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SUMMARY 

The circadian clock is a fundamental feature of gene 

regulation and cell physiology in eukaryotes and some 

prokaryotes, and an exemplar gene regulatory network in 

Systems Biology. The circadian system in Arabidopsis 

thaliana is complex in part due to its photo-transduction 

pathways. Analysis of natural genetic variation between 

Arabidopsis accessions Cape Verde Islands (Cvi-0) and 

Landsberg erecta (Ler) identified a major, temperature-

specific Quantitative Trait Locus (QTL) on chromosome V 

that altered the circadian period of leaf movement (Edwards 

et al., Genetics, 2005). We tested Near-Isogenic Lines (NILs) 

to confirm that Ler alleles at this PerCv5c QTL lengthened 

the circadian period at 12°C, with little effect at higher 

temperatures. The PHYTOCHROME C gene lies within the 

QTL interval, and contains multiple sequence variants. Plants 

carrying either a T-DNA-insertion into PHYC or a deletion of 

PHYC also lengthened circadian period under white light, 

except at 27°C. phyB and phyABE mutants lengthened period 

only at 12°C. These results extend recent data showing PhyC 

effects in red light, confirming the number of photoreceptor 

proteins implicated in the plant circadian system at eleven. 

The connection between light input mechanisms and 

temperature effects on the clock is reinforced. Natural genetic 

variation within PHYC is likely to underlie the PerCv5c QTL. 

Our results suggest that functional variation within the 

PHYC-Ler haplotype group might contribute to the evolution 

of the circadian system and possibly to clock-related 

phenotypes such as flowering time. These results have 

previously passed peer-review, so we provide them in this 

citable preprint. 

INTRODUCTION 

The circadian clock is a 24h endogenous timer that allows the 

correct temporal regulation of physiological, biochemical and 

developmental processes. The expression of over 30% of the 

Arabidopsis thaliana transcriptome is driven by the circadian 

clock (Covington et al. 2008; Michael et al. 2008; Michael 

and McClung 2003). Rhythmic transcriptional outputs 

control physiological processes such as daily rhythmic 

growth and photoperiodic flowering. In both cases, the 

mechanisms are sufficiently characterised to support 

mechanistic, mathematical models (Seaton et al. 2015). The 

clock mechanism in all organisms includes interlocked 

transcriptional–translational feedback loops. The clock’s 

rhythmic behaviour is thought to emerge from the dynamics 

of this clock gene circuit, which have been well characterised 

in Arabidopsis (Flis et al. 2015). The negative feedback loops 

in this model plant species incorporate two closely-related 

MYB transcription factors CIRCADIAN CLOCK 

ASSOCIATED1 (CCA1) and LONG ELONGATED 

HYPOCOTYL (LHY) that inhibit the expression of evening-

expressed genes such as a pseudo-response regulator (PRR) 

TIMING OF CAB EXPRESSION 1 (TOC1). The expression 

of CCA1 and LHY is tightly regulated by other clock 

components, including sequential inhibition by PRR9, PRR7 

and PRR5. TOC1 and other PRR genes are repressed by an 

Evening Complex (Hsu and Harmer 2014).   
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For the clock to be useful, the endogenous period must be 

synchronised (entrained) to match the 24-hour environmental 

cycle (Johnson et al. 2003). The strongest entrainment signals 

are temperature and light. At least four families of 

photoreceptors have been identified as transducing light 

signals to reset the clock, the blue light sensing 

cryptochromes (CRY1 and CRY2), the red/far-red light 

(R/FR) sensing phytochromes (PHYA, PHYB, PHYD, 

PHYE),(Devlin and Kay 2000; Somers et al. 1998; Yanovsky 

et al. 2000), the UV-B photoreceptor UVR8 (Feher et al. 

2011) and a family of three F-box proteins, including 

ZEITLUPE (ZTL)(Baudry et al. 2010). These ten 

photoreceptors transduce light signals to regulate clock genes 

and proteins (Fankhauser and Staiger 2002), with both 

specialised and overlapping roles. PHYC alone has little 

effect on other phenotypes in the absence of other 

phytochromes (Hu et al. 2013), and no role for PhyC in the 

Arabidopsis clock had been confirmed until, during the 

preparation of this paper, a long-period phenotype was 

reported under red light (Jones et al. 2015). In barley, some 

PHYC alleles have also shown circadian effects (Pankin et al. 

2014; Nishida et al. 2013) and in Arabidopsis, natural genetic 

variation in related traits has been associated with PHYC 

(Balasubramanian et al. 2006). 

Temperature effects on circadian clocks include entrainment 

by temperature cycles, whereas under constant temperatures, 

the circadian period is unusually constant across a 

physiological temperature range (termed ‘temperature 

compensation’). Among multiple mechanisms implicated in 

how ambient thermocycles influence the clock are alternative 

RNA splicing, in Neurospora crassa, Drosophila 

melanogaster (Colot et al. 2005);Low et al. 2008) and 

Arabidopsis (James et al. 2012), and protein phosphorylation 

in N. crassa (Mehra et al. 2009). Mutants of some clock genes 

alter temperature compensation (Gould et al. 2006; Salome et 

al. 2010). A systems biology analysis of ambient temperature 

effects across the clock mechanism revealed a strong 

dependence on light quality, and suggested that light and 

temperature signalling converged upstream of the clock, such 

that photoreceptor pathways had a significant role in 

temperature responses (Gould et al. 2013). This work 

indicated multiple targets of temperature effects in the clock 

mechanism, including the morning genes implicated by 

Salome et al. 2010 and James et al. 2012, as well as the 

Evening Complex implicated by Mizuno et al. (2014). 

Quantitative genetic approaches have identified genetic 

variation in clock-affecting genes (Anwer and Davis 2013), 

including Quantitative Trait Loci (QTL) in Arabidopsis (de 

Montaigu et al. 2015; Michael et al. 2003; Swarup et al. 

1999). Our earlier work tested circadian period at three 

temperatures, identifying multiple QTL(Edwards et al. 2005). 

Here we propose PHYC as a candidate gene for a clock-

affecting QTL that is specific for low ambient temperature. 

RESULTS 

NILs recapitulate the temperature-specific QTL effect 

The PerCv5c QTL was identified in the Cvi by Ler (CvL) 

recombinant inbred lines (RILs) and mapped to the middle of 

Chromosome 5. This QTL alone accounted for 44.6% of 

phenotypic variation in the period of rhythmic leaf movement 

at 12°C (Edwards et al. 2005), by far the largest single effect 

observed in that study. Near isogenic lines (NILs) carrying 

Cape Verde Islands (Cvi) alleles around in the putative 

circadian QTL were therefore used to identify Cvi loci that 

regulate the clock, in an isogenic Landsberg erecta (Ler) 

background (Edwards et al. 2005). Figure 1a shows the 

periods of NIL45a and NIL106 at 12C, 22C and 27C, with 

numerical values in Table 1. Both NILs had Cvi 

introgressions around the PerCv5c locus (Figure 1b). Both 

NILs had shorter circadian period compared to the Ler parent 

especially at 12°C (Figure 1a), consistent with the original 

QTL identification. The larger introgression of NIL45a 

shortened the period more than NIL106. It is possible that 

multiple loci in the Cvi region of NIL45a affect the clock but 

the small period effects make this difficult to confirm. 

 

 

 

 

Figure 1. PerCv5c QTL effect on period, defined in 

Near-Isogenic Lines (NILs). 

(a) PerCv5c NIL periods. Mean leaf movement period 

versus temperature of PerCv5c NILs 45a (open squares) 

and 106 (open triangles) compared to Ler (filled circles) 

at 12ºC, 22ºC and 27ºC. Error bars represent SEM of 

period estimates.  

(b) Graphical genotypes of the NILs. Vertical bars 

represent linkage groups and colour represents Ler 

(grey) background or Cvi (black) genome sequences on 

chromosome V.  
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Natural allelic variation at PHYTOCHROME C 

PHYC maps within the confidence interval of PerCv5c, so 

was considered a possible candidate gene for the QTL. 

Quantitative RT-PCR showed that the PHYC alleles in both 

accessions were expressed under constant light conditions 

(Figure 2). Expression was higher in subjective day (54h in 

constant light) than in subjective night (62h in constant light), 

though possibly with lower levels of mRNA in Ler (Figure 

2).  

Sequence analyses for the PHYC gene and predicted PHYC 

protein revealed mutations between the Cvi and Ler 

backgrounds, leading to four changes in the protein 

sequence (Figure 3a, 3b). The AT5G35840 locus in 

sequences from the 1001 Genomes Project (Weigel and 

Mott 2009) confirmed these four changes (Figure 3c). The 

1001 Genomes resource also showed that the Cvi sequence 

is close to the Ler haplotype rather than the Col reference 

haplotype, which is shared by Ws-2. The changes from Ler 

to Cvi amino acid sequence are A27T, S230G, T352S and 

H470P, all of which fall in the N-terminal domains of 

phytochrome before the bipartite PAS motif. At position 230, 

G is the amino acid in the reference Col genome, whereas in 

the other positions, the Col sequence is the same as Ler 

(Figure 3c). 

phyC mutants alter circadian period 

To test a possible role for PHYC in the circadian clock, the 

phyC-1 mutant, in a PhyD-deficient background 

Wassilewskija-2 (Ws) (Franklin et al. 2003) was assayed for 

period at 12C, 22C and 27C (Figure 4a). phyC-1 displayed 

1.6 and 1.4 hours period lengthening at 12C and 22C 

respectively, but was not significantly different from wild 

type at 27C. Numerical period values and statistical tests are 

shown in Table 1.  

To confirm the phyC-1 phenotype, period was tested in a 

second null mutant for phyC. The gn7 line, first described as 

gne7 by Sorensen et al. (Sorensen et al. 2002), has a large 

genomic deletion removing the entire PHYC open reading 

frame in a C24 background (Figure 5a). As with phyC-1, 

significant circadian period lengthening was observed in gn7 

plants at 12C and 22C, but not 27C (Figure 4b), relative to 

the C24 parent line. Over expression of PHYC under the 35S 

promoter rescued this period phenotype, suggesting that the 

gn7 period effect was principally mediated by the deletion of 

PHYC (Figure 4b).  

phyB-10 single mutants and phyABE triple mutants were 

tested in the same experiments. Neither mutant showed a 

period defect in white light at 22°C, as expected, but both 

lengthened period at 12°C (Figure 6; Table 2). 

 

  

Figure 2. PHYC expression in Cvi and Ler. 

Quantitative RT-PCR showed that both alleles 

were expressed, in RNA extracted from Cvi and 

from Ler plants at the times (54h, 62h) and 

temperatures (12°C, 27°C) indicated, though 

possibly with lower levels of mRNA in Ler . 
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(a) Leaf movement period of phyC-1 mutant plants compared to wild 

type Ws. (b) Leaf movement period of C24 wild type (filled circles), 

gn7 deletion mutant (open squares) and gn7; 35S::PHYC rescued line 

(open triangles) at 12ºC, 22ºC and 27ºC. Error bars represent SEM of 

period estimates. 
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Figure 3. Genomic and protein sequence alignment in Cvi and Ler. Sequence analyses from the plants tested are shown for 

the (a) PHYC gene and (b) predicted PHYC protein, revealing variation between the Cvi and Ler backgrounds leading to four 

amino acid changes in the protein sequence (Ler -> Cvi): A27T, S230G, T352S and H470P. For S230G, the Ler amino acid 

differs from the Col-0 reference. (c) corresponding analysis of PHYC locus AT5G35840 from the 1001 Genomes Project server 

(http://signal.salk.edu/atg1001/3.0/gebrowser.php), showing the four accessions relevant to this study: Cvi-0 and Ler from the 

CvL RILs and NILs, and the C24 and Ws-2 genetic backgrounds for the phyc mutant alleles. Asterisks between Cvi-0 and Ler 

mark the four amino acid substitutions detected in (b). Ws-2 is identical to the Col-0 reference sequence. Note the additional L 

substitution at the C terminus of the C24 allele. Red markers, A in reference sequence; Green markers, G in reference sequence. 

Alternative sequences are provided for Cvi-0 and Ler in this resource (not shown) but they did not match our sequences in (a). 

(a) 

(b) 

(c) 

* * * * 
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DISCUSSION 

Circadian clock mechanisms include gene regulation by 

multiple, interlocking feedback loops, which can increase the 

flexibility of possible regulatory changes over evolutionary 

time and in the face of environmental variations. In light-

grown Arabidopsis seedlings, multiple photoreceptors 

contribute light input signals, adding further complexity to 

the clock network.  

We showed that phyC contributes to control clock period in a 

temperature-specific manner under white light, adding to the 

four other phytochromes, two cryptochromes, UVR8 and the 

ZTL/FKF1/LKP2 family, and bringing the number of known 

circadian photoreceptor proteins in Arabidopsis to eleven. 

The rhythmic control of native PHYC expression (Toth et al. 

2001) was not required for normal circadian rhythmicity, 

because the gn7 mutant phenotype was rescued by a 35S mis-

expression transgene (Figure 4b). 

A similar phenotype was observed in the phyb-10 and phyabe 

triple mutant, suggesting that this effect was principally 

mediated by phyb in both lines. In contrast to the phyB 

mutants, both phyC mutants lengthened period at 22C as 

well as 12C.  Taken together, these phenotypes suggested 

that the phyD mutation in the Ws background of phyc-1 and 

phyb-10 was not uniquely required for the phenotypes 

observed, though interactions among the phytochromes might 

well contribute. Hence, PHYB and PHYC are likely the major 

effectors of the clock regulation detected here. 

No circadian period QTL were mapped to the PHYB locus in 

Edwards et al. (2005). However, an epistatic interaction was 

suggested between markers FD.222L-Col and CH.60C, 

which map near to PHYB and PHYC respectively (K.D. 

Edwards Ph.D. Thesis, University of Warwick). This 

interaction suggested the possibility of the Ler allele of PHYB 

enhancing the period difference between the Ler and Cvi 

alleles of PHYC. 

The similarity of the phyC mutant phenotype to the PerCv5c 

QTL effect, together with the DNA sequences, strongly 

suggested that allelic variation at PHYC contributes to or 

solely causes this QTL. If so, then our results further 

suggested that the PHYC-Ler allele was less active than 

PHYC-Cvi, consistent with (Monte et al. 2003; 

Balasubramanian et al. 2006), because PHYC-Ler lengthened 

circadian period as phyC null mutants also do. The haplotypes 

of PHYC across multiple accessions were defined by 

Balasubramanian et al. (2006). Cvi is clearly among the Ler 

haplotypes, whereas Ws-2 is among the Col haplotypes 

(Figure 3c). Our results suggest that PHYC function varies 

within the Ler haplotype group, at least at low temperature. 

The variation within this group may be relevant, for example, 

to explain the association of PHYC alleles within the Ler 

haplotype group to particular habitats, such as areas of high 

precipitation in the Iberian peninsula (Mendez-Vigo et al. 

2011). 

Page 6, below, shows Figure 6. Circadian period of phyB 

single and multiple mutants. Table 2. Summary of leaf 

movement periods in phy mutants of Figs. 4 and 6. 

 

  

Figure 5. The PHYC open 

reading frame is completely 

removed in the gn7 line. (a) 

Schema of deletion in gn7 as 

detected by Southern probes at 

locations indicated. (b) 

Western blotting performed on 

protein extracts of C24 and 

gn7 plants, for phyC and phyB 

proteins confirms that phyC 

protein is specifically absent 

in gn7. The Coomassie-

stained control confirms equal 

protein loading. 
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Period (h) n SEM P Period (h) n SEM P Period (h) n SEM P

Ler 25.30 38 0.19 23.81 55 0.16 23.67 60 0.16

NIL 45a 23.79 15 0.34 < 0.01 23.31 32 0.20 < 0.01 23.16 26 0.21 < 0.02

NIL 106 24.60 11 0.40 < 0.05 24.01 31 0.21 > 0.05 23.90 29 0.21 > 0.05

12oC 22oC 27oC

Table 1. Summary of PerCv5c NIL leaf movement periods 
Leaf movement period of PerCv5c NILs at 12ºC, 22ºC and 27ºC indicated. Data are means of n traces per line at each 

temperature.  Significance levels of t-tests comparing the mean periods of NILs to Ler are shown (P).  
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EXPERIMENTAL PROCEDURES 

Plant material 

Seeds for Arabidopsis accessions, CvL RILs and NILs used 

in leaf movement analysis were as described (Edwards et al. 

2005), generously donated by M. Koornneef. NIL45a carries 

Cvi alleles in a 42-48 cM region in the middle of 

Chromosome 5, between markers GH.177C and HH.4451Col 

(Alonso-Blanco et al. 1998). NIL106 has a 15-19 cM Cvi 

introgression between markers GB.235-Col and GB.233C 

(Alonso-Blanco et al. 1998). phyC-1 null allele contains a T-

DNA insertion as previously described (Franklin et al. 2003). 

phyC deletion allele gn7 has previously described (Sorensen 

et al. 2002); seeds for gn7 and gn7 expressing 35S::PHYC 

were generously provided by G. Whitelam. phyB-10 mutants 

were previously named phyB-464-19   (Reed et al. 1993) in 

the Ws background. The phyabe mutant contains the phya-2 

(Whitelam et al. 1993), phyb-1 (Koornneef et al. 1980) and 

phye (Devlin et al. 1998) alleles in a Ler background. 

Growth conditions 

Growth conditions for samples used in leaf movement and 

RNA studies under constant light were essentially as 

described (Edwards et al. 2005; Edwards et al. 2010). Briefly, 

sterile seed were stored in 0.15% agar and stratified at 4° for 

4–5 days prior to sowing on Murashige-Skoog 1.5% agar 

medium containing 3% sucrose. Seedlings were grown for 6 

days under constant light of 55–60 μmol m−2 sec−1 cool 

white fluorescent light and then entrained for 4 days at 21°–

22° under (12 hr/12 hr) light/dark cycles of 75 μmol m−2 

sec−1 cool white fluorescent light. 

Measurement of leaf movement 

Individual period estimates were produced from leaf-

movement data as described (Edwards et al. 2005). In brief, 

leaf growth of Arabidopsis seedlings was imaged under 

constant light using a custom-built, 31-camera array. Y-axis 

centroid positions for each leaf were determined from the 

image stacks using Metamorph software. Circadian period of 

each leaf was estimated using the FFT-NLLS algorithm 

through the BRASS interface (Edwards et al., 2010). Mean 

period estimates for each genotype were based on data from 

two to four independent experiments at each temperature 

analysed using REML (Patterson and Thompson 1971) in the 

statistical package GENSTAT 5 (Payne et al. 1993) as 

described (Edwards et al. 2005). The significance of 

differences between pairs of genotypes was analysed via t-

tests using the SEM estimates derived from REML. 

Molecular Assays 

Quantitative RT-PCR was performed according to (Edwards 

et al. 2010). Phytochrome Western blotting was performed as 

described (Franklin et al. 2003). 
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