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ABSTRACT9

Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how

the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent

stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing

rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent

on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in

large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron

properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has

important implications for determining the network response to time-varying inputs and for the network sensitivity at different

operating points.
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Introduction11

Neurons express a large diversity in terms of their biochemical, morphological and electrophysiological properties.1�412

However, it is not clear if and under which conditions such diversity plays a functional role. It has been shown that13

selective stimulation of neurons of a given type expressing speci�c bio-markers can modulate di�erent aspects of brain14

function.5 For instance, selective stimulation of neurons changes the excitation/inhibition balance,6 network dynam-15

ics7,8 and computations performed by the network,9 thereby leading to an altered animal behaviour. Moreover, noise16

introduced by intrinsic properties of neurons/synapses can have several e�ects. It can render the dynamics more robust17

to perturbations10 and can improve the encoding and decoding of neuronal activity by reducing correlations.11 These18

experiments provide strong support to the `neuron doctrine' and motivate the search for novel bio-markers and speci�c19

functions of di�erent classes of neurons.4,12 However, experiments also suggest that stimulation of a certain neuron type20

may not cause any discernible change in the population activity and animal behaviour.13 Moreover, detailed models of21

single neurons14 and networks15 have shown that multiple combinations of neuron and synapse parameters can lead to22

similar activity states;16 suggesting that exact neuronal properties are not crucial to obtain a speci�c dynamical network23

state and, hence, a speci�c function.24

These con�icting studies make it important to identify: (1) Changes in which of the neuron properties can a�ect the25

network dynamics? (2) In which dynamical states is the network activity susceptible to changes in a certain neuronal26

property? Here we focus on the e�ect of spike bursting on the network activity dynamics and vice versa. Spike bursting27

is a common electrophysiological descriptor of a neuron type17,18 and the fraction of bursting neurons depends on the28

brain region19 and even in a given brain region the �ring rate of spike bursts may change depending on their inputs2029

and on the behavioral task.21 Finally, the rate and fraction of burst spiking increases in epilepsy22 and Parkinson's30

disease.23 From a dynamics perspective, when neurons operate in an `integration mode', temporal integration of spike31

bursts can qualitatively change the response of post-synaptic neurons and, consequently, of the network. Such e�ects32

could be further ampli�ed by short-term dynamics24 and long-term plasticity of the synapses.25,26 Therefore, the burst33

�ring pattern, which is very di�erent from the spike trains of the leaky-integrate-and-�re (LIF) neuron model is a suitable34

candidate to study the in�uence of single neuron �ring patterns on the network activity. Surprisingly, despite this wealth35

of literature on the e�ects of neuronal and synaptic properties on network dynamics (see review by Wang27), it is not36

at all clear how �ring patterns of various neuron types may a�ect the network dynamics and how network dynamics, in37

turn, may help shape neuronal �ring patterns.38

Here, we present an analytical framework to study the e�ect of spike bursting on the network dynamics. Using39

mathematical analysis and numerical simulations of large-scale network models of spiking neurons we investigate the40

e�ects of �ring patterns - exempli�ed here by bursting activity of inhibitory neurons - on network synchrony and oscillations.41

Our analysis shows that there are two di�erent mechanisms by which spike bursting can a�ect the network dynamics.42

We show that single-neuron burst �ring is most e�ective in changing the network state when the latter is in a transition43
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zone between asynchronous and synchronous �ring regimes. That is, the e�ect of single-neuron bursting is contingent44

on the network activity state itself. Thus, our results suggest that the brain can exploit the heterogeneity of neuronal45

spike patterns if it operates in the transition zones between di�erent activity regimes.46

Finally, we show a novel property of hysteresis in the network activity, caused by the mutual interactions between47

single-neuron �ring patterns and network dynamics. Hysteresis implies that the network output does not only depend on48

the current input but also on previous network states and that under certain conditions the network output will change49

slowly compared to the input. This will in�uence the network sensitivity at di�erent operating points and, thereby, the50

network response to time-varying inputs.51

Results52

Previous models have addressed the issue of neuronal and synaptic diversity by drawing values from various parameter53

distributions instead of assigning single values. The speci�c e�ect of neuronal heterogeneities in random networks becomes54

more apparent when instead of a distribution of neuron parameters, di�erent types of neurons are used.28 Therefore, to55

study the e�ect of spike patterns of individual neurons, we characterised the activity of a randomly connected network of56

excitatory (E) and inhibitory (I) neurons by systematically increasing the fraction of one type of neuron in the inhibitory57

population. This manipulation was motivated by two experimental observations: (1) the fraction of bursting neurons58

depends on the brain region,19 (2) the probability of a neuron to elicit spike bursts depends on the inputs20 and neurons59

can dynamically switch their �ring mode, depending on the context21,29 and, more permanently, in the case of speci�c60

brain diseases.22,23 That is, the fraction of bursting neurons is a dynamical variable which may change, depending on61

the behavioral context, inputs, brain region and brain condition. We considered a sparse Erdos-Renyi (ER) type network62

of E and I neurons connected with 10% probability. This choice of ER type random networks ensured that our results63

are not dependent on any speci�c connectivity of the bursting neurons. We used the Izhikevich neuron model for its64

computational e�ciency and its ability to reproduce nearly all spike patterns observed in vitro.30 All excitatory neurons65

were realised as regular spiking neurons. The inhibitory neuron population consisted of F% burst spiking neurons (BS)66

and (100−F)% fast spiking (FS) neurons.67

Effect of bursting on the stability of oscillatory activity68

We �rst characterised the e�ect of bursting neurons on γ band oscillations in recurrent networks. These oscillations are69

considered to play a crucial role in brain function.31�33 We tuned the parameters - external input rate and synaptic70

weights - of a network of RS excitatory and FS inhibitory neurons (i.e.F = 0) to obtain stable γ band oscillations34,3571

(Fig. 1B). In this regime, individual neurons do not produce an action potential in every oscillation cycle and, thus, have72

a mean discharge rate that is typically lower than the frequency of the fast gamma rhythm emerging at the network73

level.36 These oscillations are known to be robust to heterogeneities (when modeled by a unimodal distribution of neuron74

parameters) and noise in the external input.36�38 In the following, we study the stability of these oscillations in a network75
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with two or three di�erent types of neurons.76

When all inhibitory FS neurons were replaced by BS neurons, with all other parameters kept constant as in (Fig.1B) ,77

the oscillations were severely weakened (Fig.1C). For an intermediate fraction of BS neurons (F = 0.2), the oscillations78

were not completely diminished, but the stability of the oscillations was severely a�ected and short oscillatory epochs were79

interrupted by non-oscillatory activity. To quantify the stability of the oscillations, we estimated the spectral entropy (Hs)80

of the population activity spectrum, which provides a measure of the dispersion of the spectral energy of a signal (see81

Methods). We found that the spectral entropy increased with the fraction of BS neurons and saturated to its maximum82

value (Fig. 1D). Irrespective of the strength of the external input (η), about 30% BS neurons were su�cient to quench83

the oscillations (Fig. 1D).84

For a �xed proportion of BS and FS neurons, the excitatory input strength η shifted the operating point of the85

network by increasing the �ring rate of the individual neurons (Fig. 1E). This also resulted in an increase in the dominant86

oscillation frequency (60− 100Hz), however, the spectral entropy remained una�ected (Fig. 1F). Thus, it is likely that87

the reduction in oscillation power is a consequence of the spike pattern of the BS and not of the di�erent f − I curve of88

the BS neurons. Unfortunately, though, it is not trivial to separate the contribution of the spike patterns and the f − I89

curve to the network activity state. As we will show later, the e�ect of spike patterns and f − I curve can be separated90

by adapting the standard LIF neurons.91

Response of network activity to single neuron bursting92

In the above, we showed the e�ect of BS neurons on the oscillatory dynamics of a random network only for a speci�c93

activity regime of the network. Sparsely connected random networks of excitatory and inhibitory neurons can exhibit94

distinct activity states depending on the external excitatory input (η) and the ratio of recurrent inhibition and excitation95

(g). While individual neurons can �re in a regular (R) or irregular (I) manner, the population activity can be synchronous96

(S) or asynchronous (A). Thus, the network activity could be either AI, SI, AR, or SR.39,40 In the mean-driven regime97

the neurons �re in a regular manner whereas in the �uctuation driven regime their spiking becomes irregular. Because98

neuronal activity in vivo is irregular, only SI and AI are biologically relevant for information processing. Therefore, we99

studied how the AI and SI activity regions in the parameters space of η and g are changed when FS are systematically100

replaced by BS neurons (Fig. 2A-C). The parameters η and g were varied to obtain low to mid-range �ring rates (101

≤ 25 spikes/sec) and irregular spiking in the RS neurons (CVISI ≥ 0.5).102

Replacement of FS neurons by BS neurons altered the various regions in the network parameter space di�erently. We103

identi�ed four di�erent ranges of parameters giving rise to four distinct modulations of activity regimes (see Fig. 2D,E):104

(1) A parameter range in which the network remained in the synchronous state, irrespective of the fraction of BS neurons.105

This invariance of the synchronous network activity to the neuron types was observed for small values of g. In a network106

where all neurons have identical f − I curve, this parameter regime would correspond to a mean-driven regime. This107

classi�cation is, however, not directly applicable here, because FS and RS neurons have di�erent slopes of their f − I108
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curves. (2) A parameter range in which the network remains in an asynchronous state, irrespective of the fraction of109

BS neurons. In this regime, g is large enough to drive the network into the �uctuation-drive state, resulting in irregular110

and asynchronous (non-oscillatory � HS ≥ 0.6) �ring. (3) The network activity makes a transition from the synchronous111

to the asynchronous state, that is, BS neurons tend to weaken or even quench the weak synchrony. (4) In a relatively112

small parameter regime, we also observed that for a small fraction of BS neurons, the network activity changed from113

the synchronous to the asynchronous state (similar to (3)), but for a larger fraction of BS neurons, the activity returned114

to the synchronous state again. That is, for 100% BS or FS neurons, the network remained in a synchronous (also115

oscillatory, HS ≤ 0.6) state, whereas for intermediate fractions the network synchrony was destroyed(HS ≥ 0.6).116

The Izhikevich neuron in its bursting mode, di�ers from its fast-spiking mode in two respects: it produces more117

than one spike every time the membrane potential crosses the spiking threshold (see Fig. 3A) and the f − I curve of the118

bursting neurons has a larger slope than that of the FS neurons (see Fig. 3B). In the existing neuron models (Izhikevich119

neuron model, generalised integrate-and-�re neuron), it is not possible to change the f − I curve of the neuron without120

a�ecting its �ring pattern.121

The state-dependent stochastic bursting neuron model122

To understand the role of spike patterns in shaping the network dynamics it is important to isolate their e�ects from123

the di�erent f − I curves. Therefore, we modi�ed the standard LIF neuron model to produce bursting of B spikes in a124

stochastic manner with a probability 1/B every time its membrane potential reaches the spiking threshold (see Methods).125

We refer to this new model as the State-dependent Stochastic Bursting Neuron (SSBN) model when the parameter B126

depended on the input level. In a special case, B could be a �xed number. The SSBN model not only ensures that the127

f −I curves of the bursting and fast-spiking neurons remain identical (Fig. 3D), but it also allows us to change the size and128

the duration of the burst without cumbersome parameter tuning (Fig. 3C). Moreover, unlike the Izhikevich neuron model129

and the generalised LIF model, which are often used to model bursting dynamics of neurons, the bursting characteristics130

of the SSBN remain unchanged, irrespective of the input statistics. The response characteristics of the SSBN are similar131

to that of the LIF, except that an increase in the number of spikes per burst B decreases the high-frequency �ring limit132

of the neuron (Supplementary Fig. S1).133

Effects of different firing patterns of inhibitory neurons on the stability of network oscillations134

In contrast to FS neurons, BS neurons spike in bursts, but for the same input the total number of spikes generated by135

a BS neuron is identical to that of an FS neuron. This implies that in the SSB neuron, spikes are clumped together,136

creating 'empty' temporal windows (with a duration depending on burst size) in which no spikes occur (Fig. 3C) and very137

short windows in which the number of spikes produced will be signi�cantly higher than that of FS neurons. Therefore,138

while an FS neuron exerts a relatively uniform inhibition onto its post-synaptic neurons, BS neurons exert inhibition in139

clumps. Because of the temporal clustering of spikes in BS neurons, two distinct mechanisms emerge that de�ne the140
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stability of the oscillatory and asynchronous states, respectively.141

Stability of the oscillatory state: Additional spikes part of the burst disrupt oscillations142

Fast (or γ) oscillations could be described as `interneuron generated' (ING) or pyramidal-interneuron generated (PING).37143

In the ING oscillations, recurrent inhibition of the inhibitory interneurons creates a small time window for pyramidal144

neurons to spike. In the PING mechanism, an increased activity of pyramidal neurons causes an increase in the activity of145

inhibitory interneurons, which subsequently inhibit the pyramidal neurons. In both mechanisms, inhibition sets the time146

window for the activation (ING) or inactivation (PING) of the pyramidal neurons.41 The temporal clustering of spikes in147

BS neurons causes a temporal jitter in the duration of the recurrent inhibition and, therefore, weakens the oscillations148

(mechanism-I).149

This is best illustrated in the case of ING oscillations. Here, the initiation of a burst at the edge of the preceding150

oscillation cycle distorts the subsequent window of opportunity for the next inhibitory cycle and, consequently, the151

oscillation is quenched in the inhibitory population. This renders the excitatory population non-oscillatory as well.152

To demonstrate this mechanism, we simulated a simple E-I network with an inhibitory population composed of FS153

neurons only. The values of g and η were adjusted to render the network in the ING oscillation regime. Based on154

thresholding the Z-scored PSTH of the population activity, the oscillatory cycles were marked (gray stripes in Fig. 4A).155

Next, we simulated the network once more with identical parameters, except that at the �fth oscillatory cycle ( Fig. 4156

A), 40% of FS neurons were replaced by BS neurons. By comparing these two simulations, we determined the number157

of 'additional' inhibitory spikes (numadd) that fell outside the oscillatory window.158

To mimic the e�ect caused by the additional spikes generated by the BS neurons, we added numadd additional159

inhibitory spikes at the exact moment when a particular inhibitory oscillatory cycle tapered o� (Fig. 4B). This time was160

determined by running an identical simulation with the same random number generator seeds (baseline) (Fig. 4C pale161

blue trace). Addition of the previously determined number of extra inhibitory spikes (as would happen in a BS neuron)162

indeed disturbed the next oscillatory cycle signi�cantly (Fig. 4C blue trace).163

To test whether it is the timing of the bursts that weakens the oscillations and not the number of spikes contained164

in them, we added the same number of additional inhibitory spikes during the peak of the preceding inhibitory oscillatory165

cycle (control). In this case, the oscillation amplitude and frequency were not signi�cantly changed (Fig. 4C dark blue166

trace), thereby showing that only the timing of the bursts (or the corresponding additional spikes) destroyed oscillations.167

A similar distortion of oscillations is observed when adding additional spikes in the inhibitory population in a network168

in which oscillations are driven by the PING mechanism (Fig. 4E) (scheme in Fig. 4D). The breakdown of oscillations169

by temporal jitter of inhibition is e�ective when oscillations are weak.In strongly oscillatory states, the e�ective synaptic170

couplings are strong and, hence, jittering of inhibition is not su�cient for quenching oscillations (see also Supplementary171

Fig. S2B).172
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Stability of the asynchronous state: Bursting makes the network susceptible to oscillations173

When spikes arrive in a burst, the post-synaptic neuron receives a much bigger compound PSP due to the temporal174

summation of individual spikes. Because we preserved the f − I curve of the neuron while making it bursting, e�ectively175

each spike was replaced by B spikes while reducing the input rate by a factor B. This is equivalent to a network of176

non-bursting neurons connected with a synaptic kernel that re�ects the temporal summation of spikes in the burst. This177

analogy allows us to use the established mean-�eld theory to investigate the stability of the AI state of the network178

activity.36,38 Only when the compound PSP renders the AI state to become unstable, we would expect bursting neurons179

to transform the AI state into the SI state, otherwise a change in the neuron spiking behavior will not a�ect the network180

activity.181

For simplicity in our network we kept the recurrent synaptic coupling strengths as JEE = JIE = JE and JII = JEI = JI ,

and JI = g · JE (where the subscript xy indicates a connection from the y population to the x population) . To check

for the stability of the AI state, we introduced a small perturbation in the steady-state �ring rate rP0 of population P

(excitatory or inhibitory),

rP(t) = rP0 +Re[r̂P1(λ )e
λ t ]

where λ = x+ jω with ω being the modulation frequency. The perturbation in the steady-state �ring rate leads to a

perturbation in the recurrent synaptic input

IP(t) = IP0 +Re[ÎP1(λ )e
λ t ]

where IP0 is the baseline steady state synaptic input, ÎP1(λ ) = JISI(λ )r̂I1 + JESE(λ )r̂E1 , and SI and SE are the synaptic182

response functions.38183

Subsequently, the perturbation in the synaptic input would change the network �ring rate by RP(λ )ÎP1(λ ) (where184

RP(λ ) is the neuron response function38). In a recurrent network, if the rate perturbation, r̂P1 is equal to the synaptic185

input perturbation, the perturbation does not die out, indicating an instability of the asynchronous state. That is, for an186

unstable asynchronous state:187

r̂P1(λ ) = RP(λ )ÎP1(λ )

We used the above equation to derive the conditions for the instability of the AI state by analyzing the following188
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equation:38189

JE · [RE(λ ) ·SE(λ )−RI(λ ) ·SI(λ ) ·g] = 1 (1)

where g = JI
JE
. If the synaptic coupling strength JE crosses a critical Jcr, the asynchronous activity destabilizes and190

the network activity enters an oscillatory regime. Because of the temporal summation of burst spikes, when BS neurons191

replace FS neurons in the inhibitory population, the inhibitory synaptic response function SI is altered. Speci�cally, an192

increase in the number of spikes per burst leads to an increase in the e�ective synaptic rise time (see Methods). This in193

turn, leads to a reduction of the critical coupling value Jcr, rendering the AI state unstable (see Fig. 5 A � black dotted194

line). Thus, if JE < Jcr for B = 1 and JE > Jcr for B = 4, a change of neuron type from FS (B = 1) to BS (B = 4) will195

destabilize the AI state and lead the network activity into an oscillatory state. However, if JE remains below Jcr for B = 1196

and B = 4, the network remains in the asynchronous state, despite the replacement of FS by BS neurons. If the network197

with FS neurons is already in a synchronous state (JE > Jcr), a replacement of all of the FS neurons with BS neurons198

will not a�ect the state. However, if the oscillations are weak, replacement of a certain fraction of FS neurons with BS199

neurons can destroy oscillations through mechanism-I by temporal jitter of inhibition. Thus, in the asynchronous activity200

state BS neurons a�ect the network dynamics by reducing the value of the critical coupling (Jcr), leading to a shift from201

asynchronous to synchronous network activity (mechanism-II). As equation-1 indicates, whether or not BS neurons will202

change the asynchronous activity state to the oscillatory state by mechanism-II depends on the network connectivity203

parameters and the �ring rate of the network r0.204

Effect of spike bursting on the network activity dynamics205

The understanding of how BS neurons or spike bursts a�ect the network dynamics allowed us to re-examine the change206

in the dynamics of a recurrent network when FS neurons are systematically replaced by BS neurons. We simulated a207

random recurrent network with SSB neurons and studied the robustness of the synchronous and asynchronous states208

when single spiking SSB neurons (equivalent to FS neurons) were systematically replaced by SSB neurons with spike209

bursts of size four (equivalent to BS neurons).210

When the network was tuned to be in an oscillatory regime (JE > Jcr), an increase of the number of bursting neurons211

�rst lead to a non-oscillatory network activity (HS ≈ 0.75, F = 25%). This weakening of the oscillations is a result212

of mechanism-I. However, as the fraction of BS neurons was further increased (F ≥ 50%), mechanism-II became more213

e�ective and counteracted mechanism-I, resulting in oscillatory network activity again (HS ≈ 0.5) (see Fig. 5B). This214

non-monotonic change in HS resembles the non-monotonic change in networks with the Izhikevich model neuron (see215

Fig. 1A-C). Based on our observations made in networks with SSB neurons, we think that even in a network with Izhikevich216

model neurons, the non-monotonic state changes were largely governed by the change in neuron spike patterns. Note217
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that a network can remain in the synchronous state for all values of F , provided that the inputs to the excitatory and218

inhibitory populations are appropriately controlled (see Supplementary Fig. S2B).219

When the network was tuned to be in an asynchronous non-oscillatory state with weak correlations (HS ≈ 0.7, JE < Jcr),220

replacing FS neurons by BS neurons rendered the network in an oscillatory state. The spectral entropy monotonically221

decreased with the fraction of BS neurons (see Fig. 5B). Hence, the transformation of non-oscillatory activity to the222

oscillatory state was governed purely by mechanism-II.223

In a network with highly aperiodic activity and very weak correlations (HS ≥ 0.8, JE ≪ Jcr), i.e. when the activity is224

deep in the AI regime, the network state was robust to changes in the spike pattern properties of individual neurons(see225

Fig. 5A).226

These results clearly show that neuron spike patterns can indeed change the network state, from a weakly non-227

oscillatory asynchronous state to synchronous oscillations (by mechanism-II) and vice versa (by mechanism-I). At the228

same time, a non-oscillatory state with very weak correlations is invariant to changes in the neuron spike pattern properties.229

We conclude that network activity is susceptible to neuron spiking patterns only in the transition zone between di�erent230

regimes (here between asynchronous�non-oscillatory and synchronous�oscillatory) and the e�ect of neuron spike pattern231

properties on the network activity dynamics is contingent on the network activity state itself.232

Bursting activity increases the population firing rate233

The bursting �ring pattern of the inhibitory neurons aids in the transition of the network activity from the asynchronous234

to the synchronous state (Fig. 5A). This change in the stability of the network activity also in�uences the population235

�ring rate (Fig. 6). The increasing 'burstiness' of the constituent bursting neurons steers the network activity into an236

oscillatory state. This switch is accompanied by an increase in the population �ring rate.237

Additionally, the di�erence in the temporal structure of bursting could also change the statistics of the total synaptic238

inputs and the output �ring rate of a postsynaptic neuron. To test this, we �xed the number of bursts of an SSB neuron239

and connected it to a LIF neuron that also received excitatory Poisson input. We measured the output �ring rate and240

variance of the free membrane potential v f r of the post-synaptic LIF neuron as a function of the number of spikes in241

a burst (Supplementary Fig. S3). The mean v f r remained constant as the number of spikes in a burst was increased,242

because irrespective of burst size the total numbers of excitatory and inhibitory spikes were preserved. However, the243

temporal clustering of BS spiking increased the variance of v f r, resulting also in an increase of the output �ring. At the244

network level, this could also contribute to an increase in the population �ring rate, thereby reducing Jcr and, hence,245

contributing to the switch of activity from the asynchronous irregular to the oscillatory state by facilitating mechanism-II.246

State dependent bursting of inhibitory neurons induces hysteresis in the network dynamics247

In the above, we made the assumption that the number of spikes in a burst of the SSB neuron is �xed. In real neurons,248

where spike bursting is governed by the voltage-dependent ion channels and interactions between soma and distant tufts249
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(e.g. in pyramidal neurons20), the number of spikes in a burst would depend on the network activity level. Consistent250

with this, recent experiments indeed show that bursting can change, depending on the behavioural task and the network251

activity state21 in both excitatory and inhibitory cells. In simulations with networks of Izhikevich neurons, we found the252

'burstiness' of BS neurons also to be dependent on the network activity state (Supplementary Fig. S4).253

To implement such state-dependence of burst size, we quantized the �ring rate of the excitatory neurons into �ve254

disjunct ranges (lB =(B-1)×5 � B×5 spikes/sec., with B ∈ {1,2,3,4,5}). The SSB neuron generated B spikes per burst,255

depending on the level of the �ring rate of the excitatory neurons.256

With this model of state-depending bursting in inhibitory neurons, we further explored the relationship between the257

network level and neuron level properties. Usually, stationary Poisson inputs are used to determine the steady state of258

the network activity. However, such steady state will not reveal any e�ects introduced by state-dependent bursting of259

inhibitory neurons. Here we introduced dynamical changes in the network activity by slowly varying the external input260

(100 spikes/sec per observation window 3 sec or 200ms;see Methods).261

Random recurrent network without any state-dependent changes in neuron properties rapidly follow changes in the262

external input42 (Fig. 6A, black dots). By contrast, networks with SSBNs, exhibited hysteresis, that is, when the input263

was changed slowly, the response of the network depended not only on the current input value but also on its history264

(Fig. 6A,B orange dots).265

To understand the hysteresis observed here, it is important to recall that the change in the population �ring rate in266

the system was determined by two factors: (1) a change in the external input, and (2) a change in the number of spikes267

per burst (B) of the SSB neurons. An increase in the external input rate led to an increase in the network population268

�ring rate, until SSB neurons started to burst. Therefore, any further change in the network �ring rate was governed269

by both the further rising input rate and the increasing e�ect of neuron bursting. Moreover, every time B was increased270

(see Methods), the network activity rapidly jumped (Fig. 6 A). At the peak network output �ring rate, when the SSB271

neuron elicited 5 spikes per burst, the increase in the network �ring rate was dominated by the increase in B. In this272

network state, a reduction of the external input had only a very weak e�ect in decreasing the population �ring rate, until273

the network �ring rate had dropped enough to reduce the burst size. Once the activity dropped below this range, it274

rapidly returned to the baseline state. In the case of a network with a small fraction of BS neurons (20%), the increase in275

network �ring rate due to the change in B was very small (Fig. 6A black dots), resulting in very little di�erence between276

the network responses during the increasing and decreasing cycles of the external input.277

Balanced random networks, which are often used to model cortical network activity, do not exhibit such hysteresis278

properties in biologically relevant activity regimes such as the asynchronous-irregular or synchronous-irregular states.39,42279

However, under some special conditions, such as clustered connectivity43 and plastic synapses,44,45 spiking neuronal280

networks can exhibit bistability that may lead to hysteresis as well. Hysteresis in network activity implies slow dynamics.281

On the one hand, bursting increases the sensitivity of the network to slowly varying changes, but on the other hand,282
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hysteresis could result in a persistent activity � that is, a change in network response activity, lasting long after the283

stimulus originally inducing it has passed.284

Discussion285

A speci�c neuron type has a functional signi�cance only if it has a discernible e�ect on the network activity state. At286

the level of spiking activity, the e�ect of neuronal parameters can be described in terms of changes in the �ring pattern287

(e.g. bursting and non-bursting) and f − I curve (Fig. 7A). Here, we investigated when and how neuronal spike bursting,288

one of the most common descriptors of neuronal types, can introduce a qualitative change in network activity. Our289

theoretical analysis and numerical simulations of neuronal networks show that the impact of spike bursting is contingent290

on the network activity state (schematically shown in Fig. 7B). The change in the network activity state caused by the291

temporal clustering of spikes in BS neurons can be understood in terms of two mechanisms (Fig. 7A,B). When the network292

operates in a moderately oscillatory regime (spectral entropy≈ 0.5), spike bursts distort the temporal relation between293

the excitation and inhibition necessary for these oscillations37,41 and, therefore, weaken the oscillations (mechanism-I).294

In this regime, BS neurons increase the noise, thereby weakening oscillations (Fig. 4, Fig. 7B). On the other hand, spike295

bursting reduces the e�ective coupling strength Jcr (see eq. 1), causing the asynchronous activity state to destabilize296

(mechanism-II). That is, bursting reduces the region in the network parameter space for which asynchronous activity is297

stable (Fig. 5, Fig. 7B). These two mechanisms are most in e�ect when the network activity is in a region in the activity298

state space, close to the border between asynchronous and oscillatory states. By contrast, the highly asynchronous and299

fully synchronous states remain una�ected by the change in the neuron spiking behavior caused by 'replacing' FS neurons300

by BS neurons.301

Functional consequences of a bursting dependent network state change302

We showed that weak oscillatory activity is especially susceptible to spike bursting and that even a low fraction of BS303

neurons (≈ 30%) in the inhibitory population is su�cient to quench oscillations (mechanism-I). Such a transient increase304

in the activity of BS neurons could form a powerful mechanism to reset network oscillations. Network oscillations in305

the γ band (30-80Hz) are considered to form the basis of selective communication between weakly connected brain306

regions.32,41 Bursting-induced phase resetting could be a powerful mechanism to stop or start a communication between307

two such brain regions. Recent experiments show that bursting does indeed increase in a task-dependent manner and308

that it synchronizes activity between di�erent brain areas.21 Our results provide two potential mechanisms that can309

act to induce phase-resetting and/or phase-synchronization and, therefore, provide a �rst theoretical account for these310

experimental �ndings.311

In our study, we did not incorporate any speci�c connectivity of the bursting neurons and, therefore, may have312

underestimated the e�ect of spike bursting on the network dynamics. Recent experimental data suggest that neurons313

exhibiting di�erent �ring patterns may receive inputs from di�erent sources.46 Given that neuronal connectivity is a314
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key determinant of the e�ect a given a neuron has on the overall network dynamics,47�50 the e�ects of spike bursting315

on network activity would be further accentuated when bursting neurons make more speci�c connections, which might316

possibly form in networks with activity dependent synaptic plasticity (Fig. 7A).317

Network hysteresis318

Spike bursting could be an intrinsic property of neurons51 or emerge as a consequence of network activity.20,21 In our319

simulations, when we made the burst size dependent on the average �ring rate in the network, we observed a hysteresis-320

like behaviour for time-varying inputs (Fig. 6). Classical balanced random networks closely track the dynamics of the321

external input and do not show such behaviour - in fact, a hallmark of their behaviour is to track an arbitrarily fast322

external input.42 Interestingly, the speeding up or slowing down of network dynamics due to the presence of bursting323

neurons has also been observed in other complex networks with bursting communication patterns for speci�c network324

con�gurations.52325

To the best of our knowledge this is the �rst demonstration of hysteresis in Erdos-Renyi random recurrent network326

models of cortical networks, with weak static synapses and sparse connectivity.27,39 Typically, in network models, low-327

level neuron and synapse properties a�ect network dynamics and not the reverse, as we have shown here. Notable328

exceptions are networks with plastic synapses53 and conductance-based synapses.40 Hence, we suggest that searching329

for hysteresis-like behaviour in experiments could be a promising approach to identify mutually causal in�uences between330

low-level neuron properties and high-level network dynamics.331

When the size of the spike burst and the network activity are mutually dependent, the network gain depends both on332

the network activity state and the history of the input. This is quite unlike the conventional balanced random networks,333

where the input history plays no role in determining the network gain. More work is needed to fully understand how such334

input-history-dependent changes in the network gain will a�ect the processing of time-varying input signals.335

Finally, we speculate that disease-related aberrant neuronal activity could be a consequence of an increased fraction of336

bursting neurons, e.g. in Parkinson's disease23 and epilepsy.22 In these cases, possible treatments could aim at identifying337

and counteracting the precise mechanisms of bursting activity, either pharmacologically or through electrical stimulation.338

Conclusions339

In summary, bursting neurons may play a crucial role in coordinating communication between di�erent brain areas, by340

a�ecting the oscillation phase of network oscillations, they may induce hysteresis and, thereby, persistent activity in the341

networks, and they could even alter the global activity state of the network. From this, it is evident that single neuron342

properties have a signi�cant impact on network dynamics, but this is possibly only the case in certain network activity343

regimes. Therefore, the e�ects of low level neuron and synaptic properties can be understood only in the context of344

higher level network activity attributes. This complex interplay between low and high level features introduces emergent345

phenomena that enrich the dynamical repertoire of the brain.346
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Materials and Methods347

Neurons348

Neuron model349

Here we used the phenomenological model introduced by Izhekevich.30 The sub-threshold dynamics of this neuron model350

is de�ned by351

352

dv
dt

= 0.04v2 +5v+140−u+ I

du
dt

= a(bv−u)

and the spiking is described by if v ≥ 30mV, then v← c and u← u+d353

The variable v denotes the membrane potential and u denotes the activation of K+ ionic current and inactivation of354

Na2+ ionic current. The parameter a determines the time scale of the recovery variable and b de�nes the sensitivity of355

u to the subthreshold �uctuations of v. c and d determine the reset values of v and u after spiking respectively. The356

parameters used for the three types of neurons are given in Table 1.357

State-dependent Stochastic Bursting Neuron (SSBN)358

For the Izhikevich neuron model as well as other similar models, the various possible �ring patterns are tightly coupled to359

the f − I curve of the neurons. Thus, the e�ects of �ring patterns on network activity cannot be studied independently of360

the neuronal �ring rate. To overcome this problem, we introduce a novel neuron model, the State-dependent Stochastic361

Bursting Neuron (SSBN). The SSB neuron has identical membrane potential dynamics as the Leaky Integrate and Fire362

(LIF) neuron given by363

τmv̇m =−vm + Isyn

but the action-potential generation mechanism is stochastic. That is, whenever a prede�ned threshold uth is reached,364

b number of spikes are generated with probability 1/b. The inter-spike-interval within the burst is constant (2ms). The365

membrane potential is reset only after all spikes of the burst are produced. Thus, the SSBN neuron produces bursts of366

di�erent lengths without altering the f − I curve. The simulation parameters are de�ned in Table 2.367

To make the above neuron model more biologically realistic, we let the number of spikes/burst b be a function of the368

mean input current that a neuron receives. The mean input current, Iinp is a function of excitatory population �ring rate,r369
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i.e., r−rmin
rmax
∗Bmax, where rmin is the �ring rate of the population with minimum number of spikes per burst and rmax is the370

population �ring rate for the maximum number of spikes per burst in the inhibitory neurons, Bmax. More speci�cally, b is371

drawn from a binomial distribution (every 1000ms) b∼ B(n, p) with mean E[b] = f (Iinp) = np, n denotes the maximum372

number of spikes per burst which is �xed to n = 4 and p is the probability of producing one spike. Thus the mean input373

current to the neuron Iinp a�ects the probability p. This we call the modi�ed SSBN and this model is used in (Fig. 6374

(inset)) only.375

Asynchronous state376

In the stable asynchronous state the population activity is constant r(t) = rE = rI = r0. The mean recurrent input that377

each neuron receives is therefore also constant and given by378

Irec(t) = JE · r0 · e · τs− JI · r0 · e · τs

We study the stability of the asynchronous state following a linear perturbation approach36,38 . A small oscillatory

modulation of the stationary �ring rate r(t) = r0+r1eλ t with r1≪ 1 and λ = x+ jω where ω is the modulation frequency

leads to corresponding oscillation of the synaptic current

I1 =
JE · r1 · e · τs

(1+λ · τs)2 e−λd− JI · r1 · e · τs

(1+λ · τs)2 e−λd (2)

The �ring rate in response to an oscillatory input is given by

r1 =
I1 · r0

σ(1+λτm)
(

∂U
∂y (yt ,λ )− ∂U

∂y (yr,λ )
U(yt ,λ )−U(yr,λ )

) (3)

The function U is given in terms of combinations of hypergeometric functions379

U(y,λ ) =
ey2

Γ( 1+λ ·τm
2 )

F(
1−λ · τm

2
,

1
2
,−y2)

+
ey2

Γ(λ ·τm
2 )

F(1− λ · τm

2
,

3
2
,−y2)

In a recurrent network the modulation of the �ring rate and the modulation of the synaptic input must be consistent.

Combining (2) and (3) we get

JE · [RE(λ ) ·SE(λ )−RI(λ ) ·SI(λ ) ·g] = 1 (4)
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with

RP(λ ) =
r0

σP(1+λτm)

∂U
∂y (yt ,λ )− ∂U

∂y (yr,λ )
U(yt ,λ )−U(yr,λ )

)

and

SP(λ ) =
e · τs

(1+λ · τs)2

where SP is the synaptic response function for alpha-shaped postsynaptic currents

a(t) = e · t/τs · e−t/τs

P = E, I denotes either the excitatory or inhibitory population.380

If the inhibitory population is bursting the synaptic response function is given by

SI(λ ) =
e · τs(1+∑B

n=2 e−λ ·(n−1)·T b)

(1+λ · τs)2

where Tb is the length of the inter spike interval within a burst and B is the number of spikes in a burst. To compensate381

for the increased PSP due to bursting, the recurrent inhibitory �ring rate is divided by B.382

The critical coupling values at which modes have marginal stability with frequency ωi can then simply be computed

by

JEi =
1

RE(ωi) ·SE(ωi)−RI(ωi) ·SI(ωi) ·g

The smallest value Jcr = min{JEi} is the critical coupling value at which the �rst complex pair of eigenvalues crosses383

the imaginary axis and the system becomes unstable. The critical coupling values for di�erent B is given by the dotted384

line in Fig. 5A.385

Networks386

We generate networks of 4000 excitatory and 1000 inhibitory neurons randomly connected with a �xed probability of 0.1.387

In all simulations the excitatory neurons are of the regular-spiking type (RS), while the inhibitory neurons are divided into388

fast-spiking (FS) and bursting type (BS). The fraction of (BS) neurons is systematically varied between 0 and 1. For389

each network we compute the fraction of BS neurons, given by F = NBS/NI , with NI = NFS +NBS, where NFS,NBS,NI are390

the number of FS, BS and total number of inhibitory neurons respectively. Each neuron in the network receives poisson391

background input of rate η . The ratio of the synaptic strength of the excitatory and inhibitory connections is denoted392

by g.393
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Hysteresis394

To test the network response when network activity and spikes per burst were mutually dependent we changed the number395

of spikes per burst as a function of network �ring rate. That is, at low �ring rate, the network was composed only of396

non-bursting neurons. However, as the network output �ring rate was increased by slowly increasing the external input397

was increased neurons started to burst. To implement a state-dependence of the burst size, we quantized the �ring rate398

of the excitatory neurons into �ve non-overlapping ranges ([5× (B−1)−5×B] spikes/sec., where B ∈ {1,2,3,4,5}). The399

SSB neuron generated B spikes depending on the level of the excitatory �ring rate. To change the number of spikes per400

burst, we estimated the input rate either in 3 sec (Fig. 6A) or 200ms windows (Fig. 6B). To change the network �ring401

rate, we changed the external input to the network in steps of 100 spikes/sec every 3 sec (Fig. 6A) or 200ms (Fig. 6B).402

The external input was varied until the BS neurons reached a maximal burst size B = 5), after that the external input403

was reduced with the same rate.404

Data Analysis405

We use the mean �ring rate (ν) and Fano facor (FF) to characterise the dynamical states of the networks. Mean �ring

rate is measured as the number of spikes per neuron per second. FF is used to quantify the synchrony in the network.

The FF of a population is de�ned as

FF =
σ2[Zi]

µ[Zi]

To obtain a reliable estimate of the population activity, the cumulative activity of the spike trains of all the neurons in406

the network were binned in discrete time bins(bin width = 2ms). Zi is the population activity in a bin i. An increase in407

positive correlation increased the Variance[Zi] and consequently the FF [Zi].408

Coe�cient of variation, CV , of the inter-spike interval distribution T of a neuron, is given by

CV =
σ [T ]
µ[T ]

The mean CV of the neurons in a population gives the regularity of neuronal spiking in the population.409

Spectral Entropy410

To quantify the degree of oscillatory activity in a network we compute the spectral entropy HS, which is a measure of

dispersion of spectral energy of a signal.54 It is given by

HS =
−∑k PklogPk

logN

where Pk is the spectral power at frequency k and N is the total number of frequency bins considered. The power411
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spectrum is computed using a Fast-Fourier-Transform of the population activity v and normalized such that ∑k Pk = 1.412

A �at power spectrum, e.g. in the white noise case, has maximum spectral entropy, i.e. HS = 1. By contrast,413

a spectrum with all power concentrated in one frequency, e.g. periodic sine signal, has zero spectral entropy HS = 0.414

Therefore, the more oscillatory the activity dynamics is, the smaller HS will be. In our simulations, the value of spectral415

entropy ranged from 0.2 to 0.9.416

While Fano factor is a good descriptor of the synchronicity in the network activity, it does not quantify network417

oscillations. Whenever, we wanted to quantify the strength of the network oscillations speci�cally, we have used spectral418

entropy.419

Simulation and Data Analysis Tools420

All network simulations are written in Python (http://www.python.org) and implemented in NEST (http://www.nest-421

initiative.org).55 A temporal resolution of 0.1ms is used for the intergration of the di�erential equations. Results were422

analyzed using SciPy and NumPy libraries. Visualizations were done using Matplotlib.56423
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Neuron type a b c d
Regular spiking(RS) 0.2 0.2 -65 2
Fast spiking(FS) 0.1 0.2 -65 2
Bursting(BS) 0.02 0.2 -50 2

Table 1. Izhikevich neuron parameters

Name Value Description
Cm 250pF Membrane capacitance
τm 10ms Membrane Time Constant
Vth −55mV Firing threshold

Vreset −70mV Reset potential
τre f 2ms Refractory period
τsyn 2ms Rise time of alpha function
d 1.5ms synaptic delay
JE 0.05−0.1mV Excitatory weight
JI 0.1−0.9mV Inhibitory weight

Table 2. Simulation parameters

Supplementary figures554
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Figure 1. E�ect of increasing the fraction of bursting neurons in the inhibitory population on the
stability of γ band oscillations. (A) Schematic of the network. (B) Spiking activity in a network with
only FS neurons constituting the inhibitory population. A clear oscillatory activity is seen in the
excitatory neurons (blue dots) and inhibitory FS neurons (orange dots)
(g = 7.1,η = 2.8×104 sp/s,JE = 0.1mV ) . (C) Spiking activity in a network with only BS neurons
(gray dots) constituting the inhibitory population. All other network parameters are the same as for
the activity shown in B. Inhibitory BS neurons weaken network oscillations. (D) Stability of the
oscillations (quanti�ed by the Spectral Entropy) of excitatory neurons as a function of the fraction of
BS neurons.(g = 7.1) (E) Spectral entropy, excitatory and inhibitory (FS+BS) population �ring rate
as a function of the external input (η) to a network with 40% BS and 60% FS inhibitory neurons. (F)
Oscillation frequencies as a function of the external input. For a �xed fraction of BS neurons, spectral
entropy remained unchanged while the oscillation frequency and the �ring rate of the neurons
increased.
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Figure 2. E�ect of increasing the fraction of bursting neurons(F) in the inhibitory population on
synchrony in the network activity. (A) Synchrony (measured as Fano Factor) in the excitatory neurons
as a function of the ratio of recurrent inhibition and excitation (g) and external excitatory input (η),
for 0% bursting neurons in the inhibitory population. (B) Same as in A when 50% inhibitory neurons
are bursting type. (C) Same as in A when all inhibitory neurons are bursting type. (D) Summary of
the changes induced by increasing fraction of bursting neurons on the di�erent activity states of the
network. (E) Four representative changes in the network synchrony as the fraction of bursting neurons
is increased from 0 to 100% corresponding to the crosses in D.(JE = 0.1mV,d = 1.5ms)
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Figure 3. The state-dependent stochastic bursting neuron. (A) Izhikevich neuron producing regular
spiking (RS), fast spiking (FS) and Bursting (BS) �ring patterns for di�erent values of the neuron
parameters a,b,c and d. (B) The �ring rate response of the neuron types for di�erent poisson input
rates. (C) Firing patterns of the State-dependent Stochastic Bursting Neuron (SSBN) model with
varying number of spikes per burst for the same value of constant external DC input (top to bottom).
(D) The �ring rate response curve of the SSBN for di�erent number of spikes per burst, for external
Poisson input of di�erent rates.
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Figure 4. Mechanism-I by which spike bursting destroys network oscillations.(A) The network which
is initially in an oscillatory state switches to a non-oscillatory state with the replacement of FS
neurons(orange dots) with the BS neurons (grey dots) in the inhibitory population. The blue dots
show the excitatory spikes and the dark blue line is the z-scored PSTH of the excitatory activity. The
light brown stripes correspond to the crest of the oscillatory cycles of the excitatory population when
the network consisted of only FS inhibitory neurons. The number of additional spikes that fall within
the stripes is calculated(numadd) added (g = 12,d = 2ms,η = 11500sp/s,F = 0.4)(B) A schematic
to depict how the addition of additional inhibitory spikes(red dots) when the inhibitory oscillatory
cycle wanes makes the oscillatory activity unstable in an ING oscillation. The excitatory population
(blue dots) oscillates in the window of opportunity provided by the inhibitory population (orange dots).
The red dots indicate the additional inhibitory spikes that are added. (D) Same as in (C) , except
that the oscillations are PING driven. (D) PSTHs of the excitatory population shows the changes
after the addition of the numadd additional spikes in the inhibitory population. When the additional
spikes are added when the inhibitory oscillatory cycle tapers o� there is maximum disturbance of
succeeding oscillatory cycles (blue line). When the same number of spikes are added at the peak of
the preceding oscillatory cycle, there is minimal e�ect on the subsequent oscillatory cycle (dark blue
line). The pale blue line shows the baseline activity when no spikes are added
(g = 12,d = 2ms,η = 11500sp/s). (E) PSTHs of the excitatory population a�ected by additional
spikes in a PING driven oscillation(g = 7,d = 1.5ms,η = 20000 sp/s).
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Figure 5. Mechanism-II by which spike bursting enhances oscillations. (A) In the phase space of
excitatory synaptic strength (JE) and the number of spikes per burst(F), the bifurcation line (dotted
black line) between the oscillatory and non-oscillatory states is the Jcr value calculated analytically (for
input mean = 14mV and σ = 6mV . d = 5ms, tsyn = 1ms and Vth = 20mV ). . When the FS neurons
in the inhibitory population are replaced by BS neurons the number of spikes per burst of the neurons
in the inhibitory population is altered and the Jcr value drops. A network in an initially asynchronous
state can continue to remain asynchronous with the addition of BS neurons if the JE values are less
than Jcr for F = 4 (bottom panels). The network can transition from asynchronous to synchronous
states with the change in F , if the JE is more than Jcr for F = 4 (middle panels). Also, a network in
an oscillatory state for F = 1 remains oscillatory for F = 4 (top panels). (B) Instead of replacing the
entire FS population with BS neurons, di�erent proportions of the inhibitory population were changed
for the networks in panel A with F = 1. It is observed that the addition of 25% BS neurons in a
network in a synchronous state, destroys oscillations due to Mechanism -I. (C) The change in the
�ring rate of the excitatory population for transitions in A while number of spikes per burst are
changed.
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Figure 6. Bursting introduces multi-stability and hysteresis in the network dynamics.(A)The increase
in �ring rate due to increase in external input and change in the burstiness of the neuron (dashed grey
lines) is shown. The simulation protocol to generate this neuronal network hysteresis is described in
Methods. It is seen that the onward (blue line) and return (brown line) curves do not trace the same
path indicating the state dependence of the e�ect of the single neuron �ring pattern on the network.
The grey dots show a similar hysteresis loop for a network in which the burstiness of only 20% of the
inhibitory neurons is changed. The inset plot shows the simultaneous change of the �ring rate of the
network and the burstiness of the modi�ed-SSBN after given an initial perturbation of additional
external input of 200 spikes/sec. The burstiness of the inhibitory neurons (as de�ned by the state
variable (see Methods) ) increases with the excitatory population �ring rate.The increase in bursting in
turn increases the population �ring rate. This self-propelling mechanism continues till the single
neurons produce the maximum number of spikes per burst (B = 5).(B) This panel is similar to A, but
the �ring rate estimate of the excitatory population is made over a time window of 200ms. The
number of spikes per burst increase by 2 for every crossing of the �ring rate threshold.
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Figure 7. (A)The �owchart shows the di�erent aspects that we glean from the results to establish
the relationship between the single neuron properties and network dynamics (black lines). The
description of the network e�ects of bursting through the two mechanisms was achieved by separating
the e�ect of f − I curves from that of the �ring patterns by using SSB neurons. The single neuron
�ring pattern made dependent on the network dynamics resulted in hysteresis.The gray lines show the
unexplored facets of the relationship between the two in the manuscript.(B) This schematic
summarizes how the two mechanisms control the oscillatory activity in the network. The addition of
BS neurons in an oscillating system gives rise to a recurrent noise and destroys the �ne temporal
balance between E and I populations that give rise to oscillations and quench them. Mechanism-II
shifts the bifurcation line in the phase space by reducing the Jcr with the addition of BS neurons.

30/32

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2015. ; https://doi.org/10.1101/030700doi: bioRxiv preprint 

https://doi.org/10.1101/030700


Figure S1. Increased bursting reduces the frequency of input oscillations that can be tracked. In
unconnected networks of di�erent number of modi�ed-SSBNs, we test how well sinusoidally
modulated input of di�erent frequencies could be followed by the population. For higher input
frequencies, it is seen that for increased number of spikes per burst are less able to follow the input.
The rasters and the z-scored PSTHs for di�erent number of spikes per burst for a �xed sinusoidal
input (120Hz) are shown in (A) and (B). (C) For a �xed size of the neuron ensemble (N = 100) it is
observed that the normalized power of the peak frequency drops and saturates at a very low value
(≈ 0) for higher frequencies of the sinusoidally modulated input. (D) The map shows the maximum
frequency of the input that can be tracked by di�erent combinations of number of independent
neurons in the population and the number of spikes per burst. While the value of the frequency drops
with the increase in the number of spikes per burst, it can be compensated for by increasing the
number of neurons in the ensemble.

Figure S2. Figure caption continued on the following page

Figure S2. E�ect of addition of bursting neurons on the state of network composed of SSBN. (A)
Evolution of spectral entropy(HS) for a network which is initially synchronous and changes to being
asynchronous with the addition of bursting neurons,added
(g = 11,d = 2ms,η = 10500−11500 sp/s,JE = 0.1mV ).(B) a network in an asynchronous state that
continues to remain asynchronous with the addition of bursting neurons
(g = 5,d = 2.0ms,η = 4000−5000sp/s,JE = 0.04mV ) , C qualitatively synchronous activity can
remain synchronous even when inhibitory neuron �ring patterns are changed
(g = 8,d = 4ms,η = 8500−9500sp/s,JE = 0.1mV ) and (D) an initially asynchronous activity in the
network that becomes synchronous with the addition of bursting neurons
(g = 6,d = 2ms,η = 4500−5500sp/s,JE = 0.1mV ). (E) The Fano Factor values of the di�erent
transitions are plotted against the changes in the fraction of bursting neurons. The di�erent colours
correspond to the di�erent state transitions observed (colours marked in the titles of A,B,C and
D.)(F) The rasters illustrating the four types of transitions are shown in a phase space of FF and the
di�erence in HS. The di�erence in HS is the di�erence in spectral entropy between the initial and �nal
points of each transitions.The initial rasters are marked in yellow and the �nal rasters are marked in
black in the corresponding panels A,B,C and D. The FF values marked are the FF values of the
initial points.
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Figure S3. A simple network producing an external input induced spiking of a presynaptic BS
population. This BS population acted as the inhibitory presynaptic input to a regular LIF neuron. The
membrane potential of this LIF neuron was maintained very close to the threshold by an external
poissonian input. The percentage change in the variance of the membrane potential (A) and �ring
rate (B) of the postsynaptic LIF neuron with the varying number of spikes per burst in the presynaptic
SSBN population is plotted. The increase in the size of the presynaptic population decreased the
amount of changes in the variance of the membrane potential and the �ring rate of the post-synaptic
LIF with the change in the number of spikes per burst.

Figure S4. Burstiness of single neurons changes with network state. The number of spikes per burst
that a BS neuron(Izhikevich model) produces depends on the state of the network. To quantify the
burstiness of a neuron we use the Bursting Index.57 This measure assigns a rank Rn to every interspike
interval (ISI) of a spike train. The lowest value of an ISI has zero rank. If the ISIs are independent,
the value of each ISI can be considered to be a random number drawn from a uniform distribution
between 1 and N, where N is the total number of ISIs. If a spike train contains a burst, then this
assumption does not hold anymore. The Bursting Index is equivalent to the Rank Surprise (RS)
statistic, which captures the discrepancy between the case of having independent and uniformly
distributed sequence of variables Rn, ...,Rn+q−1 and the actual outcome in the case of a burst
consisting of q number of spikes. It is given given by RS =−log(P(Tq ≤ rn + ...+ rn+q−1)) where rn is
the observed value of rank Rn. Tq is the sum of q discrete uniform variates between 1 and N. In the
above �gure, the average bursting index of BS neurons for di�erent η and g values are shown in a
randomly connected network of excitatory-BS neurons (Izhikevich model)
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