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ABSTRACT 

Shared genetic architecture between phenotypes may be driven by a common genetic basis 

(pleiotropy) or a subset of genetically similar individuals (heterogeneity). We developed 

BUHMBOX, a well-powered statistical method to distinguish pleiotropy from heterogeneity using 

genotype data. We observed a shared genetic basis between 11 of 17 tested autoimmune 

diseases and type I diabetes (T1D, p<10-12) and 11 of 17 tested autoimmune diseases and 

rheumatoid arthritis (RA, p<10-7). This sharing could not be explained by heterogeneity 

(corrected pBUHMBOX>0.2 using 6,670 T1D cases and 7,279 RA cases), suggesting that shared 

genetic features in autoimmunity are due to pleiotropy. We observed a shared genetic basis 

between seronegative and seropostive RA (p<10-22), explained by heterogeneity 

(pBUHMBOX=0.008 in 2,406 seronegative RA cases). Consistent with previous observations, we 

observed genetic sharing between major depressive disorder (MDD) and schizophrenia 

(p<10-9). This sharing is not explained by heterogeneity (pBUHMBOX=0.28 in 9,238 MDD cases). 
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INTRODUCTION  

Recent studies have demonstrated that many diseases share risk alleles1-4 and exhibit 

significant coheritability5-7. Traditional approaches for detecting coheritability include twin or 

family studies8, 9. Now alternative approaches using genome-wide association study (GWAS) 

data from unrelated individuals have been developed. Polygenic risk score approaches3, 10, 11 

build genetic risk scores (GRSs) for one phenotype and test their association with a second 

phenotype. Mixed-model approaches5, 6, 12 can estimate the genetic covariance between two 

traits on the observed scale. From the genetic covariance one can also calculate the genetic 

coheritability and genetic correlation6. Cross-trait LD Score regression utilizes linkage 

disequilibrium (LD) and summary statistics obtained from GWAS to estimate genetic correlation 

attributable to SNPs7. In addition, the p-values of independent SNPs associated with multiple 

phenotypes can be tested for a significant deviation from the null distribution2. These 

approaches have been applied to demonstrate significant shared genetic structure among many 

phenotypes5, 7, 13 including autoimmune2 and neuropsychiatric diseases3, 6, 11. Coheritability and 

genetic sharing suggests the possibility of pleiotropy, defined here as the sharing of risk alleles 

across traits at specific genetic variants or at a genome-wide level. Pleiotropy can occur when 

the same variant causes different diseases (biological pleiotropy, e.g. variant R620W in 

PTPN22 is associated with multiple autoimmune diseases)14, or when a variant causes 

development of a phenotype that then drives the development of a second phenotype (mediated 

pleiotropy, e.g. rare coding region variants in LDLR that increase LDL cholesterol levels are 

associated with increased risk of myocardial infarction)15.  

 

However, it remains uncertain whether the observed shared genetic structure is the 

consequence of true pleiotropy, or the consequence of heterogeneity. Here, we define 

heterogeneity as the situation where a patient cohort consists of genetically distinct subgroups 

that may or may not result in distinct symptom profiles and treatment outcomes. This type of 
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heterogeneity can occur in the context of misclassifications (e.g. cases with atypical 

presentation for a different disease are erroneously included), molecular subtypes (e.g. a subset 

of cases share pathogenesis with a different disease, possibly as a result of biological or 

mediated pleiotropy), or ascertainment bias (e.g. cases also affected with a different disease are 

more likely to come to clinical attention and be included in the study). These situations can 

result in a subgroup of cases that is genetically similar to another disease, creating shared 

genetic structure. Indeed, there is mounting evidence that misclassifications16-19, etiological 

diversity20, and ascertainment bias21 are prevalent across certain human diseases, leading to 

the conclusion that significant heterogeneity may exist22-25. Since the potential contribution of 

heterogeneity to any genetic sharing observed between diseases represents a critical 

component of predictive medicine, there is a need for statistical methods to detect heterogeneity 

on the basis of commonly available genetic data. 

 

RESULTS  

Overview of BUHMBOX 

Genetic sharing between two diseases, disease A (DA) and disease B (DB), could be due to 

pleiotropy, but could also be due to heterogeneity (i.e. some DA cases are genetically more 

similar to DB cases). If we calculated GRSs for DA cases using DB-associated loci and their 

effect sizes (GRSB), GRSB would be associated with DA case status under either pleiotropy or 

heterogeneity. Under pleiotropy, some DB risk alleles impose DA risk, and DB risk alleles will be 

enriched in DA cases compared to controls. Under heterogeneity, a subset of DA cases will have 

genetic characteristics of DB, and therefore DB risk alleles will also be enriched in those 

individuals. In both situations, the enriched DB risk alleles in DA cases will result in significant 

associations between DA status and GRSB.  
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To detect heterogeneity, even in the presence of pleiotropy, we developed BUHMBOX 

(Breaking Up Heterogeneous Mixture Based On Cross-locus correlations). BUHMBOX 

leverages the fact that in the setting of heterogeneity, DB risk alleles are enriched only in a 

specific subset of DA cases while in true pleiotropy, DB risk alleles are enriched uniformly across 

the entire set of DA cases (Figure 1). BUHMBOX tests for enrichment differences of DB risk 

alleles among DA cases by estimating correlations between independent loci. If DB risk alleles 

are enriched in one subgroup, the expected correlations of risk allele dosages between loci will 

be consistently positive (for details see Supplementary Table 1 and Supplementary 

Information).  

 

BUHMBOX discriminates between heterogeneity and pleiotropy 

We wanted to demonstrate that BUHMBOX detects heterogeneity, but is robust to the presence 

of pleiotropy. To this end, we conducted simulations with the following parameters: sample size 

of DA case individuals (N), number of risk loci associated to DB (M), and the proportion of DA 

cases that actually show genetic characteristics of DB (heterogeneity proportion, or π). To 

simulate realistic distributions of effect sizes and allele frequencies, we sampled odds ratio (OR) 

and risk allele frequency (RAF) pairs from reported associations in the GWAS catalog28 

(Methods).  

 

To characterize the false positive rate (FPR) of BUHMBOX we simulated 1,000,000 studies 

(N=2,000 and M=50) where there was neither heterogeneity (π=0, Methods) or pleiotropy. 

BUHMBOX obtained appropriate false positive rates at all statistical significance thresholds 

evaluated (p<0.05 to 0.0005, Supplementary Table 2); for example, at p<0.05 we observed a 

5.1% FPR.  
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To evaluate the FPR of BUHMBOX where there actually was pleiotropy without heterogeneity 

(π=0), we simulated 1,000 studies (N=2,000 and M=50) where we assumed DA and DB shared 

10% of risk loci. We quantified the proportion of instances where BUHMBOX and GRS 

approaches obtained p-values smaller than the threshold p<0.05. With the presence of true 

pleiotropy without heterogeneity, GRS appropriately demonstrated 87.6% power to detect 

shared genetic structure. BUHMBOX demonstrated an appropriate false positive rate of 4.6% 

(Supplementary Figure 1).  

 

Finally, to evaluate BUHMBOX’s power to detect heterogeneity we repeated the above 

simulations assuming there was no pleiotropy, but that there was indeed subtle heterogeneity. 

Specifically we assumed that 10% of DA cases were actually DB (π=0.1). Here, BUHMBOX 

demonstrated 91.1% power to detect heterogeneity at p<0.05 (Supplementary Figure 1). The 

GRS approach demonstrated 100% power to detect shared genetic structure.  

 

Together, these simulations illustrate that BUHMBOX is sensitive to heterogeneity but robust to 

the presence of pleiotropy, while the GRS detects both scenarios and cannot discriminate 

between the two. BUHMBOX complements existing methods for detecting pleiotropy by helping 

to interpret shared genetic structure identified with these approaches (Supplementary Table 1). 

 

Weighting SNPs by their effect sizes increases power 

BUHMBOX combines multiple correlations into one statistic. In order to maximize power, we 

defined a scheme to weight the correlations between alleles as a function of their effect sizes 

and allele frequencies (Methods). In simulations we observed substantial power gain with this 

weighting scheme. Assuming 1,000 cases and 50 loci, we compared the power of BUHMBOX 

implemented with and without weighting correlations (equation (12) in Supplementary 

Information). Across a wide range of π values we observed that the weighting scheme in 
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BUHMBOX dramatically increased power (Figure 2). For example, at π=0.1 the weighted 

implementation of BUHMBOX obtained 74% compared to the unweighted implementation which 

obtained only 36% power. 

 

Statistical power as a function of numbers of samples and loci  

We benchmarked the statistical power of BUHMBOX under a range of different conditions. 

Power is a function of many factors including sample size N of the cases we are testing for 

heterogeneity in, number of loci M for the coheritabile disease, heterogeneity proportion π, RAF, 

and OR. We sampled pairs of RAF and OR from the GWAS catalog. Given a sample size of 

N=2,000 cases and 2,000 controls, assuming π=0.2, our method achieved 92% power at 

p<0.05 level if we had 50 risk loci (Figure 3). As many GWAS now collect more than 2,000 

cases, and an increasing number of diseases are approaching 50 known associated loci26, 

BUHMBOX is currently well powered to detect a moderate amount heterogeneity (π=0.2) for 

many human traits. Modest heterogeneity is more challenging to detect at this sample size; 

power decreased to 67% at π=0.1 and to 38% at π=0.05. Power can be augmented with larger 

sample size (Figure 3). Power can also be increased by including large numbers of loci with 

nominal evidence of association in the coheritable disease in addition to established genome-

wide significant loci  (Supplementary Figure 2).  

 

Controlling for linkage disequilibrium 

Although BUHMBOX adequately controlled the FPR when loci were truly independent, we were 

concerned that long-range LD between two apparently independent loci may introduce false 

positives27. To ensure that BUHMBOX was robust to the effects of LD, we implemented the 

following strategies in BUHMBOX: (1) stringent LD-pruning of the set of DB loci to exclude SNPs 

within 1Mb of each other and those with r2>0.1, and (2) accounting for any residual LD after 

pruning by assessing the relative increase of correlations in cases compared to controls (delta-
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correlations). We evaluated the effectiveness of these strategies by measuring FPR using the 

RA Immunochip Consortium data28. We generated 1,000 different loosely pruned (r2<0.5) SNP 

sets using the Sweden EIRA data (Methods) and measured the FPR without using delta-

correlations. As expected, we observed a high FPR (25.2%) at p<0.05. However, when we 

repeated simulations using stringent pruning (r2<0.1) and delta-correlations, we were able to 

conservatively control the FPR (FPR=0.022) at p<0.05. 

 

Accounting for population stratification 

Another potential confounding factor that can challenge independence across loci is population 

stratification. If population stratification exists, weak correlations between unlinked loci may 

occur, leading to inappropriate significance. If similar population stratification exists in cases and 

controls, the use of delta-correlations mitigates this effect. Additionally, to more aggressively 

control for the effect of stratification at the individual level, we implemented BUHMBOX to 

regress out PCs from risk allele dosages before calculating correlation statistics. To evaluate 

the effectiveness of this strategy, we simulated a dataset with extreme population stratification 

using HapMap29 data (60 CEU and 60 YRI founders as cases, and 90 JPG+CHB founders as 

controls; λGC=26.5). As expected, when we randomly sampled 5,000 sets of independent SNPs 

we observed an inflated BUHMBOX FPR (14.1% at p<0.05). After regressing the effect of ten 

PCs from risk allele dosages, we observed that the FPR was appropriately controlled (5.7% at 

p<0.05). As an additional test with more realistic levels of stratification, we merged genotype 

data from Northern Europe (Sweden EIRA cohort; 2,762 cases/1,940 controls) and Southern 

Europe (Spain cohort; 807 cases/399 controls) in the RA Immunochip Consortium case-control 

dataset28 (Methods) to create a highly stratified dataset. We then randomly sampled 1,000 sets 

of independent SNPs from this sample. We observed an inflation of the FPR (8.6% at p<0.05), 

which was appropriately corrected (5.9% at p<0.05) when we regressed out the effect of ten 

PCs. 
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Application to autoimmune diseases 

Autoimmune diseases share risk SNPs at many genetic loci2, 4, 30-34, clustering in specific 

immune pathways2, 25, 34. We used the GRS approach to evaluate the extent of genetic sharing 

between autoimmune diseases at a genome-wide level, and then applied BUHMBOX to assess 

if any observed genetic overlap was due to either true pleiotropy or heterogeneity. We obtained 

individual-level genotype data from the Type 1 Diabetes Genetics Consortium (T1DGC) UK 

case-control cohort (6,670 cases and 9,416 controls)35 and the RA Immunochip Consortium’s 

six RA case-control cohorts (7,279 seropositive RA cases and 15,870 controls)28 (for sample 

details, see Methods). With these data, we evaluated the genetic sharing between a spectrum 

of autoimmune diseases with T1D and RA. We obtained associated independent loci for all 18 

autoimmune diseases (r2<0.1, including MHC SNPs) from ImmunoBase 

(http://www.immunobase.org, Supplementary Table 3), and tested the association of GRSs for 

these autoimmune diseases with T1D and RA case status.  

 

Unsurprisingly, we observed substantial genetic sharing between autoimmune diseases. In 

particular T1D demonstrated significant overlap with alopecia areata (AA), autoimmune thyroid 

disease (ATD), celiac disease (CEL), Crohn’s disease (CRO), juvenile idiopathic arthritis (JIA), 

primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), RA, Sjogren’s syndrome 

(SJO), systemic lupus erythematosus (SLE), and vitiligo (VIT) (positive association, p<10-12). RA 

exhibited significant overlap with AA, ankylosing spondylitis (AS), ATD, CEL, JIA, PBC, PSC, 

SLE, systemic sclerosis (SSC), T1D and VIT (p<10-7). Overall, GRSs showed significant 

positive associations for 11 autoimmune diseases each in T1D and RA cohorts, respectively 

(GRS p<2.9x10-3 [=0.05/17 to correct for 17 diseases tested]; Table 1, Supplementary Table 

4). We considered only these traits for subsequent analyses.  
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To evaluate the degree of heterogeneity necessary to achieve the observed genetic sharing for 

these autoimmune diseases, we calculated the GRS regression coefficient. We previously 

showed that the GRS regression coefficient approximates the expected heterogeneity 

proportion π36 assuming no pleiotropy. Based on the GRS coefficients, we observed π 

estimates ranging from 8-76% across the different autoimmune diseases in T1D and from 10-43% 

with RA (Figure 4, Table 1).  

 

We then estimated the power of BUHMBOX to detect heterogeneity, using Bonferroni correction 

for 11 tests (p<4.5x10-3). We found that BUHMBOX is well powered for some autoimmune traits. 

Assuming π=0.2, four traits had >90% power for T1D, and four traits had >90% power for RA 

(Figure 5). Despite high power for certain traits, we observed no evidence of heterogeneity at 

all (corrected p>0.2; Figure 6, Table 1) suggesting that, for these autoimmune traits, genetic 

sharing is clearly due to pleiotropy and not heterogeneity. Autoimmune diseases share similar 

risk alleles and pathways with T1D and RA, and not by subgroups of genetically similar cases 

resulting from misclassifications or molecular subtypes.  

 

Application to subtype misclassifications in RA 

RA consists of two subtypes, seropositive and seronegative, with distinct clinical outcomes and 

MHC associations36. These two subtypes are classified by whether patients are reactive to anti-

CCP antibody. While anti-CCP testing is highly specific, it is not perfectly sensitive which results 

in some seropositive RA patients being misclassified as seronegative RA18. We previously 

demonstrated that there is shared genetic structure between seropositive and seronegative RA 

using the GRS approach36, which could imply misclassifications of up to 26.3% between the two 

RA subtypes. 
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We evaluated the ability of BUHMBOX to detect seropositive RA misclassifications in a 

seronegative RA cohort using only SNP data. We used the seronegative RA cohort (2,406 

cases/15,870 controls) from the RA Immunochip Consortium28. Among 68 RA-associated 

independent loci, we chose SNPs that are associated to seropositive RA (p<5x10-8) but not 

seronegative RA (p>5x10-8) in our Immunochip data. This criterion resulted in 14 specific loci 

that are exclusively associated to seropositive RA (Supplementary Table 3). The seropositive 

RA GRS was significantly associated with seronegative RA case status (β=0.30, p=1.1x10-23). 

The regression coefficient (β=0.30) approximates the upper bound of the heterogeneity 

proportion π (Figure 4). Application of BUHMBOX suggested that coheritability was indeed 

explained by heterogeneity (p<0.008, Figure 6, Supplementary Table 4), consistent with 

potential subtype misclassifications.   

 

 

Application to major depressive disorder and schizophrenia 

Current criteria for diagnosing psychiatric disorders reflect clinical syndromes, often with 

overlapping symptoms. As a result, psychiatric diagnoses for a patient may change as their 

symptoms evolves. MDD is thought to be a particularly heterogeneous psychiatric disorder, with 

relatively low diagnostic stability19. In addition to the potential for misdiagnosis, a subset of true 

MDD cases may be genetically more similar to schizophrenia. If heterogeneity with respect to 

schizophrenia risk alleles exists among MDD cases, then genetic studies would suggest 

evidence of coheritability between the two disorders37 as has been observed in previous 

studies3, 6, 7. The unintentional inclusion of “schizophrenia-like” MDD cases, due to diagnostic 

misclassification or genetically distinct subgroups, has been acknowledged and explored as a 

potential source of bias in coheritability studies by previous investigators3, 37.  
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We used BUHMBOX to test for a subgroup of “schizophrenia-like” cases in MDD. If a subset of 

MDD cases are misdiagnosed and in fact have schizophrenia, or are more genetically similar to 

schizophrenia, we would expect to see heterogeneity among MDD cases with respect to 

schizophrenia risk loci. We first evaluated evidence of shared genetic structure among 90 

known schizophrenia associated loci38 (Supplementary Table 3) in 9,238 MDD cases and 

7,521 controls from the Major Depressive Disorder Working Group of the Psychiatric Genomics 

Consortium39 (see Supplementary Table 5 for details of the MDD dataset). Consistent with 

previous findings3, 6, the GRS based on these loci was significantly associated with MDD case 

status (p=1.54 x 10-5) indicating shared genetic structure between schizophrenia and MDD 

(Figure 4). For the GRS analysis we used a refined subset of the total sample (6,382 MDD 

cases and 5,614 controls), which excluded samples that overlapped with the schizophrenia 

GWAS38 (Methods). The BUHMBOX p-value was not significant (p=0.28), indicating no excess 

positive correlations among schizophrenia loci within MDD cases (Figure 6, Supplementary 

Table 4). Our findings suggest no evidence of a subgroup of schizophrenia-like MDD cases. 

However, we note that we did not have adequate statistical power to detect heterogeneity in the 

context of a small degree of heterogeneity. Given the MDD sample size and the number of 

currently known schizophrenia risk loci, there was 53% power to detect 20% heterogeneity, but 

only 25% power to detect 10% heterogeneity (Figure 5).  

 

DISCUSSION 

Here we present BUHMBOX, which can distinguish whether shared genetic structure between 

two traits is the consequence of heterogeneity versus pleiotropy based on SNP genotype data 

alone. Our method builds upon recent observations emerging in the literature of shared genetic 

structures in autoimmune, neuropsychiatric, and metabolic diseases. BUHMBOX utilizes the 

intuition that if heterogeneity exists, independent loci will show non-random positive correlations; 

importantly, we correct for population structure and long-range LD, which may serve as 
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confounders for this analysis. Heterogeneity can be caused by (1) misdiagnosis, (2) a subgroup 

of cases that share molecular etiology with another disease, or (3) an excessive number of 

cases affected by comorbidity compared to what would be expected under pleiotropy alone, 

which can happen because of ascertainment bias or causal relationships between diseases (i.e. 

mediated pleiotropy in a subgroup of cases). We emphasize that it is critical to appropriately 

interpret the source of heterogeneity, which will depend on the biological and clinical 

relationship between the two traits. We provide detailed information to guide interpretation in the 

Supplementary Information.  

 

We demonstrated that much of the genetic sharing between autoimmune diseases is due to 

pleiotropy. We do note that for a few traits we had modest power (Figure 5) to detect 

heterogeneity proportions less than π=0.2. One exception was our analysis that suggested that 

seronegative RA samples might contain misclassified seropositive RA cases. In contrast we 

were underpowered to draw a definitive conclusion as to whether a subset of MDD cases are 

genetically similar to schizophrenia cases, although undoubtedly as MDD cohorts increase in 

size we will be able to reassess more accurately whether smaller proportions of heterogeneity 

might partially explain the observed coheritability. Our current results are in line with the results 

of an analytical study37, which concluded that the observed degree of pleiotropy between 

psychiatric diseases is unlikely explained by misclassifications alone.   

 

We have shown that the power of BUHMBOX is a function of sample size, number of loci, effect 

sizes and allele frequencies of loci, and the heterogeneity proportion π. For detecting subtle 

heterogeneity (π <0.1), current datasets were often not well powered. But, we expect that in 

future studies, as we increase the sample size as well as the number of known associated loci, 

our method will become increasingly powerful for detecting subtle heterogeneity. Even with 

existing genetic data, a potential strategy to augment power is to include a larger number of 
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SNPs selected using less stringent significance thresholds, an approach referred to as 

polygenic modeling3, 10, 11. We performed simulations to demonstrate that polygenic modeling 

can indeed increase the power substantially (Supplementary Methods and Supplementary 

Figure 2). 

 

We designed BUHMBOX to identify the presence of heterogeneity, in the situation where we do 

not know the specific membership of individuals to the subgroup. In this paper, it was not our 

goal to uncover subgroup membership using genetic data, because genetic information is 

typically not adequate to clearly classify individuals into subgroups. In certain situations, we may 

be able to discern membership. For example, for the misclassification of seropositive RA 

samples in the seronegative RA cohort, as serological assays advance we will have a means to 

more precisely define membership40. If we know the membership, it is possible to perform 

additional analyses such as comparing GRS between subgroups.  

 

When comparing BUHMBOX to existing approaches, we focused on the GRS method. 

However, the results of our comparison also apply to other existing methods such as mixed-

model-based approaches5, 6 and LD-score-based approaches7, which are similar to the GRS 

approach in the sense that they detect both pleiotropy and heterogeneity. We expect that 

BUHMBOX will complement any of these methods to facilitate interpretation of observed genetic 

sharing between traits. More broadly, BUHMBOX can be thought of as capturing a specific form 

of epistasis where risk alleles correlate positively within the additive model. Our statistical 

approach may therefore be extended to have application beyond heterogeneity, including 

identification of missing heritability resulting from clinical heterogeneity41. These applications will 

become more feasible as functional annotations of SNPs advance in the coming years.  
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ONLINE METHODS 

Genetic risk score approach 

Given M independent risk loci associated to DB, we calculated the GRS of individual i as  

���� � � �����
�

���

 

where xij is individual i’s risk allele dosage at marker j, and βj is the effect size (log odds ratio) of 

risk allele at marker j for disease DB. The GRS approach calculates GRSs for all individuals and 

associates GRSs to the case/control status of DA. 

 

The BUHMBOX approach 

To detect heterogeneity, we developed the following procedure:  

1. Prune SNPs associated with DB based on control LD (excluding SNPs that are r2>0.1 or 

within ±1Mb to other SNPs) 

2. Obtain risk allele dosages of pruned SNPs from DA cases and controls 

3. Regress out PCs from risk allele dosages to obtain residual dosages 

4. Calculate R, correlation matrix of residual dosages in N cases with DA and R’, using N’ of 

controls 

5. Calculate delta-correlations: 

Y � 	 
 · 
′
 � 
′ 
R � R′� 

6. Calculate the BUHMBOX statistic: 

������	
 � ∑  ��� ������
�∑  ��� ���

�
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where yij is the element in Y at row i and column j. Given M pruned SNPs, (i,j) iterates M(M-1)/2 

non-diagonal elements of Y. The wij term is a weighting function that is designed to maximize 

power, such that (equation (13) in Supplementary Methods): 

��� � ����1 � �����
1 � ������ � 1���� � 1�
���� � 1��� � 1��
�� � 1��� � 1�  

where pi is RAF of SNP i, and γi is the OR of SNP i for DB. The BUHMBOX statistic follows 


�0,1� under the null hypothesis, and is one-sided in the positive direction. Thus, the p-value is 

������	
 � 1 � Φ�������	
� where Φ is the cumulative density function of the standard 

normal distribution. In the context of heterogeneity, excessive positive correlations among DB 

risk alleles in DA cases result in ������	
 < α. See Supplementary Table 1 for comparison of 

BUHMBOX and GRS approaches. The BUHMBOX test statistic was inspired by previous work 

deriving covariance between correlation estimates42 and on combining dependent estimates.43 

For details of the intuition, derivation, optimization, and interpretation of the BUHMBOX test 

statistic, see Supplementary Information.  

 

Code availability 

BUHMBOX has been fully implemented as a publicly available R script 

(https://www.broadinstitute.org/mpg/buhmbox/). 

 

Power and false positive rate simulations  

Given sample size of DA cases (N), number of risk loci associated to DB (M), proportion of DA 

cases that actually show genetic characteristics of DB (heterogeneity proportion π), we 

simulated studies to estimate power of our method as follows. To simulate a reasonable joint 

distribution of RAFs and ORs, we downloaded the GWAS catalog (as of 29 April 2014). Among 

all binary traits in the catalog, we selected traits with ≥50 reported SNPs resulting in 22 traits 
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with 1,480 SNPs. From these SNPs, we sampled M pairs of RAF (p) and their corresponding 

OR (γ). To simulate genotypes, we set the RAF of a subgroup (Nπ individuals) to γp/((γ-1)p+1) 

and p for the other subgroup (N(1-π) individuals), because Nπ individuals can be thought of as 

DB cases. Within each subgroup, we generated genotypes assuming that the risk alleles are 

distributed according to the Hardy-Weinberg equilibrium (HWE) and that the risk loci are 

independent. We assume HWE in cases because we assume an additive disease model. Then 

we applied our method to calculate the p-value. We repeated this 1,000 times to approximate 

power as the proportion of the repeats whose p-values were ≤0.05. We evaluated power for 

different values of N, M, and π.  

 

Under the assumption that the loci are independent, the false positive rate simulation was 

equivalent to the power simulation described above with the only difference being that π was set 

to zero, which forced the null hypothesis. We measured false positive rate by assuming 

N=1,000 and M=20, and constructing 1,000,000 such studies. 

 

Linkage disequilibrium simulations 

To simulate realistic LD, we used chromosome 22 data from control individuals in the Swedish 

EIRA cohort of the RA dataset (2,762 cases/1,940 controls)28. Then, we assigned half of control 

individuals as cases and the rest as controls. To generate 1,000 random datasets, we thinned 

the data by 10-fold with different seed numbers using PLINK44 (with the command --thin 0.1). 

We then pruned each of the 1,000 datasets using PLINK44 with r2 criterion of 0.5 or 0.1. 

 

Population stratification simulations 

To simulate population stratification, we combined HapMap29 release 23 data (60 CEU 

founders, 60 YRI founders, and 90 JPT+CHB founders). We set CEU+YRI as cases and 

JPT+CHB as controls. We calculated PCs after LD pruning r2<0.1. We randomly selected 5,000 
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sets of 22 independent SNPs, each of which was selected from each autosome. We also 

combined a Northern Europe RA cohort (Swedish EIRA; 2,762 cases/1,940 controls) and a 

Southern Europe cohort (Spain; 807 cases/399 controls) from the RA dataset28. Similar to the 

linkage disequilibrium simulation, we thinned the chromosome 22 data by 10-fold using 1,000 

different random seeds, and applied pruning with criterion r2<0.1. 

 

Application to specific phenotypes 

Type 1 diabetes dataset. To evaluate pleiotropy and heterogeneity between 18 autoimmune 

diseases and T1D, we applied GRS and BUHMBOX approaches to the UK case-control dataset 

provided by the Type 1 Diabetes Genetics Consortium35, which consisted of a total of 16,086 

samples (6,670 cases and 9,416 controls) from three collections: (1) cases from the UK-GRID, 

(2) shared controls from the British 1958 Birth Cohort and (3) shared controls from Blood 

Services controls (data release February 4, 2012, hg18). The samples were collected from 13 

regions. All samples were collected after obtaining informed consent, and were genotyped on 

the ImmunoChip array. GRS and BUHMBOX analyses were conducted using the region index 

as covariates.  

 

Rheumatoid arthritis dataset. To evaluate pleiotropy and heterogeneity between 18 autoimmune 

diseases and RA, we used the RA Immunochip consortium data from six RA case-control 

cohorts (UK, US, Dutch, Spanish, Swedish Umea, and Swedish EIRA)28. To evaluate pleiotropy 

to autoimmune diseases, we used 7,279 seropositive RA cases and 15,870 controls. To 

evaluate misclassifications of RA subtypes, we used 2,406 seronegative RA samples and the 

same controls. Seropositive and seronegative RA patients were defined in each cohort using 

standard clinical practices to assess whether patients were reactive to anti-CCP antibody36. All 

samples provided informed consent, and were collected through institutional review board 

approved protocols. All individuals self-reported as white and of European descent. Samples 
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were genotyped with the Immunochip custom array. We merged the data of six cohorts into one, 

adding binary variables indicating cohorts as covariates in the analysis.  

 

Defining autoimmune risk loci. Immunobase curations 

(http://www.immunobase.org/downloads/regions-files-archives/2015-06-07/*assoc_variantsTAB; 

accessed 7 June 2015) available for 18 autoimmune diseases were used to define genome-

wide significant risk loci. We did not include inflammatory bowel disease, due to its redundancy 

with Crohn’s disease and ulcerative colitis. For each of the 18 autoimmune diseases analyzed 

we pruned the list of index SNPs obtained from Immunobase in PLINK44 with options --r2 --ld-

window-r2 0.1, using the 1000 Genomes Phase 1 European reference panel for LD. For all pairs 

of SNPs with r2 > 0.1, we kept the most strongly associated SNP. To ensure completely 

independent risk loci we also removed SNPs annotated as being located in the same 

chromosomal region in Immunobase, again keeping the most strongly associated index SNP 

(Supplementary Table 3). When a locus was not in the Immunochip datasets, we looked for 

proxy (r2>0.2) based on the 10000 Genomes data.  

 

Major depressive disorder dataset. We used BUHMBOX to investigate the relationship between 

MDD and schizophrenia, which have been previously reported to share genetic etiology based 

on polygenic risk scoring3 and coheritability analyses6. The full MDD sample analyzed 

comprised nine GWAS datasets collected from eight separate studies (Supplementary Table 

5) as previously described39. All samples were collected through institutional review board 

approved protocols were collected with consent. For the GRS analysis, individual MDD samples 

(four cases, 886 controls) that overlapped with those in the schizophrenia GWAS38 were 

removed from the analysis; three GWAS cohorts with an insufficient number of independent 

control samples (n < 5) were also removed from the analysis. GRS analyses were conducted in 

each of the remaining six GWAS datasets (Supplementary Table 5), followed by meta-analysis 
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of the GRS. To obtain the overall ß GRS effect size and test statistic we used the inverse-

variance weighted fixed effects method. For BUHMBOX, we used the full dataset; analyses 

were conducted in each of the nine GWAS datasets (Supplementary Table 5) followed by 

meta-analysis. Because the BUHMBOX statistic is a z-score, we meta-analyzed BUHMBOX 

results across the datasets using the standard weighted sum of z-score approach, where z-

scores are weighted by the square root of the sample size. 

 

Defining schizophrenia risk loci. Schizophrenia associated SNPs were selected as those 

showing genome-wide significant association with schizophrenia (p < 5x10-8) in the recent 

GWAS mega-analysis by the Psychiatric Genomics Consortium38. For schizophrenia associated 

SNPs not directly genotyped in the MDD GWAS datasets, we selected proxy SNPs as those 

with the highest r2 from the list of all proxies with r2 > 0.20 using the 1000 Genomes Phase 1 

European reference panel. Of the 97 schizophrenia associated SNPs (11 indels were not 

considered in our analysis), 90 LD-independent SNPs (r2 > 0.1, distance > 1Mb) were available 

for analysis in the MDD GWAS datasets either via direct genotyping or a proxy (see 

Supplementary Table 3 for a detailed list of SNPs).  
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FIGURES AND TABLES 

Table 1. Summary of genetic overlap using GRS and BUHMBOX. Only the traits that have 

significant GRS P-values in positive directions are shown. Significant GRS P-value indicates 

evidence of shared genetic structure; significant BUHMBOX P-value indicates evidence of 

heterogeneity. See Supplementary Table 4 for the full results for all traits tested. 

Cohort 
data 

Test trait #SNP GRS  
P-value 

GRS Beta  
(estimates π 
assuming  
no pleiotropy) 

BUHMBOX 
P-value 

BUHMBOX 
power at 
π=20% 

T1D 
 
 
 
 
 
 

 

AA 10 1.0E-276 0.76 (0.69 – 0.82) 0.83 0.15 

ATD 7 9.8E-72 0.48 (0.40 – 0.56) 0.30 0.05 

CEL 38 1.6E-80 0.32 (0.27 – 0.38) 0.16 0.50 

CRO 119 2.4E-11 0.08 (0.04 – 0.11) 0.54 0.99 

JIA 22 2.6E-316 0.44 (0.40 – 0.47) 0.37 0.96 

PBC 19 2.9E-28 0.16 (0.11 – 0.20) 0.18 0.82 

PSC 12 3.6E-59 0.38 (0.31 – 0.45) 0.91 0.08 

RA 68 9.1E-204 0.55 (0.49 – 0.60) 0.45 0.40 

SJO 7 2.4E-319 0.53 (0.49 – 0.57) 0.84 0.66 

SLE 16 1.0E-191 0.44 (0.39 – 0.48) 0.79 0.91 

VIT 12 5.1E-207 0.59 (0.53 – 0.65) 0.14 0.33 
RA 
 
 

AA 10 5.7E-51 0.28 (0.22 – 0.34) 0.71 0.23 

AS 24 3.9E-08 0.10 (0.04 – 0.15) 0.19 0.20 

ATD 7 2.1E-45 0.34 (0.27 – 0.41) 0.57 0.08 

CEL 38 6.5E-45 0.21 (0.17 – 0.26) 0.57 0.63 

JIA 22 2.3E-286 0.36 (0.33 – 0.39) 0.61 0.99 

PBC 19 3.1E-30 0.15 (0.11 – 0.19) 0.83 0.90 

PSC 12 3.9E-31 0.24 (0.18 – 0.31) 0.46 0.12 

SLE 16 4.3E-13 0.10 (0.05 – 0.14) 0.34 0.96 

SSC 5 1.7E-21 0.22 (0.15 – 0.29) 0.08 0.09 

T1D 53 2.2E-441 0.43 (0.40 – 0.46) 0.29 1.00 

VIT 12 1.8E-25 0.18 (0.12 – 0.23) 0.02 0.41 
Seronega
tive RA 

Seroposit
ive RA 14 1.1E-23 0.30 (0.21 – 0.39) 0.008 0.26 

MDD SCZ 90 1.5E-10 0.19 (0.13 – 0.25) 0.28 0.60 

 

AA, Alopecia areata; AS, Ankylosing spondylitis; ATD, Autoimmune thyroid disease; CEL, celiac disease; 
CRO, Crohn’s disease; JIA, juvenile idiopathic arthritis; MS, multiple sclerosis; PBC, primary biliary 
cirrhosis; PSC, primary sclerosing cholangitis; SJO, Sjogren's syndrome; SLE, systemic lupus 
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erythematosus; SSC, Systemic sclerosis; UC, ulcerative colitis; VIT: Vitiligo; MDD, major depressive 
disorder; SCZ, schizophrenia.  
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Figure 1. Overview of BUHMBOX. (a) Under the scenario of heterogeneity, risk alleles of 

disease B (DB)-associated loci will be enriched in a subgroup of disease A (DA) cases, 

producing positive correlations between DB risk allele dosages from independent loci. (b) Under 

the scenario where there is no heterogeneity, but DA and DB share alleles due to pleiotropy, DB 

risk alleles will be uniformly distributed, and have no correlations. Red boxes: risk alleles; white 

boxes: non-risk alleles.  
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Figure 2. Power gain by weighting SNPs by allele frequency and effect size. We compared 

power of BUHMBOX with a weighting scheme that optimally weights correlations between SNPs 

(weighted) to an alternative approach that weights correlations uniformly (unweighted; equation 

(12) in Supplementary Information). We simulated 1,000 case individuals and assumed 50 

risk loci, whose OR and RAFs were sampled from GWAS catalog. The colored bands denote 

95% confidence intervals of power estimates. The weighting scheme of BUHMBOX offers a 

clear power advantage.  
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Figure 3: BUHMBOX power analysis. We plot power of BUHMBOX for detecting heterogeneity in terms of the number of risk loci, 

number of case samples, and the proportion of samples that actually have different phenotype (heterogeneity proportion, π). We 

assume that we have the same number of controls as cases. White lines denote 20, 40, 60, and 80% power. (a) Power as a function 

of number of case individuals and heterogeneity, when the number of risk loci is fixed at 50. (b) Power as a function of number of risk 

loci and heterogeneity, when the case sample size is fixed at 2,000. 
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Figure 4. Genetic sharing between autoimmune diseases and psychiatric disorders. Out of 11 autoimmune diseases that have 

≥10 pruned associated loci, only the diseases that have significant GRS P-values in positive directions are shown. Y-axis is the 

expected misclassifications if there is no pleiotropy, to explain observed genetic sharing. Vertical bars indicate 95% confidence 

intervals. Heterogeneity expected based on GRS analysis, assuming no pleiotropy for (a) T1D, (b) RA, (c) seronegative RA, and (d) 

MDD. 
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Figure 5. Statistical power of BUHMBOX to detect heterogeneity. Power was calculated by performing 1,000 simulations with 

corresponding sample size, number of risk alleles, risk allele frequencies, and adjusted odds ratios to account for pleiotropy. To 

calculate power for (c) and (d), we used a significance threshold of 0.05. For (a) and (b), the threshold was adjusted using the 

Bonferroni correction accounting 11 tests in T1D and RA, respectively. 
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Figure 6. BUHMBOX results. Dashed vertical lines denote the Bonferroni-adjusted significance threshold. 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted N
ovem

ber 6, 2015. 
; 

https://doi.org/10.1101/030783
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/030783
http://creativecommons.org/licenses/by-nc-nd/4.0/


Han, Pouget, et al.  Distinguishing Pleiotropy from Heterogeneity 

REFERENCES 

1. Sivakumaran S et al. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet 
89, 607-618 (2011). 

2. Cotsapas C et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet 7, 
e1002254 (2011). 

3. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with 
shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371-1379 
(2013). 

4. Fortune MD et al. Statistical colocalization of genetic risk variants for related autoimmune diseases 
in the context of common controls. Nat Genet 47, 839-846 (2015). 

5. Lee SH et al. Estimation of pleiotropy between complex diseases using single-nucleotide 
polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 28, 
2540-2542 (2012). 

6. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five 
psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45, 984-994 (2013). 

7. Bulik-Sullivan B et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 
(2015). 

8. Criswell LA et al. Analysis of families in the multiple autoimmune disease genetics consortium 
(MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. 
Am J Hum Genet 76, 561-571 (2005). 

9. Kendler KS et al. Major depression and generalized anxiety disorder. Same genes, (partly) different 
environments? Arch Gen Psychiatry 49, 716-722 (1992). 

10. Wray NR et al. Prediction of individual genetic risk to disease from genome-wide association 
studies. Genome Res 17, 1520-1528 (2007). 

11. Purcell SM et al. Common polygenic variation contributes to risk of schizophrenia and bipolar 
disorder. Nature 460, 748-752 (2009). 

12. Lee SH et al. New data and an old puzzle: the negative association between schizophrenia and 
rheumatoid arthritis. Int J Epidemiol (2015). 

13. Power RA et al. Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nat 
Neurosci 18, 953-955 (2015). 

14. Solovieff N et al. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 14, 483-
495 (2013). 

15. Do R et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for 
myocardial infarction. Nature 518, 102-106 (2015). 

16. Silverberg MS et al. Diagnostic misclassification reduces the ability to detect linkage in 
inflammatory bowel disease genetic studies. Gut 49, 773-776 (2001). 

17. van der Linden MP et al. Value of anti-modified citrullinated vimentin and third-generation anti-cyclic 
citrullinated peptide compared with second-generation anti-cyclic citrullinated peptide and 
rheumatoid factor in predicting disease outcome in undifferentiated arthritis and rheumatoid 
arthritis. Arthritis Rheum 60, 2232-2241 (2009). 

18. Wiik AS et al. All you wanted to know about anti-CCP but were afraid to ask. Autoimmun Rev 10, 
90-93 (2010). 

19. Bromet EJ et al. Diagnostic shifts during the decade following first admission for psychosis. Am J 
Psychiatry 168, 1186-1194 (2011). 

20. Gibson P et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 
1095-1099 (2010). 

21. Smoller JW et al. Implications of comorbidity and ascertainment bias for identifying disease genes. 
Am J Med Genet 96, 817-822 (2000). 

22. Burrell RA et al. The causes and consequences of genetic heterogeneity in cancer evolution. 
Nature 501, 338-345 (2013). 

23. Jeste SS et al. Disentangling the heterogeneity of autism spectrum disorder through genetic 
findings. Nat Rev Neurol 10, 74-81 (2014). 

24. Flint J et al. The genetics of major depression. Neuron 81, 484-503 (2014). 
25. Cho JH et al. Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and 

implications for new therapies. Nat Med 21, 730-738 (2015). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2015. ; https://doi.org/10.1101/030783doi: bioRxiv preprint 

https://doi.org/10.1101/030783
http://creativecommons.org/licenses/by-nc-nd/4.0/


Han, Pouget, et al.  Distinguishing Pleiotropy from Heterogeneity 

26. Welter D et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic 
Acids Res 42, D1001-6 (2014). 

27. Raychaudhuri S et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with 
rheumatoid arthritis risk. Nat Genet 41, 1313-1318 (2009). 

28. Eyre S et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. 
Nat Genet 44, 1336-1340 (2012). 

29. The International HapMap Consortium. The International HapMap Project. Nature 426, 789-796 
(2003). 

30. Smyth DJ et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J 
Med 359, 2767-2777 (2008). 

31. Festen EA et al. A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, 
TAGAP, and PUS10 as shared risk loci for Crohn's disease and celiac disease. PLoS Genet 7, 
e1001283 (2011). 

32. Zhernakova A et al. Meta-analysis of genome-wide association studies in celiac disease and 
rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet 7, e1002004 (2011). 

33. Jostins L et al. Host-microbe interactions have shaped the genetic architecture of inflammatory 
bowel disease. Nature 491, 119-124 (2012). 

34. Cotsapas C et al. Immune-mediated disease genetics: the shared basis of pathogenesis. Trends 
Immunol 34, 22-26 (2013). 

35. Onengut-Gumuscu S et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for 
colocalization of causal variants with lymphoid gene enhancers. Nat Genet 47, 381-386 (2015). 

36. Han B et al. Fine Mapping Seronegative and Seropositive Rheumatoid Arthritis to Shared and 
Distinct HLA Alleles by Adjusting for the Effects of Heterogeneity. Am J Hum Genet 94, 522-532 
(2014). 

37. Wray NR et al. Impact of diagnostic misclassification on estimation of genetic correlations using 
genome-wide genotypes. Eur J Hum Genet 20, 668-674 (2012). 

38. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 
108 schizophrenia-associated genetic loci. Nature 511, 421-427 (2014). 

39. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium. A mega-analysis 
of genome-wide association studies for major depressive disorder. Mol Psychiatry 18, 497-511 
(2013). 

40. Lundberg K et al. Genetic and environmental determinants for disease risk in subsets of rheumatoid 
arthritis defined by the anticitrullinated protein/peptide antibody fine specificity profile. Ann Rheum 
Dis 72, 652-658 (2013). 

41. Wray NR et al. Genetic basis of complex genetic disease: The contribution of disease heterogeneity 
to missing heritability. Curr Epidemiol Rep 1, 220-227 (2014). 

42. Jennrich RI. An asymptotic χ2 test for the equality of two correlation matrices. J Am Statist Assoc 
65, 904-912 (1970). 

43. Wei LJ et al. Regression analysis of multivariate incomplete failure time data by modeling marginal 
distributions. J Am Statist Assoc 84, 1065-1073 (1989). 

44. Purcell S et al. PLINK: a tool set for whole-genome association and population-based linkage 
analyses. Am J Hum Genet 81, 559-575 (2007). 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2015. ; https://doi.org/10.1101/030783doi: bioRxiv preprint 

https://doi.org/10.1101/030783
http://creativecommons.org/licenses/by-nc-nd/4.0/

