer to the appropriate part of [7] when the calculations are identical.

6.1 Faithful samples

Definition 6.1. A sample of k alleles with fingerprint F , drawn from a set P = {ps} of probabilities
with histogram h and sum t =

∑
s ps, is said to be faithful if the following conditions hold:

• |m− kt| ≤ (kt)0.6.

• For all i, ∣∣∣∣∣∣Fi −
∑

x:h(x) 6=0

h(x) · bin(x, k, i)

∣∣∣∣∣∣ ≤ max
(
F0.5+D
i , (kt)B(0.5+D)

)
.

• For all possible variants s ∈ S, letting ps denote the true probability of s, the number of times
s occurs in the sample from P differs from its expectation k · ps by at most

max
(

(kps)
0.5+D, (kt)B(0.5+D)

)
.

Lemma 6.2 (Analogous to Lemma 11 in [7]). There is a constant γ > 0 such that for sufficiently
large number of individuals, k, the empirical distribution is faithful with probability at least 1 −
e−(kt)γ , where t =

∑
s ps.

Proof. The first condition follows from Hoeffding bound with high probability.

In our model, E[Fi] =
∑

ps
h(ps) ·bin(ps, k, i). Each fingerprint Fi is the sum of independent binary

variables, representing whether each mutation occurred exactly i times in the population. Hence
Chernoff bounds apply. The analysis showing that the second condition is satisfied is the same as
in the proof of Lemma 11 in [7]. We include it here for completeness.

The analysis of the second condition is split into two cases, according to whether E[Fi] ≥ (kt)B. If
E[Fi] < (kt)B, we have that Pr

[
|Fi − E[Fi]| ≥ (kt)B(0.5+D)

]
is upper bounded by the case where

E[Fi] = (kt)B. By Chernoff bound,

Pr
[
|Fi − E[Fi]| ≥ E[Fi]B(0.5+D)

]
≤ 2e(kt)2BD/3.
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In the case that E[Fi] ≥ (kt)B, we have that Pr
[
|Fi − E[Fi]| ≥ E[Fi]B(0.5+D)

]
is monotonically

decreasing in E[Fi] and hence this quantity is bounded by setting E[Fi] = (kt)B. A union bound
over the first 2kt fingerprints shows that the probability that a sample of k alleles violate the first
condition is at most k ·2e−(kt)2BD/3 ≤ e−(kt)Ω(1)

. Note that the probability that there are more than
2kt nonzero fingerprints is similarly bounded, as the probability that a variant is observed more
than 2kt times is inverse exponential in kt.

For the third condition, we want to show that for all variants s, the number of times that s is
observed in k alleles differs from its expectation psk by at most max((kps)

0.5+D, (kt)B(0.5+D)). The
analysis also splits into two cases depending on whether psk ≥ (kt)B and follows from the same
Chernoff bound as before, replacing Fi by the number of times s occurs in the sample and replacing
E[Fi] by psk.

Definition 6.3. Given a fingerprint F , an upper bound on the support size n, m =
∑

i i · Fi, and
a finite set of probability values X, the plausible region is the set of histograms h supported on X
satisfying the conditions

mB+mC∑
i=1

1√
1 + Fi

∣∣∣∣∣Fi −∑
x∈X

h(x) · bin(x, k, i)

∣∣∣∣∣ ≤ m2B,

∑
x∈X

x · h(x) +

m∑
i=mB+2mC

i

k
Fi =

m

k
,

∀x ∈ X,h(x) ≥ 0 and
∑
x∈X

h(x) ≤ n.

As the name suggests, the plausible region is the set of histograms that can plausibly generate
the observed fingerprint F . The last three requirements of plausibility are the same as the LP
constraints in UnseenEst2.

The following lemma shows that, given a faithful sample of k alleles, the corresponding plausible
region has a point that is extremely close to the histogram of the true distribution.

Lemma 6.4. (Analogous to Lemma 12 of the [7].) For sufficiently large k, and n < m2+B/2/k:
given a distribution of support size at most n and a faithful sample of k alleles with fingerprint F ,
the plausible region has a point v′ such that v′ is close to the true histogram h

R(h, hv′) = O

(∑
ps

kΩ(1)

)
where hv′ is obtained from v′ by appending the empirical fingerprint entries Fi for i ≥ mB + 2mC .

Proof. The idea of the proof is to show that, provided the sample is faithful, the true histogram
h can be minimally modified into a plausible point v′. We construct v′ by taking the portion of h
with probabilities at most mB+mC

m and rounding the support of h to the closest multiple of 1/m2,
so as to be supported at points in the set X = {1/m2, 2/m2, ...}.
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We construct h′ and v′ as in [7]. The first two steps of the construction are the same. In the third
step, we want to normalize the total probability mass mF +

∑
x xv

′
x to be m/k instead of to 1.

This involves rescaling v′x by a factor of s = (m/k −mF )/
∑

x xv
′
x.

Next we show that the discretization does not violate the requirements of plausibility. We note
that

∣∣ d
dxbin(x, k, i)

∣∣ ≤ k. Since we discretize to multiples of 1/m2, the discretization alters the
contribution of each site to each expected fingerprint by at most k/m2. The support size is bounded
by n, the discretization alters each expected fingerprint by at most n ·k/m2. The rescaling step also
does not violate the plausibility conditions. Finally the last part of the proof bounds the per unit
earth-moving cost, which does not use any properties of the Poisson distribution. We can apply
the same earth-moving scheme and analysis of the per unit cost. The final cost R(h, hv′) needs to
be scaled by m/k since that’s the total amount of probability mass.

6.2 Chebyshev construction

The previous section established that, given a faithful sample (which we are likely to obtain with
high probability), there exists a plausible point which is very close to the true histogram. In this
section, we will show that any two plausible points are close in generalized relative earthmover
distance. By the triangle inequality, this guarantees that the solution returned by UnseenEst2 will
be close to the true histogram. To establish the closeness of the histograms, we will explicitly con-
struct a earthmoving scheme using Chebyshev polynomials. This is analogous to the earthmoving
scheme in [7], replacing all instances of poi(kx, i) by bin(x, k, i).

Definition 6.5. For a given k, a β-bump earthmoving scheme is defined by a sequence of positive
real numbers {ci}, the bump centers, and a sequence of functions {fi} : (0, 1] → R such that∑

i fi(x) = 1 for each x and each function fi may be expressed as a linear combination of Binomials,
fi(x) =

∑
j aijbin(x, k, j) such that

∑
j |aij | ≤ β. Given a generalized histogram h, the scheme

works as follows: for each x such that h(x) 6= 0, and each integer i ≥ 0, move xh(x) · fi(x) units of
probability mass from x to ci. We denote the resulting histogram by (c, f)(h).

We define binomial Chebyshev bumps, following [7].

Definition 6.6. Let s = b0.2 log ktc, where t =
∑

s ps. Define g1(θ) =
∑s−1

j=−s cos(jθ) to be an
approximation of the delta function, truncated at Fourier degree s. Define a slightly fatter version

g2(θ) =
1

16s

(
g1(θ − 3π

2s
) + 3g1(θ − π

2s
) + 3g1(θ +

π

2s
) + g1(θ +

3π

2s
)

)
,

and, for i ∈ {1, . . . , s−1}, define its shifted versions gi3(θ) = g2(θ− iπ
s )+g2(θ+ iπ

s ), and g0
3 = g2, and

gs3 = g2(y + π). Let ti(x) be the linear combination of Cheybyshev polynomials so that ti(cos θ) =
gi3(θ). We define s + 1 functions, the “skinny bumps”, to be Bi(x) = ti(1 − xk

2s )
∑s−1

j=0 bin(x, k, j),
for i ∈ {0, . . . , s}.

Definition 6.7. The Chebyshev earthmoving scheme is defined in terms of k as follows: let s =
0.2 log kt. For i ≥ s + 1, define the ith bump function fi(x) = bin(x, k, i) and associated bump
center ci = i−1

k . For i ∈ {0, ..., s} let fi(x) = Bi(x) and define their associated bump centers
ci = 2s

k (1− cos( iπs )), and let c0 = c1.
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We now prove a number of nice properties about the Chebyshev earthmoving scheme.

Lemma 6.8 (Lemma 18 in [7]). For any θ,

s−1∑
i=−s

g2

(
θ +

iπ

s

)
= 1,

and for any x,
∞∑
i=0

fi(x) = 1.

Proof. Same as in Lemma 18 of [7]. Nothing special about Poisson density was used in that
proof.

Lemma 6.9 (Analogous to Lemma 19 in [7]). Each Bi(x) may be expressed as
∑s

j=0

∑s
q=0 aijqbin(x, k+

q, j + q) for aijq satisfying
s∑
q=0

s∑
j=0

|aijq| ≤ 2(kt)0.3.

Proof. We decompose gi3(θ) into a linear combination of cos(`θ), for ` ∈ {0, . . . , s}. Since cos(−`θ) =
cos(`θ), g1(θ) consits of one copy of cos(sθ), two copies of cos(`θ) for each ` strictly between 0 and
s, and one copy of cos(0θ). g2(θ) consists of ( 1

16s times) 8 shifted copies of g1(θ)’s. The shifts
changes the phases of the Fourier coefficients but not their magnitude. Sine components may have
been introduced in the shifts, but since gi3 is an even function, the sine components cancel out.
Since each g3 contains at most two shifted g2’s, each gi3(θ) is a linear combination

∑s
`=0 cos(`θ)bi`

with the Fourier coefficients bounded by |bi`| ≤ 2
s .

Since ti was defined so that ti(cos θ) = gi3(θ) =
∑s

`=0 cos(`θ)bi`, by the definition of Chebyshev
polynomials we have ti(x) =

∑s
`=0 T`(x)bi`. Thus the bumps are expressed as

Bi(x) =

(
s∑
`=0

T`

(
1− xk

2s

)
bi`

)s−1∑
j=0

bin(x, k, j)

 .

We further express each Chebyshev polynomial via its coefficients as T`(1− xk
2s ) =

∑`
m=0 β`m(1−

xk
2s )m. We then expand each term via binomial expansion as (1− xk

2s )m =
∑m

q=0(−xk
2s )q

(
m
q

)
to yield

Bi(x) =

s∑
`=0

∑̀
m=0

m∑
q=0

s−1∑
j=0

β`m

(
−xk

2s

)q (m
q

)
bi`bin(x, k, j).

In general we can re-express

xqbin(x, k, j) = xq
(
k

j

)
xj(1− x)k−j

=

(
k

j

)
xq+j(1− x)k−j

=
(q + j)!k!

(k + q)!j!
bin(x, k + q, q + j)

14

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2015. ; https://doi.org/10.1101/030841doi: bioRxiv preprint 

https://doi.org/10.1101/030841
http://creativecommons.org/licenses/by-nc-nd/4.0/


Following the same calculations as in the Unseen, we have∣∣∣∣∣∣
s∑
`=0

∑̀
m=0

m∑
q=0

s−1∑
j=0

β`m

(
− k

2s

)q (m
q

)
bi`

(q + j)!k!

(k + q)!j!

∣∣∣∣∣∣ ≤ 2(kt)0.3

Lemma 6.10 (Lemma 20 in [7]). |g2(θ)| ≤ π7

θ4s4
for θ ∈ [−π, π] \ (−3π/s, 3π/s), and |g2(θ)| ≤ 1/2

everywhere.

Proof. Same proof as in Lemma 20. This lemma doesn’t involve Poisson density at all.

Lemma 6.11 (Analogous to Lemma 21 in [7]). The Chebyshev earthmoving scheme is [O(
√
δt), n]-

good, where δ = n
kt log(kt) and δ ≥ 1

log kt .

Proof. The analysis has two parts. For the first part, we consider the cost of bumps fi for i ≥ s+1,
where recall that s = 0.2 log kt. This is the cost of moving bin(x, k, i) mass from x to i

k . The unit

cost of moving mass from x to i
x is | log xk

i |, which is upper bounded by xk
i − 1 when i < xk and

i
xk − 1 otherwise. We split the calculation into two parts. First, for i ≥ dxke,

bin(x, k, i)

(
i

xk
− 1

)
= bin(x, k − 1, i− 1)− bin(x, k, i)

≤ bin(x, k, i− 1)− bin(x, k, i).

When summed over i ≥ max{s, dxke}, this telescopes to an expression bounded by

bin(x, k,max{s, dxke} − 1) = O(
1√

max{s, dxke}
) = O(

1√
s

).

For i ≤ dxke − 1, since i ≥ s, we have bin(x, k, i)(xki − 1) ≤ bin(x, k, i)((1 + 1
s )x(k+1)

i+1 − 1). The
1
s term sums to at most 1

s . Note that bin(x, k, i)x(k+1)
i+1 = bin(x, k + 1, i + 1) ≤ bin(x, k, i + 1),

where the last inequality is because i ≤ dxke − 1. Therefore the rest of the sum telescopes to
bin(x, k, dxke) − bin(x, k, s) = O( 1√

s
). Thus in total, fi for i ≥ s + 1 contributes O( 1√

s
) to the

relative earthmover cost, per unit of weight moved.

Next we analyze the skinny bumps fi(x) for i ≤ s. The simple case is when xk ≥ 4s. Recall
the definition fi(x) = ti(1 − xk

2s

∑s−1
j=0 bin(x, k, j). Since xk > x, we bound

∑s−1
j=0 bin(x, k, j) ≤

s · bin(x, k, s). Each fi(x) is exponentially small in both x and s, the thus the total earthmoving
scheme, per unit of mass above 4s

k is exponentially small.

The remaining case is xk ≤ 4s and i ≤ s. The trigonometric calculations here does not use any
properties of Poisson distributions and carry over without change to our Binomial case. The per
unit earthmoving cost in this regime is O( 1√

sxk
). For a distribution with histogram h, the cost of

moving earth on this region, for bumps fi where i ≤ s is thus

O

(∑
x

h(x) · x · 1√
sxk

)
= O

(
1√
sk

∑
x

h(x)
√
x

)
.
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Since
∑

x x · h(x) = m/k and
∑

x h(x) ≤ n, by the Cauchy-Schwarz inequality,

∑
x

√
xh(x) =

∑
x

√
x · h(x)

√
h(x) ≤

√
mn

k
.

The total earthmoving cost in this regime is O(mk

√
n

m log kt) and hence we need n = δm log kt to

ensure that the total cost here is O(m
√
δ/k).

Finally we put all the pieces together. The total probability mass that need to be moved is O(m/k).

The regimes of i ≥ s + 1 and i ≤ s, xk ≥ 4s both require O( m
k
√
s
) ≤ O(m

√
δ

k ) earthmoving cost,

since s = 0.2 log kt and δ > 1
log kt by assumption. The last regime of i ≤ s, xk ≤ 4s also incurs

O(m
√
δ/k) cost and hence the overall earthmoving cost is O(m

√
δ/k).

Proof of Theorem 2.1. To wrap up the proof of the theorem, let g be the generalized histogram
returned by the linear program and let h be the plausible point constructed to be close to the

true histogram p, R(p, h) = O
(

m
k·kΩ(1)

)
. Let h′ and g′ be the generalized histograms that result

from applying the Chebyshev earthmoving scheme to h and g, respectively. We have R(h, h′) =
O(m

√
δ/k) and R(g, g′) = O(m

√
δ/k).

What is left if to bound R(g′, h′) by O
(

m
k·kΩ(1)

)
. For the bump centers i ≥ s+1, the same analysis

as in [7] shows that relative earth mover cost is O( 1
kΩ(1) ). We consider teh first s + 1 = O(logkt)

bump centers corresponding to the skinny Chebyshev bumps. Recall that for these centers, ci, the
bump functions Bi(x) may be expressed as

∑s
j=0

∑s
q=0 aijqbin(x, k + q, j + q) for aijq satisfying

s∑
q=0

s∑
j=0

|aijq| ≤ β ≡ 2(kt)0.3.

Using the shorthand
∑

x for
∑

x:h(x)+g(x) 6=0, we have

|h′(ci)− g′(ci)| =

∣∣∣∣∣∑
x

(h(x)− g(x))xfi(x)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x

(h(x)− g(x))x
s∑
j=0

s∑
q=0

aijqbin(x, k + q, j + q)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
s∑
j=0

s∑
q=0

aijq
∑
x

(h(x)− g(x))xbin(x, k + q, j + q)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
s∑
j=0

s∑
q=0

aijq
j + q + 1

k + q + 1

∑
x

(h(x)− g(x))bin(x, k + q + 1, j + q + 1)

∣∣∣∣∣∣
≤ O

(
β
k2B√m

k
log3 kt

)
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where we have used triangle inequality and the first condition of plausibility in the last inequality.
Since B < 0.1, we have that this discrepancy is O(max{1,

∑
ps}

kΩ(1) ) for each center ci, and since there

are log kt centers, the total discrepancy is also O(max{1,
∑
ps}

kΩ(1) ). Putting all the pieces together, by
the triangle inequality, we have

R(p, q) ≤ R(p, h) ≤ R(p, h) +R(h, h′) +R(h′, g′) +R(g′, g) ≤ O(m
√
δ/k).

Moreover, E[nk ] =
∑
ps = t and since alleles are independent, Chernoff bounds applies and with

probability at least 1− e−(kt)Ω(1)
, R(p, g) ≤ O(

∑
ps
√
δ).

6.3 Proof of Proposition 1.4

For convenience, we restate the proposition in a slightly more general form:

Proposition 1.4 Given two lists of probabilities P = {ps ∈ S} and Q = {qs : s ∈ S} with∑
s ps ≥

∑
s qs, let E[Sk,P ] =

∑
s∈S Pr[bin(k, ps) > 0] denote the expected number of variants

observed in a sample of k alleles with the distribution of frequencies given by P , and let E[Sk,Q]
denote the analogous quantity corresponding to frequencies Q. Let P ′ = {p′s : s ∈ S} be any list of
probabilities satisfying:

1. Either for all s ∈ S, p′s ≤ ps, or for all s ∈ S, p′s ≥ ps,

2.
∑

i p
′
s =

∑
i qs,

then, for any k,

|E[Sk,P ]− E[Sk,Q]| ≤ k

∣∣∣∣∣∑
i

pi −
∑
i

qi

∣∣∣∣∣+ (0.3(k − 1) + 1)R(hP ′ , hQ),

where R(hP ′ , hQ) is the relative earthmover distance between the histograms corresponding to P ′

and Q. Hence for k > 3,

|E[Sk,P ]− E[Sk,Q]| ≤ k

∣∣∣∣∣∑
i

pi −
∑
i

qi

∣∣∣∣∣+ 0.5k ·R(hP ′ , hQ),

Proof. By the triangle inequality, |E[Sk,P ]− E[Sk,Q]| ≤
∣∣E[Sk,P ]− E[Sk,P ′ ]

∣∣+∣∣E[Sk,P ′ ]− E[Sk,Q]
∣∣ .

The first term is trivially bounded by k
∑

i |pi−p′i| = k |
∑

i pi −
∑

i qi| , since each unit of probability
mass can, in expectation, account for at most k distinct observations. To bound the second term,
first note that both the relative earthmover cost, and expected number of distinct elements observed
are linear functions of the number of elements of P and Q with each different probability value, it
suffices to analyze the costs of the earthmoving distance and the change in the expected number

17

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2015. ; https://doi.org/10.1101/030841doi: bioRxiv preprint 

https://doi.org/10.1101/030841
http://creativecommons.org/licenses/by-nc-nd/4.0/


of distinct elements for a single earthmoving operation: consider moving c units of mass from
probability value x to y. The change to the expected number of distinct elements observed is
exactly ∣∣∣ c

x

(
1− (1− x)k

)
− cy

x

(
1− (1− y)k

)∣∣∣ ,
and the relative earthmover cost of this is c| log x

y |. We now show that the ratio of these quantities

is always at most k
4 .

We seek to bound the maximum change in 1
x

(
1− (1− x)k

)
relative to the change in log x as

x changes, namely the maximum ratio of their derivatives, where we add a negative sign since
1
x

(
1− (1− x)k

)
is a decreasing function. Since d

dx log x = 1/x, the ratio of derivatives is

−x d
dx

(
1− (1− x)k

)
x

=
1− (1− x)k−1((k − 1)x+ 1)

x
(1)

Consider the approximation (1− x)k−1 ≈ e−x(k−1). Taking logarithms of both sides, and using the
fact that x ≤ 1

2 we have log 1−x ≥ −x−x2, we have that for x ≤ 1
2 the inequality (k−1) log(1−x) ≥

−(k− 1)(x+ x2); exponentiating yields (1− x)k−1 ≥ e−x(k−1) · e−x2(k−1) ≥ e−x(k−1)(1− x2(k− 1)).

Thus for x ≤ 1
2 the ratio of derivatives is bounded as

−x d
dx

(
1− (1− x)k

)
x

≤1− (e−x(k−1)(1− x2(k − 1)))((k − 1)x+ 1)

x

=
1− e−x(k−1)((k − 1)x+ 1)

x
+
e−x(k−1)x2(k − 1)((k − 1)x+ 1)

x

The first term of the right hand side, after dividing by k − 1, can be reexpressed in terms of

y = x(k− 1) as 1−e−y(y+1)
y , which has a global maximum less then 0.3; the second term in the right

hand side, after the same variable substitution, equals e−yy(y+1), which has a global maximum less
than 1. Thus, for x ≤ 1

2 , the absolute value of the ratio of derivatives is bounded as 0.3(k− 1) + 1.
For x ≥ 1

2 , the right hand side of Equation 1 is 1
x minus some positive quantity, and is hence at

most 2. Since 0.3(k − 1) + 1 ≥ 2 for any k ≥ 5, all that remains is to checking the k = 2, 3, 4 cases
where 0.3(k − 1) + 1 < 2 by hand to confirms that 0.3(k − 1) + 1 is in fact a global bound.
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