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Abstract 

Measures of similarity between diseases have been used for applications from discovering drug-target 

interactions to identifying disease-gene relationships.  It is challenging to quantitatively compare 

diseases because much of what we know about them is captured in free text descriptions. Here we 

present an application of Latent Dirichlet Allocation as a way to measure similarity between diseases 

using textual descriptions. We learn latent topic representations of text from Online Mendelian 

Inheritance in Man records and use them to compute similarity.  We assess the performance of this 

approach by comparing our results to manually curated relationships from the 

Disease Ontology.   Despite being unsupervised, our model recovers a record’s curated Disease 

Ontology relations  with a mean Receiver Operating Characteristic Area Under the Curve of 0.80. 

With low dimensional models, topics tend to represent higher level information about affected organ 

systems, while higher dimensional models capture more granular genetic and phenotypic information. 

We examine topic representations of diseases for mapping concepts between ontologies and for 

tagging existing text with concepts.  We conclude topic modeling on disease text leads to a robust 

approach to computing similarity that does not depend on keywords or ontology.  
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1.1 Introduction 

Measures of disease similarity have been used in drug repositioning [1], drug target selection [2], and 

understanding disease etiology [3].  These measurements seek to make maximal use of existing 

biomedical research by forming hypotheses based on the similarity between a well-studied or 

treatable disease and one that is less well-understood.  One major limitation in turning this research 

into insight is that the majority of disease knowledge exists in the form of unstructured free text. 

Since it is not easy to parse complex meaning from technical natural language, many ontologies have 

been constructed to classify and organize diseases.  

Some researchers have used these ontologies to measure semantic or functional disease similarity 

[4,5] using resources like Gene Ontology [6], HumanNet [7], and Disease Ontology [8].  These 

approaches are based on overlap between gene sets [4] or distance in within the ontology’s hierarchy 

[5].  However when using an ontology to calculate similarity directly, there are a number of 

limitations.  First, you are confined to the scope of the ontology.  Most ontologies are structured in 

such a way that they only capture one aspect of a disease.  For example, one ontology might organize 

diseases by affected organ system, another by disease basis, and a third by genes associated.  
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This means that an ontology-based similarity metric is measuring distance only in the dimension of 

disease captured by that ontology.  In order to evaluate similarity along more than one dimension (to 

incorporate genetic and phenotypic information in the same measure, for example), there must exist 

an exact mapping between the ontologies that capture each of those dimensions.  But creating such a 

mapping between two ontologies is often an extremely difficult task.  Even expert-curated efforts at 

medical ontology mapping are prone to inconsistencies, false synonymy, and redundancy [9]. 

Some ontologies attempt to capture more than one aspect of disease, but doing so is very difficult 

and leads to unexpected results.  For example, DO categorizes diseases by infectious agent, by organ 

system affected, and by mode of inheritance.  Each one of these pieces of information is important, 

but not every category is captured for each disease.  Only 71 of 8077 diseases are categorized as 

belonging to more than one of these categories.  For example if a disease has “Genetic Disease” as an 

ancestor, then it is very unlikely that it also has “Disease of Anatomical Entity” as an ancestor as well, 

even if both might be appropriate.  This does not mean that DO has incorrectly categorized any of its 

entries, but it means notions like node depth and ancestry have very different meanings in different 

parts of the ontology.  This in turn makes those pieces of information less meaningful in measures of 

disease similarity. 

Beyond purely ontology-based methods, there have also been attempts to leverage free text in 

measuring similarity.  However these text mining approaches have still relied heavily on ontologies 

and controlled vocabularies, which reduce meaning and ignore context. Van Driel et al  [10] calculated 

disease similarity using frequencies of Medical Subject Headings (MeSH) terms [11] as a way to 

represent disease-related text.  Using this feature space, the authors represent phenotype records in 

Online Mendelian Inheritance in Man (OMIM) [12] as MeSH term frequency vectors. With these 

vectors, they compute a phenotype-phenotype similarity matrix, but report no apparent clusters 

within the data.  

More recently, Hoehndorf et al [13] mined text from Medline abstracts to associate phenotypes with 
diseases using the Human Phenotype Ontology (HPO) [14] and DO.  The authors use co-occurrence of 
DO terms with HPO terms in an abstract or title to form these associations.  The paper performs a 
thorough analysis, using the associations to measure disease-disease similarity and to predict 
gene-disease associations based on phenotypic similarity.  The approach demonstrates the ability to 
cluster diseases based on this similarity metric.  However the method is fully reliant on matching 
curated terms or keywords from the ontologies involved to the abstracts and it limits itself to studying 
phenotypic similarity. 

Our method seeks to increase the flexibility of this analysis by using all of the text associated with a 
disease instead of  simply counting keywords.  We use Latent Dirichlet Allocation (LDA) [15], an 
unsupervised probabilistic method of learning topics associated with text.  In the biomedical space, 
LDA has been used to analyze electronic health records [16, 17], drug labels [1], and adverse event 
data [18].  

One benefit of using LDA is removing the strict reliance on a given ontology.  Instead of learning only 
from the keywords which map directly to an ontology class, LDA can use a vocabulary more tailored to 
the corpus on which it is trained.  Additionally, LDA can form associations from multiple types of 
information at once.  Topics include a mixture of genetic or phenotypic information as well as any 
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other clinically relevant characteristics included in the text.  It is especially useful that the output of 
the model is interpretable and can be easily inspected.  

We learn numeric vector representations of diseases as mixtures of topics from free text.  We use 
these representations to calculate disease similarity, but we also explore their usefulness in concept 
normalization and mapping concepts between ontologies.  We evaluate our similarity metric using DO 
as ground truth and we show that the representations can be used for tagging biomedical corpora. 

 

1.2 Methods 

The goal of this process was to quantify similarity between diseases by leveraging free text disease 

descriptions.  The approach first creates a topic model using LDA on textual entries in a disease 

database, then uses an orthogonal ontology as ground truth to validate the model (Figure 1). 

1.2.1 Latent Dirichlet Allocation 

LDA is a generative bag-of-words approach to topic modeling.  It relies on the assumptions that the 

order of words within a document does not matter and that a collection of documents were 

generated by sampling from an underlying distribution of topics.  The algorithm outputs a distribution 

over words in its dictionary for each topic.  As the algorithm iterates over the documents, words are 

clustered together into topics and documents are assigned the topics most likely to have generated 

them. The LDA implementation employed in this paper is an online version of variational Bayes LDA 

[19]. 

The theoretical basis for LDA is fully described in [15]. Briefly, the algorithm works by iteratively 

performing the following steps: 

  

❏  Assign each word ​w​ in each document ​d​ to a random topic 

❏  For each document ​d​: 
❏  For each word ​w​: 

❏  For each topic ​t​: 
❏  Calculate probability of topic ​t​ given document ​d​ using current 

word-topic assignments within ​d 

❏  Calculate probability of word ​w ​given topic ​t ​using the current 

contribution to topic ​t​ from word ​w​. 
❏  Reassign word ​w​ to topic ​t​ with the probability distribution ​p(t|d)​*​p(w|t) 

for all topics 

  

❏  Repeat 
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The computational challenge is the calculation of the posteriors over word and topic probabilities. 

The algorithm first makes the simplifying assumption of dropping the dependencies that make this 

inference intractable.  With this simplification it becomes possible to find an approximation of each 

posterior, q(z, θ) from a family of possible distributions with new free variational parameters γ and 

φ.  The algorithm finds values of these free parameters which minimize the Kullback Leibler 

divergence [20] between the approximation q(θ , z | γ, φ)  and the true posterior, p(θ , z |w, α, 

β). 

1.2.2 Document collection 

To demonstrate the method we used as our corpus the 4558 descriptive records in OMIM as of 

September 2015.  The training corpus for the model also included the text from the 1339 Wikipedia 

articles that directly called out an OMIM identifier in our document set.  This was done to increase the 

amount of text about each disease the model sees and to improve applicability of the model to 

non-OMIM text.  The Wikipedia documents were used to improve training but were not evaluated in 

our validation step.  In all cases we only employed English language documents. 

1.2.3 Dictionary generation and document pre-processing 

After collecting the relevant documents, we performed a series of pre-processing steps to prepare the 

documents for use in LDA.  First the documents were stripped of references, headers, and other 

source-specific text in order to minimize bias across sources.  Documents were split on 

whitespace/punctuation and lowercased to form individual word tokens.  Stopwords were removed 

from the documents using a dictionary provided in the Natural Language ToolKit (NLTK) [21].  English 

words were stemmed using NLTK's implementation of the Porter Stemmer.  Other words and tokens 

were left unprocessed to avoid stemming scientific terms unnecessarily. 

The top ​V​ most frequently occurring words in the corpus comprised the dictionary used by the LDA 

algorithm.  Dictionary size, ​V​, was a parameter varied in optimizing the model.  After pre-processing, 

documents are essentially just a list of pointers to entries in a dictionary.  Anything outside the 

dictionary is ignored, and word order does not matter during construction of an LDA model. 

1.2.4 Defining disease similarity 

By associating text with each disease we want to consider, we can now assign topic vectors to each 

disease.  In other words, a disease is defined in terms of the contribution of each of the topics 

computed by the LDA model. LDA is a generative method which assumes that documents are 

generated by first picking a topic ​t​ from a distribution over all possible topics, then choosing a word 

from a distribution over all words given that topic.  The process of training the LDA model is 

determining the distributions most likely to have given rise to the observed documents.  After 

training, the topic distribution for a given document represents the parameters of the Dirichlet 

distribution over topics which generated that document.  The output of this procedure is a real-valued 

vector of length ​K​ (where ​K​ is the number of topics) for each document which represents the 

theoretical contribution of each topic to the document’s generation. 
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By comparing the distance between the topic vectors learned from two documents, we have a 

measure of how similar we believe those documents’ diseases to be. Concretely, we assume that the 

model is approximating topics that represent actual concepts in the disease space.  Thus if two 

documents appear to have been generated from the same set of topics, their diseases may 

demonstrate shared etiology.  We use the KL divergence as our distance metric, as it is used as a 

measure of similarity between two distributions (in this case a Dirichlet distribution over topics). 

More specifically, it measures how much information is lost if you use the topic distribution of the 

result document to approximate the distribution of the query document. 

 

 

1.3 Results 

1.3.1 Disease Ontology Evaluation 

When it comes to evaluating the performance of our similarity measurements, there is no obvious 

gold standard because disease similarity lacks measurable ground truth. Hoehndorf et al. [13] 

evaluate their model by determining to what extent their measure of  similarity between human 

disease phenotype and mouse phenotype predicts mouse disease genes.  But that metric does not 

translate to our methodology due to a lack of free text descriptions of mouse models.  Cheng [4] and 

Mathur [5] both use a very small, curated set of disease relationships as their test set, but of the 

roughly 70 relations these two works use, only 5 can be linked to one of our OMIM records.  Our 

solution was to use relations within Disease Ontology as a ground truth measure of similarity. 

We considered two DO entries to be related if they shared a common ancestor within 3 generations. 

Of the 1613 records that had a DO mapping, 302 of them were only children of “Autosomal Recessive 

Disease” or “Autosomal Dominant Disease.”  The extremely shallow nature of this categorization led 

to a number of ground truth relations between otherwise dissimilar diseases.  For the analysis below, 

we excluded these records (leaving 1311 records), but in general including them had little effect on 

the process when our topic number was low, but negatively impacted performance in higher 

dimensions.  This makes intuitive sense, as higher dimensionality will lead to more granular topics, 

which will do a worse job at capturing similarity if a larger percentage of ground truth relations are 

high level. 

For each of the 1311 OMIM documents (our “query”), we sorted all other OMIM records in the set 

based on the KL divergence between the query document's topic distribution and every other 

document's topic distribution.  By calling the first ​n​ most similar documents in our set "positives" and 

all the other documents in the set "negatives" we scored each document according to whether or not 

the "positive" documents were in fact related to the query document according to DO.  By varying ​n 

(the number of positive documents returned), we built a Receiver Operating Characteristic (ROC) 

curve for each document and computed the Area Under the Curve (AUC) (Figure 2).  
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We optimized our model’s parameters (Figures 3, 4) and hyperparameters (Figure 5) using the mean 

AUC and the count of AUCs above 0.90.  The mean AUC of a model with​ ​25 topics and a dictionary of 

7,000 words was 0.80 ± 0.01.  The mean number of documents for which the model exhibited an AUC 

above 0.90 was 353 ± 63 (out of 1311).  The model performs best with a topic number between 20 

and 50 and a dictionary size of 5000 to 7000 words.  Higher dimensionality slightly impairs 

performance on this task while increasing the granularity of the topics learned. 

The most similar documents to most queries shared obvious relations with the query document 

(Table 2, Figure 6), though these are not always the kinds of relations captured in DO.  Interestingly, 

the model often learns that different variants of the same disease class are not the most similar 

diseases.  For example OMIM230800 Gaucher Type I is less related to OMIM230900 Gaucher Type II 

than it is to OMIM607625 Niemann Pick Type C2.  

This may be a weakness or strength of the model depending on the application.  It shows that the 

similarity is based on a latent representation of the diseases rather than on the presence of a few 

keywords.  In this example, we can see that the primary topic to which these records belong contains 

many relevant words.  Obviously it contains “lysosomal” and “storage” as these are all lysosomal 

storage diseases.  But very strongly associated are the words “lipid(s),” “level(s),” 

“accumulates/accumulation,” “acidic,” “lipoprotein,” and “deficient/deficiency.”  The topic also 

contains obvious keywords such as “Gaucher” and “Neimann” but can represent a lysosomal storage 

disorder in a much richer fashion than simply keyword matching.  

A useful result of this methodology is that we learn topic vectors for many OMIM diseases that do not 

have a DO mapping.  In these instances, our similarity metric served as a way to place an unmapped 

OMIM disease within the DO.  For example according to our methodology, the document most similar 

to OMIM126600, Doyne Honeycomb Degeneration of Retina (which does not map to an existing DO 

record), is Stargardt Disease which DO categorizes as an “Age-Related Macular Degeneration.”  The 

other top documents were Basal Retinal Drusen and Vitelliform Macular Dystrophy, both 

characterized by DO as one level higher, a “Degeneration of Macula” (Figure 7).  Examination of the 

nearest neighbors of a given document seems to be a functional way to suggest node location within 

a target ontology.  

It is important to note that the DO evaluation metric is orthogonal to the training of the model.  LDA is 

unsupervised, so in effect we “hold-out” all of the ground truth relations each time we train a new 

model, then evaluate on all those held-out relations.  The purpose of the AUC measurement is not to 

determine how well the model would generalize to new examples, but rather to validate our measure 

of similarity.  

1.3.2 NCBI Disease Corpus 

The NCBI Disease Corpus [24] is a manually curated corpus of 793 titles and abstracts tagged with the 

disease concepts mentioned therein.  The tags reference a MeSH or OMIM concept.  The dataset is 

designed to be a gold standard in disease concept normalization and is split into training and test 

datasets.  Traditional approaches generally rely on Named Entity Recognition (NER) to extract terms 
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before normalization [25].  Using a state-of-the-art NER application allows a fairly simple concept 

normalization scheme to achieve high precision.  

We tested LDA disease vectors for the combined task of NER and concept normalization in the NCBI 

Disease Corpus.  We first constructed a document for each disease concept in the training set.  Each 

document consisted of the text from the abstracts in which it was mentioned in the training set.  We 

then performed LDA on these documents to generate a topic vector for each concept.  Then we 

showed the model each of the abstracts in the test set to learn their topic vectors. For each test set 

topic vector, we compared with every topic vector from the training set and ordered them by topic 

similarity.  This approach achieved a mean AUC of 0.754 on the task (Figure 8), despite the fact that 

only 144 of the 200 classes in the test set were mentioned in the training set.  When a label in the test 

set does not appear in our training set, we have no topic vector for it, and therefore we will not do 

better than random guessing. 

1.3.2 Parameter Selection 

The method is dependent on a number of tunable parameters (topic number, dictionary size, Dirichlet 

hyperparameters).   As a result, it is possible to generate many different models from the same data. 

To tune the possible parameters of the model, we evaluated the performance of the method on the 

DO task for a wide range of values (Table 1).  We evaluated both mean AUC across the document set 

as well as count of AUCs above 0.90.  

1.3.3 Control Experiments 

Given the complexity of the LDA methodology, we investigated simpler alternatives.  For comparison, 

we applied a similar approach applying Principal Component Analysis (PCA) to normalized term 

frequency (TF) vectors for each document in the corpus.  We generated a ​D​ x ​V ​matrix of word 

frequencies, normalized both within document and within features.  After performing PCA, we kept as 

many principal components as we had topics.  We then constructed ROC curves for the DO mapped 

documents, as done above for LDA, based on distance between TF PCA vectors. In lower dimensions, 

this control approach performed similarly to LDA, but with important differences.  Since LDA is 

probabilistic and unsupervised, we see variance in its performance.  Thus by guiding it, (either by 

simply adding keywords to each document or by using one of several existing supervised approaches 

to LDA [22,23]), we can achieve performance improvements.  Secondly, as we increased 

dimensionality the additional principal components helped performance less than the additional 

topics.  This is a result of the nature of principal components, each of which captures successively less 

variance. 

Notably, the number of principal components at which our performance measure leveled off was 

similar to the optimal number of topics in LDA (Figure 9), perhaps related to the number of 

dimensions required to capture the variance in the DO hierarchy.  The TF approach also leverages all 

the free text associated with a disease and performs almost as well as LDA in low dimensionality. 

However it does so at the cost of interpretability.  Examining the word distribution over each topic 

provides an easy way to understand what is driving each latent feature. 
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To ensure that the metric itself was not biased, we shuffled the labels of the OMIM records thus 

randomizing the connections between documents within the DO.  We then performed the same 

process and as expected the resulting distribution of AUCs was tightly centered around 0.5 as 

expected (Figure 10). 

1.3.4 Interpretability 

LDA offers the advantage of having an interpretable output; once the model is trained, we have a ​K​ x 

W​ matrix that represents the distribution of W words over K topics.  This offers the ability to look for 

meaning within topics and to see what words influence the model most. 

For small topic number ​K​, we found that the topics tended to represent more anatomical and 

phenotypic information.  Inspecting the topics, we could see topics describing nephrology, 

cardiovascular problems, neurology, blood, and tumors.  At slightly larger values of ​K​, we saw topics 

start to represent high level classes of diseases.  One topic contained the terms “Huntington,” “ALS,” 

“Parkinsons,” and “Alzheimer.” 

At much larger K, the topics converged very differently and became more specific to individual 

diseases.  In a run with 200 topics, one topic contained the terms, “PKU,” “PAH,” “phenylalanine,” 

“phenylketonuria,” “PHE.”  This is a particularly illustrative case as PAH is an overloaded abbreviation 

in the disease space;  it means both “Phenylalanine Hydroxylase” and “Primary Arterial 

Hypertension.”  However the model learns to correctly associate PAH with this topic because it 

considers each term in the context of the surrounding document. 

The top words in each topic are provided for two different size models as well as a visualization of the 

topics (Additional Information 1-3). 

1.4 Discussion 

It is difficult to arrive at a precise quantitative evaluation of this methodology due to the lack of 

ground truth similarity scores between diseases.  The DO categorization task serves as an indication 

that the method learns reasonable topics which correspond to a human understanding of disease. 

But an AUC of 1.0 on the task would simply mean we could recreate DO’s structure, not necessarily 

that the similarity metric was optimal.  Rather, we expect that the topics generated using this 

approach are learning a richer representation of disease space than the structure of any one ontology 

can capture. 

This approach is affected by the availability of relevant, tagged disease text.  Here we restricted the 

task to evaluating descriptive OMIM records, but to increase the scope of the application we would 

require text that was well-tagged within a broader database.  This can take the form of indexed 

scientific literature, Wikipedia entries, or curated disease descriptions.  With a larger corpus, the 

model would be able to learn an even richer representation of each disease. 

The availability of disease descriptive text is particularly limiting in the NER and concept normalization 

tasks.  Using abstracts that only mention a disease (as opposed to describing it) as a seed for the topic 
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representation of a concept makes it easy for our model to lack specificity.  Another limitation of our 

approach to tagging is that we only evaluated text at the abstract level.  If we had added a measure of 

sentence level similarity, we likely would have seen better results but at the expense of runtime and 

simplicity. 

Adding a K-Nearest Neighbors methodology as a final step after generating LDA topic vectors could be 

a formalized way to use this approach to extend or improve an ontology.  In the case where an 

ontology is too flat or lacks valuable, observable relationships, it may help to use document similarity 

to improve the ontology’s structure.  For example, DO has many nodes whose only parent is 

“Autosomal Dominant/Recessive Disease.”  While this is correct, it does not convey much information 

about the disease.  By evaluating the parents of documents that have similar topic distributions, it 

might be possible to break out these large clusters into more specific ones. 

The procedure described here can be extended in a number of ways.  First, for modeling the hierarchy 

inherent to an ontology, a hierarchical implementation of LDA could be used.  It would also be easy to 

take advantage of the structure of an ontology to add terms identifying a document’s parents to the 

associated text, thereby guiding the learned topics.  If using a larger corpus, the method would also 

likely benefit from including n-grams in the dictionary. 

Additionally, once a model like this has captured a latent representation of an entity from an 

ontology, the topic distribution can be used to identify similar text from any other source.  This 

presents a robust alternative to keyword matching for tagging scientific literature. 

1.5 Conclusions 

The goal of the approach outlined above was to learn vector representations of diseases from their 

textual descriptions, then use those representations to measure disease similarity.  Additionally we 

wanted to do so in a manner that was not dependent on specific keywords or ontologies. We 

demonstrated that LDA seems to be able to represent a disease reasonably and recover its ground 

truth relations well despite its unsupervised nature.  We also showed that such a topic-driven view of 

disease may be useful in concept normalization and mapping concepts between ontologies. 

Additionally, since the model lends itself to human interpretation, it has the potential to drive new 

hypotheses. 

Availability of Supporting Data 

This paper focused on the use of both OMIM (​http://omim.org​) and DO (​http://disease-ontology.org​). 
OMIM is the copyrighted material of the Johns Hopkins University, but may be used “ for your 

personal use, for educational or scholarly use, or for research purposes” and may be downloaded with 

a proper key here: ​http://omim.org/downloads​.  DO is a member of The Open Biological and 

Biomedical Ontologies (OBO) and may be downloaded freely from their website: 

http://www.obofoundry.org/cgi-bin/detail.cgi?id=disease_ontology​. 
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Further, the code used in this research is freely available for download from the National Center for 

Advancing Translational Sciences: ​https://spotlite.nih.gov/ncats/omimlda.git 
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LDA - Latent Dirichlet Allocation 

OMIM - Online Mendelian Inheritance in Man 

DO - Disease Ontology 

NLTK - Natural Language Tool Kit 

MeSH - Medical Subject Headings 

ROC - Receiver Operating Characteristic 

AUC - Area Under the Curve 

NER - Named Entity Recognition 
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Figure 1.  Overview of the proposed methodology and validation 
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Figure 2.  ROC Curve for OMIM_#230900 Gaucher Disease Type II on the Disease Ontology 

categorization task 

 

Figure 3.  Mean AUC of LDA model on Disease Ontology task for various topic number and dictionary 

size combinations 
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Figure 4. Count of records with AUC > 0.90 for LDA model on Disease Ontology task for various topic 

number and dictionary size combinations 

 

Figure 5. Heatmap of mean performance of LDA model on Disease Ontology task in hyperparameter 

space 
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Figure 6.  Example topic distribution for documents most similar to Gaucher Disease Type II 

determined by an LDA model with 7000 words and 20 topics 
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Figure 7. Demonstration of the utility of the LDA method for placing unmapped concepts within an 

existing ontology 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2015. ; https://doi.org/10.1101/030593doi: bioRxiv preprint 

https://doi.org/10.1101/030593
http://creativecommons.org/licenses/by/4.0/


 

Figure 8. Distribution of AUCs for LDA model on concept identification and concept normalization task 

using NCBI Disease Corpus 
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Figure 9.  Mean AUC on DO task for an LDA model with a 7,000 word dictionary vs PCA keeping the 

same number of principal components as topics. 

 

 

Figure 10.  Distribution of AUCs on Disease Ontology categorization task with shuffled Disease 
Ontology IDs.  
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TABLES 

 

 

Parameter  Meaning  Value 

W  Dictionary Size  7,000 

K  Topic Number  25 

α  Dirichlet Prior on Per­Document Topic Distributions  0.1 

β  Dirichlet Prior on Per­Topic Word Distributions  1 

 

Table 1.  Values parameterizing the LDA model that performed optimally on the Disease Ontology 

categorization task 
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Query 
Document  Most Similar Documents 

Machado­J
oseph 
Disease 

Spinocerebel
lar Ataxia 1 

Frontotempo
ral Dementia 

Spinocerebella
r Ataxia 2 

Spinocerebellar 
Ataxia 6 

Dentatorubral­Pall
idoluysian 
Atrophy 

Macular 
Dystrophy, 
Vitelliform, 
2 

Oguchi 
Disease 2 

Leber 
Congenital 
Amaurosis 6 

Doyne 
Honeycomb 
Retinal 
Dystrophy 

Night Blindness, 
Stationary, Type 
1F 

Retinitis 
Pigmentosa 

Gaucher 
Disease, 
Type II 

Gaucher 
Disease, 
Type III 

Gaucher 
Disease, 
Saposin C 
Deficiency 

Niemann­Pick 
Disease, Type 
C2 

Gm1­Gangliosido
sis, Type III 

Gm1­Gangliosido
sis, Type II 

Night 
Blindness, 
Congenital 
Stationary, 
Type 1B 

Oguchi 
Disease 2 

Leber 
Congenital 
Amaurosis 6 

Retinitis 
Pigmentosa 42 

Cone­Rod 
Dystrophy, 
X­Linked, 1 

Night Blindness, 
Stationary, Type 
1F 

Osteogene
sis 
Imperfecta, 
Type III 

Osteogenesi
s Imperfecta, 
Type IV 

Osteogenesi
s Imperfecta, 
Type I 

Achondrogene
sis, Type IB 

Ehlers­Danlos 
Syndrome, Type 
IV 

Osteopetrosis, 
Autosomal 
Dominant 2 

Tay­Sachs 
Disease 

Sandhoff 
Disease 

Niemann­Pic
k Disease, 
Type C1 

Gaucher 
Disease, Type 
II 

Gaucher Disease, 
Type III 

Niemann­Pick 
Disease, Type B 

 

Table 2. Sample of query documents with AUC > 0.90 and their 5 most similar records 
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