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Abstract  

Reduced representation sequencing methods such as genotyping-by-sequencing (GBS) enable 

low-cost measurement of genetic variation without the need for a reference genome assembly. These 

methods are widely used in genetic mapping and population genetics studies, especially with non-

model organisms. Variant calling error rates, however, are higher in GBS than in standard sequencing, 

in particular due to restriction site polymorphisms, and few computational tools exist that specifically 

model and correct these errors. We developed a statistical method to remove errors caused by 

restriction site polymorphisms, implemented in the software package GBStools. We evaluated it in 

several simulated data sets, varying in number of samples, mean coverage and population mutation 

rate, and in two empirical human data sets (N = 8 and N = 63 samples). In our simulations, GBStools 

improved genotype accuracy more than commonly used filters such as Hardy-Weinberg equilibrium p-

values.  GBStools is most effective at removing genotype errors in data sets over 100 samples when 

coverage is 40X or higher, and the improvement is most pronounced in species with high genomic 

diversity. We also demonstrate the utility of GBS and GBStools for human population genetic 

inference in Argentine populations and reveal widely varying individual ancestry proportions and an 

excess of singletons, consistent with recent population growth. 

Author Summary 

Eukaryotic genomes range from millions to billions of base pairs in size, but for many genetic 

experiments it is sufficient to gather information from just a fraction of these sites. In practice, selecting 

a consistent set of sites can be achieved by cutting genomic DNA with enzymes that recognize DNA 

sequence motifs, and then sequencing the ends of the resulting fragments. The advantages of this well-

known approach are its low cost relative to whole-genome sequencing (WGS), and that it does not 

require a sequenced genome. These methods, for example genotyping-by-sequencing (GBS), are 

popular for mapping genes and studying population genetics, particularly in non-model organisms. 
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Here we demonstrate, however, that computational tools designed for WGS are insufficient for 

handling certain error types that arise in GBS and other similar methods. We present a modified 

protocol for GBS and a statistical method for detecting these errors, implemented in the software 

package GBStools. We tested our methods on human DNA samples from Argentine populations. Our 

results reveal widely varying degrees of European and Native American ancestry, and that rare genetic 

variants are more numerous than would be expected in a population with constant size. 

 

Introduction 

 High-throughput reduced-representation sequencing methods[1] are inexpensive, suffer little 

from ascertainment bias, and generate genetic markers that are approximately randomly distributed 

throughout the genome. These methods have been successfully used in trait mapping[2,3], linkage map 

construction[1,4], selection scans[5,6], and estimating genetic diversity[7]. One such method is 

genotyping-by-sequencing[8] (GBS). In GBS, the sequencing target is reduced to < 5% of the genome 

by ligating sequencing adapters only to restriction enzyme cut sites (Fig. 1A). GBS reads can also be 

assembled into short contigs, which enables single nucleotide variant (SNV) calling without the aid of a 

genome sequence[9]. Hence, GBS is a popular approach in non-model systems, which typically lack 

resources such as genome assemblies and microarrays. 

 Unlike whole genome sequencing (WGS), GBS is prone to variant calling errors due to 

restriction site polymorphisms[7,10–13] (‘allelic dropout’, Fig. 1B). Allelic dropout in GBS can 

confound applications that rely on accurate calling of rare variation, such site frequency spectrum 

estimation in population genetics. Here, we present a modified GBS protocol, similar to ddRAD-

seq[14], and quantify its error rate. In addition, we present a systematic statistical approach to detect 

allelic dropout in GBS sequence data, implemented in the open-source software package GBStools.  

 This approach is based on the fact that allelic dropout reduces a sample's read coverage at a 
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particular site in proportion to the number of non-cut restriction site alleles it carries there (Fig. 1C). 

Therefore GBStools models coverage of each sample at a particular site as an overdispersed Poisson 

random variable drawn from either a distribution with mean λ (zero non-cut alleles carried), a 

distribution with mean ½λ (one non-cut allele), or with mean zero (two non-cut alleles). GBStools 

calculates the maximum-likelihood estimate of the parameter λ by expectation-maximization (EM), 

with the true number of non-cut alleles per sample serving as latent (unobserved) variables (S1 

Appendix). The expected values of these latent variables can be used to estimate which samples carry a 

non-cut allele (see "Expected non-cut alleles" in Fig. 1C). Simultaneously, GBStools estimates the site 

frequency of the observable reference and alternative SNP alleles, φ1 and φ2 (for example see Fig. 1B), 

and the non-cut allele, φ3, where φ1 + φ2 + φ3 = 1. Finally, it performs a likelihood ratio test comparing 

the null hypothesis φ3 = 0 to the alternative hypothesis φ3 > 0. In its current implementation GBStools 

cannot infer the true genotypes obscured by allelic dropout, but it can be used to remove errors by 

filtering out sites where a high likelihood ratio indicates the presence of restriction site polymorphism. 

 Lastly, we describe the application of these methods to an extant mixed ancestry population 

from Argentina to test the performance of GBS in ancestry estimation and demographic inference. 

 

Results and Discussion 

 We estimated the magnitude of GBS errors caused by restriction site polymorphisms from both 

simulated and real data. We chose human as a model system for GBS methods development due to the 

availability of a high-quality reference genome assembly, high-coverage whole-genome sequencing 

data,[15,16] and dense SNP array data. 

 First, we prepared modified GBS libraries from eight HapMap samples from a diverse range of 

populations and sequenced them on a single HiSeq lane (S1 Table, methods). We used the methylation-

insensitive enzymes BpuEI, BsaXI, and CspCI, which cut away from their recognition site. Although a 
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well-balanced mix of different sequencing adapters is commonly used to ensure that restriction enzyme 

recognition sequences are not over-represented at the start of the sequencing reads [3,4,8,14], our 

method tolerates low-diversity mixes of adapters, which is convenient when working with smaller 

sample sets. We quantified each sample by bioanalyzer after PCR, but before pooling, with the goal of 

reducing variance in the number of reads per sample in the final library. We found, however, that errors 

at this stage, particularly those caused by incorrect quantification of the bioanalyzer internal standard, 

can in fact lead to the opposite effect (S1 Fig.). More careful quantification by bioanalyzer, or 

quantification by fluorimetry, should correct this problem and lead to the desired effect. The HapMap 

samples had 16.7X mean coverage in a 128 Mb target region (S2 Fig. A, S3 Fig. A). We used 

GATK[17] to call SNPs in the target regions, and found 483,381 segregating sites that passed variant 

quality score recalibration. After applying hard filters (coverage ≥ 8X in 8/8 samples, mapping quality 

≥ 30, SNP quality ≥ 30), these GBS genotype calls were 98.0% concordant with heterozygous calls 

from whole-genome sequencing data gathered from the same set of samples (Fig 2A, S2 Table A). We 

found the error rate dropped as sequencing coverage increased up to 30-40X, after which further 

increases in coverage had little effect (Fig. 2B). Furthermore, the error rate for singletons was roughly 

two-fold higher than for non-singletons (Fig. 2C). A filter for known restriction site polymorphisms in 

the 1000 Genomes Project[18] data set also had a strong effect on concordance (Fig. 2A-C). These 

three factors appeared to be the major determinants of genotype calling accuracy. 

The fact that hard filters resulted in a fairly low error rate (2%) suggested that this is a sensible 

approach for species with genetic diversity similar to humans. But many non-model organisms have 

higher levels of genetic diversity, which may lead to an error rate that is high enough to necessitate a 

more sophisticated approach. To explore this possibility, we simulated GBS data under a neutral 

coalescent model[19] with population mutation rates (θ = 4Nµ) between 1×10-3-2×10-2. In a 

preliminary filtering step, we removed SNVs with > 10% missing genotypes, which reduced the 
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genotype error rate to 1.2% for data simulated with θ = 1×10-3 (typical of human data), and 4.7% for 

data simulated with θ = 5×10-3, which is typical of high-diversity species such as Drosophila (S4 Fig. 

A). We simulated 40X GBS coverage for these same genotype data, and found that the GBStools 

likelihood ratio test reduced the error more than 10-fold, for instance down to 0.3% in the case of the 

high-diversity (θ = 5×10-3) data set (S4 Fig. A). Although normalized site frequency spectra (SFS) were 

not substantially affected by restriction site polymorphisms (S4 Fig. D-E), errors in the genotypes 

themselves may cause problems in some applications. In these cases, particularly in studies of high 

diversity species, GBStools is expected to improve genotyping accuracy more than hard filters. 

As a preliminary step in testing the utility of GBStools, it was necessary to confirm the 

theoretical prediction that samples with one non-cut restriction site allele (restriction site genotype +/–) 

have on average half the coverage of samples with two intact restriction site alleles (restriction site 

genotype +/+). To test this, we measured GBS coverage at known polymorphic restriction sites in the 

HapMap data (Fig. 3). We applied a normalization to account for variation in total read numbers 

between libraries (methods), and binned the individual sample coverages according to the mean 

coverage of +/+ samples at each site. Within each bin, we observed two distinct, but overlapping, 

coverage distributions for samples with restriction site genotypes +/+ and +/–, suggesting that the 

prediction holds true. The proportion of the +/– distribution that does not overlap the +/+ distribution 

provides a rough measure of the potential power of a statistical test for restriction site polymorphism 

based on read coverage, and it is evident from the extensive overlap of the two distributions in the 5-

15X and 25-35X bins that higher coverage is necessary to achieve substantial power. If the goal of a 

particular study were to estimate population-level summary statistics such as Fst, or to map traits in an 

experimental cross, the added accuracy afforded by such a test might not be worth the extra sequencing 

effort to achieve > 35X coverage. If the goal, however, were to estimate the site frequency spectrum, 

then high genotype accuracy would be necessary, and in such cases (e.g. exome sequencing) coverage 
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in the > 35X range is not uncommon. Thus the conditions for high-sensitivity detection of restriction 

site polymorphisms might already exist in many experimental designs.  

 To better define the experimental conditions under which it is possible to use GBStools 

effectively, we applied GBStools to data simulated with different numbers of samples (from N = 8 to N 

= 500), and read coverages (10-100X). Since the proportion of homozygotes at a SNV observed by 

GBS is sometimes inflated by restriction site polymorphism, we also used an exact test to assess the 

chance of observing the given genotypes (or a worse-fitting set of genotypes) at each site under Hardy-

Weinberg equilibrium. We then calculated the sensitivity and specificity of the GBStools likelihood 

ratio, or the Hardy-Weinberg p-values, as classifiers of incorrect vs correct genotype calls under 

varying thresholds (Fig. 4A), and measured the area under curve (AUC) of the response operator 

characteristic (ROC) curves as indicators of the test's performance. In theory, an uninformative 

(random) classifier has AUC = 0.5, whereas a perfect classifier has AUC = 1.0. The GBStools test 

outperformed the Hardy-Weinberg test as measured by area under the curve (AUC), particularly at 

high-coverage sites (Fig. 4A, S3 Table). We noted that the ROC curves for the GBStools test at low 

coverage (10X) and the Hardy-Weinberg test have a similar shape, which may be due to the 

assumption of Hardy-Weinberg genotype proportions in the GBStools model (S1 Appendix). Aside 

from the already-established benefit of high coverage, we also found that large sample sizes were 

beneficial to GBStools performance. For example, power to detect non-cut restriction site alleles of 

frequencies between 0.01-0.02 was 25% for 30 samples at 40X coverage, but was 94% for 500 samples 

at the same coverage (Fig. 4B). For 40X sites in the 100- and 500-sample data sets, AUC was at least 

0.96, suggesting that this is the ideal coverage and sample size range for using GBStools.  

 At lower coverage (10-20X) and with smaller sample sets (N = 8) GBStools did not perform as 

well in simulations (Fig. 4), and this may explain the modest increase in concordance from 98.0% to 

98.5% when the GBStools filter was applied to the HapMap data set (N = 8), which led to the removal 

of 9% of segregating sites (Fig. 2A). For comparison, a filter for known restriction site polymorphisms 
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in the 1000 Genomes Project[18] data set improved concordance to 99.0% (Fig. 2A, S2 Table C), 

suggesting that the power of GBStools was no higher than 50%. Indeed, power to detect common 

restriction site polymorphisms in the HapMap GBS data (non-cut allele frequency 0.25) was 56% for 

sites covered to 30-40X, but for singleton sites covered to 30-40X it was only 13%, which was lower 

than predicted by simulation (Fig. 4B). In addition, AUC values for the HapMap ROC curves were 

lower than the values obtained in simulations with matching coverage levels (Fig. 5A, S3 Table). This 

is possibly due to the model's assumption of a constant value for the index of dispersion in depth of 

coverage between samples, whereas the empirical data exhibit variation in dispersion from site to site 

(S5 Fig.). It should be possible to relax this assumption by estimating dispersion on a site-by-site basis, 

or by calculating a joint estimate from genome-wide data, but these methods are currently not 

implemented. Joint modeling of genotypes at multiple closely-linked SNPs should also offer an 

increase in power over the single-marker model currently implemented. This would be particularly 

useful in the case of long reads, where each "stack" of reads mapped to a particular restriction site 

would contain more SNPs on average than a stack of shorter reads. For the present time, however, our 

simulations suggest the easiest way to improve the low empirical power observed here is to increase the 

number of samples. 

We investigated whether it is possible to accurately estimate which particular genotypes are 

likely to be affected by allelic dropout. As mentioned in the introduction, the true numbers of non-cut 

alleles per sample are latent variables in the GBStools likelihood model, and the expected values of 

these variables are output by GBStools in VCF format. We compared these expected non-cut allele 

counts to the true counts inferred from whole-genome sequencing data to gain an idea of their 

predictive value (Fig. 6). Although samples with a true allele count of one (i.e. restriction site genotype 

+/–) had higher average expected non-cut allele counts than samples with true allele count of zero 

(genotype +/+), it is clear that this is not a very sensitive predictor. For instance, +/– samples at sites 

with non-cut allele frequency 0.25 and 30-40X coverage had a median expected non-cut allele count of 
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0.01 (Fig. 6), far from the true value of 1.0. Yet power to detect restriction site variants in these same 

data was 56% (Fig. 4B). This indicates that the true utility of GBStools is in determining whether or not 

any samples at a site carry non-cut alleles rather than determining which particular samples carry them, 

although in some cases (Fig. 1C) there is diagnostic value in the latter approach. 

The site frequency spectrum derived from our filtered GBS data was similar to the spectrum 

from whole-genome sequencing data, with 2.3% fewer singletons (Fig. 7A). This suggested that GBS 

data can be useful in population genetic studies, for example demographic inference based on the site 

frequency spectrum. 

 To explore this further, we sequenced 89 admixed Argentine individuals to test for signatures of 

mixed ancestry and demographic changes (S4 Table). The Argentine samples had 7.5X mean coverage 

in a 177 Mb target region (S3 Fig. B, S4 Table). Argentine samples with < 30% of reads mapped to 

restriction sites (26/89 samples) were excluded from further analyses, as it is likely that these samples 

were not digested to completion. A total of 1,013,785 segregating sites were called in the remaining 

samples and concordance with exome array data was 99.7% after filtering with GBStools, which led to 

removal of 25% of sites (Fig. 2D, S3 Table H-K). A filter for Hardy-Weinberg equilibrium showed 

similar sensitivity and specificity (Fig. 5B), although fewer segregating sites were removed (Fig. 2D), 

indicating the GBStools critical value we used was more conservative. Both tests performed better than 

expected in simulations with a similar number of samples (N = 100). This is probably due to the small 

number of errors that remained after applying basic filters (15 in total, see S3 Table), and the fact that 

over half of these errors originated from a single SNP (rs6861689) that is near a common restriction 

site polymorphism (BsaXI site overlapping rs6861731). 

 We calculated the expected SFS from the Argentine GBS data and compared it to the SFS under 

a neutral coalescent model, and to the SFS from 386 Argentine individuals genotyped on an exome 

SNP array (Fig. 7B). The excess of singletons in the GBS spectrum is consistent with recent population 

growth,[20] but was not observed in the array data, most likely due to ascertainment bias. 
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 Another potential area where GBS can be useful is in ancestry estimation. We joined the 

Argentine GBS data set with SNP data from Yoruban, European, and Mexican individuals from the 

1000 Genomes Project[18] phase 1 data set, and from Mayan individuals from the Human Genome 

Diversity Project, and performed principal components analysis (Fig. 7C, methods). As expected, 

individuals from the admixed Argentine populations fell between the European and Native American 

populations in PC space. 

 In summary, we have used high-quality human SNP chip and whole-genome sequencing 

resources to test several different methods for reducing genotype errors in GBS data, including 

commonly-used hard filters, and a new GBS-specific statistical method implemented in our open-

source program GBStools. These methodological improvements enable GBS to nearly match whole-

genome sequencing in accuracy, as we have demonstrated, but at a fraction of the cost. Furthermore, 

our simulations suggested that GBStools has substantially better performance than hard filters in high 

diversity species with extensive restriction site polymorphism. Since GBStools is designed to accept 

data in the standard VCF format (and can optionally use read data in the standard SAM/BAM format), 

it can supplement many pre-existing GBS variant calling pipelines, for example the one implemented 

in the program Stacks[21]. We anticipate that this approach may enable many GBS-based analyses 

beyond high-throughput trait mapping, in particular population genetics studies such as detecting 

signatures of hitchhiking and selection, and estimating demographic history. 

 

Methods 
 
Simulation of GBS data 

We used Hudson's ms[19] to generate 1×107 random samples of 200 haplotypes at a 500 bp-long locus 

with a population mutation rate of 1×10-3 (θ = 4Neµ) without recombination. The position of each 

segregating site within the locus was drawn from a uniform distribution. The first and last 6 bp of the 
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locus represented two 6 bp-long restriction enzyme recognition sites. If any segregating site fell within 

these two sites, a restriction site polymorphism resulted, and either the derived or ancestral allele was 

randomly chosen to represent the non-cut restriction site allele. Segregating sites in the interior of the 

fragment, but farther than 6 bp from the ends, were chosen to represent restriction site polymorphisms 

with probability 0.0074 (the frequency of bases that are part of BpuEI, BsaXI, and CspCI recognition 

sites in the human genome). Segregating sites within 101 bp of the fragment ends represented sites 

sequenced by GBS with paired-end 101 bp reads. We randomly paired the 2N haplotypes to create a set 

of N diplotypes. Heterozygous genotypes within the 'read' portion of diplotypes that were heterozygous 

for one of the restriction sites were counted as genotyping errors. Simulations with population mutation 

rates of 5×10-3, 1×10-2, and 2×10-2 were also carried out. As most loci simulated in this manner do not 

carry restriction site polymorphisms it is an inefficient way to simulate large numbers of them. Thus to 

simulate GBS data for estimating the power of the GBStools likelihood ratio test we randomly chose 

one segregating site per locus to represent a restriction site polymorphism, irrespective of its location, 

and randomly chose either the derived or ancestral allele to be the non-cut allele. Depth of coverage 

was drawn from a negative binomial distribution with mean µ and scale parameter µ / 1.5 (dispersion 

index = 2.5). Read likelihoods were then calculated[17], assuming a constant sequencing error rate of 

1×10-3. 

 

Genomic DNA Samples 

Genomic DNA from eight HapMap individuals, including six samples sequenced by Complete 

Genomics[15] and two samples sequenced with SOLiD technology[16], was obtained from Coriell 

Cell Repositories. The Argentine samples were collected from 15 geographical regions in Argentina in 

multiple sampling efforts between 2007-2012. Under local IRB approval, blood samples were collected 

from participants who gave informed consent. Both HapMap and Argentine samples were de-identified 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2015. ; https://doi.org/10.1101/030494doi: bioRxiv preprint 

https://doi.org/10.1101/030494
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

and analyzed anonymously. Blood was stored in lysis buffer[22] in the field before genomic DNA was 

extracted in the lab by a standard salting-out procedure[23]. 

 

Exome array genotype calls 

Data for Illumina Human Exome Beadchip v1.0 (HumanExome-12v1_A) were generated for the 

Argentine samples at the Hussman Institute for Human Genomics, University of Miami. Genotypes 

were called with Illumina’s Genome Studio V2011.1 with a no-call threshold of 0.15. A minimum call 

rate of 99.3% was required for each sample and 386 of the 391 Argentinean samples passed this filter. 

Per-SNP quality filters included: mapping to a unique genomic location, and minimum per-SNP call 

rate of 99% (245,937 SNPs met these criteria). Of these sites, 8 were excluded from the concordance 

analysis for the reason that more than one sample had an exome array call of homozygous reference 

and a GBS call of homozygous non-reference (or vice versa). 

 

Whole genome sequencing variant calls 

Variation data files (masterVar) for samples NA18505, NA18508, NA19648, NA19704, NA21732, and 

NA21733 were downloaded from the Complete Genomics ftp site. We generated a vcf file with the 

mkvcf utility (v1.6.0 build 43). Before calculating concordance with GBS calls, we removed low 

confidence and hemizygous genotype calls, and excluded 10 sites that exhibited discordance with the 

GBS calls across the majority of samples. We used the unfiltered variant calls for site frequency 

spectrum estimation, but split multi-nucleotide polymorphisms into their component SNPs with a 

custom python script. We used another custom python script to predict BpuEI, BsaXI, and CspCI 

restriction site variants caused by bi-allelic SNPs and indels in the unfiltered calls. The sequencing of 

samples NA19740 and NA19836 was described previously[16]. We predicted restriction site 

polymorphisms caused by SNPs in these samples in the same manner. 
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Library Preparation 

Genomic DNA (50 ng) was digested with BpuEI (2.5 U), BsaXI (2 U), and CspCI (2.5 U) (NEB) at 37° 

for 90-120 min in buffer containing 20 µM S-adenosylmethionine. The digestion product was purified 

on a DNA Clean and Concentrate column (Zymo Research). DNA end repair, 3' monoadenylation, and 

ligation of sequencing adapters were performed as described in the Illumina TruSeq DNA Sample 

Preparation Guide. We designed a custom set of sequencing adapters, derived from the TruSeq 

adapters, with 65 six-bp barcodes (S5 Table). We used a standard protocol to anneal the common 

adapter to each of the 65 barcode adapters[8]. The ligation product was amplified by 10 cycles of PCR. 

For the HapMap samples, inserts between 350-650 bp were size selected on a Caliper Labchip, with 

one sample per gel lane. For the Argentine samples, inserts between 350-650 bp were size-selected in 

batches of 9-11 samples per gel lane. Bioanalyzer quantification was used to pool in equimolar 

amounts before and after size selection. For the 89 Argentine samples, two pools were prepared and 

sequenced separately, the first with 24 samples and the second with 65. Because of the high variance in 

read numbers per sample we observed in the Argentine libraries, we later re-analyzed the bioanalyzer 

data from the first set of 24 samples (S1 Fig.). 

 

Sequencing and read mapping 

Libraries were sequenced on the Illumina HiSeq 2000 in 2 x 101 bp mode following the standard 

TruSeq SBS protocol. The eight HapMap samples were sequenced on a single lane, with a mean of 

18.3 M paired end reads per sample. In the Argentine study, the two pooled libraries were sequenced 

on four and five separate lanes respectively, with a mean of 17.5 M reads per sample. Reads were 

mapped to the human reference genome (build 37) with BWA[24] with the -q 20 parameter to include 

soft clipping of low quality bases. Local realignment of reads around known indels and base quality 

recalibration were performed with GATK[17]. We defined the target region for the HapMap samples 

by taking the union of predicted restriction site fragments between 400-700 bp that had ≥ 3X mean 
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coverage, and where ≥ 10% of reads had a mate pair mapped to a restriction site (S2 Fig. A). The target 

region for the Argentine samples was defined in the same way, but with predicted fragments between 

200-600 bp. Argentine samples with < 30% of reads mapped to restriction sites (26/89 samples) were 

excluded from further analyses. 

 

Calculation of coverage distributions at polymorphic restriction sites 

For each of the HapMap samples in our GBS data set we inferred the number of cut and non-cut alleles 

at each restriction site in the genome from the Complete Genomics and SOLiD data. We then 

calculated depth of coverage and median insert size at each site. For this analysis we kept only sites 

where the median insert sizes were between 350-625 bp for each sample, and where ≤ 4 samples had 

zero depth of coverage. We normalized the depth of coverage for each sample by multiplying by the 

following normalization factor: 

    (1) 

 Here n is the total number of samples, and rij is the total number of library inserts of size j for 

individual i. In calculating normij for a particular site we took j to be the median insert size of reads 

from individual i at that site. We then binned each site according to the mean coverage of samples that 

had two restriction site copies. Then, aggregating the coverage data across samples, we plotted the 

coverage distributions for each bin. 

 

Variant calls and hard filters 

We called SNPs in the target regions described above with the GATK Unified Genotyper, emitting 

both variant and invariant sites. We also used the GATK Haplotype Caller to call SNPs in the HapMap 

data set. We found that specificity was higher for Haplotype Caller, with fewer true homozygous 
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reference genotype called heterozygous (S2 Table F), but also found that sensitivity was lower, with 

fewer true SNPs called. It is possible that this was because we used Haplotype Caller parameters that 

are optimal for whole-genome sequencing but not for GBS. We did not explore this point further, 

however, and instead used the SNP calls from Unified Genotyper for the remainder of the analyses. We 

performed variant quality score recalibration on segregating sites with GATK with the following 

training data sets (downloaded from the Broad Insitute ftp server): hapmap_3.3.b37.sites.vcf 

1000G_omni2.5.b37.sites.vcf. For the HapMap samples we also trained with known variants from 

previous whole-genome sequencing studies[15,16]. We trained VQSR with the annotations 

HaplotypeScore, QD, ReadPosRankSum and HRun, and kept sites in the 99% sensitivity tranche. 

Invariant sites were not subjected to the VQSR filter. We applied the following hard filters (labeled as 

'basic filters' in figures and tables): mapping quality ≥ 57, SNP quality ≥ 30, coverage ≥ 8X in all 

samples (HapMap samples) or coverage ≥ 8X in ≥ 40/63 of samples (Argentine samples). We also 

filtered out sites that fell within the 1000 Genomes Project callability masks for depth of coverage and 

mapping quality. In addition, we applied a filter for sites where the observed genotypes differ 

significantly from those predicted under Hardy-Weinberg equilibrium (p < 0.05), with the software 

package vcftools[25]. 

 

1000 Genomes Project polymorphic restriction site filter 

We used a custom python script to predict BpuEI, BsaXI, and CspCI restriction site variants caused by 

SNPs and indels in the 1000 Genomes Project data set. For each sample we created a set of genomic 

intervals where more than five read pairs spanned a restriction site that was polymorphic with a minor 

allele frequency of > 0.01. We then filtered out all sites that fell within the interval set of more than one 

sample. 

 

GBStools polymorphic restriction site filter 
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The calculation of frequency estimates for non-cut restriction site alleles, and the calculation of the 

likelihood ratio test statistic for restriction site polymorphism are described in S1 Appendix. We 

implemented these algorithms in the python package GBStools 

(http://med.stanford.edu/bustamantelab/software.html). Frequency estimates for a non-cut restriction 

site allele are expected to be zero under the null hypothesis (no polymorphism). Since this is on the 

boundary of the parameter space (0, 1], the parameter estimate is expected to have a half-normal 

distribution. Therefore, the test statistic is expected to have an approximately one-half chi-squared 

distribution with one degree of freedom[26], which has a critical value of 2.71 (p = 0.05). We applied 

the likelihood ratio test to simulated GBS data and found that at high coverage the test statistic was 

equal to zero more often than expected (S6 Fig.). In the 20-50X coverage range, however, it agreed 

well with the expected distribution. The departure from the expected null distribution at high coverage 

was related to the fact that more than half of the allele frequency estimates were zero (S7 Fig.) and 

suggested that in general 2.71 is a lenient critical value (p < 0.05) for detecting restriction site 

polymorphisms. We performed the likelihood ratio test for SNPs where the median insert size was 

between 450-625 bp (HapMap individuals) or 300-500 bp (Argentine individuals) and where the 

median absolute deviation in insert size was less than 60 bp (S8 Fig.). For the 'GBStools filter' listed in 

the figures and tables, we kept only SNPs that had a likelihood ratio < 2.71 and an estimated frequency 

of the non-cut restriction site allele < 0.05. In addition, we excluded the region spanned by the two 

restriction sites nearest to any site that did not meet these criteria. 

 

GBStools power calculation 

We applied the likelihood ratio test described above to GBS data from the HapMap samples. We 

restricted the power analysis to autosomal sites that were segregating in the Complete Genomics data 

set, where the median GBS insert size was between 450-625 bp, and the median absolute deviation for 

insert sizes was ≤ 60 bp (331,861 sites). We binned the sites according to mean depth of coverage, and 
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for each bin we calculated the power to detect known polymorphic restriction sites at a conservative 

critical value of 2.71 (empirical p = 0.05 critical values were slightly lower). 

 

Site frequency spectra 

We calculated the expected site frequency spectrum from GBS data and Complete Genomics data for 

HapMap samples NA18505, NA18508, NA19648, NA19704, NA21732, and NA21733 as a subsample 

of size five in order to allow for missing data[27,28]. We used 1000 Genomes inferred ancestral alleles, 

and discarded sites where the ancestral allele was not consistent with the observed alleles. We kept 

sites that passed variant quality score recalibration and passed the hard filters ('basic filters'), the 1000 

Genomes Project restriction site polymorphism filter, and the GBStools filter (29.2 Mb of total 

unmasked sites). The whole-genome sequencing (Complete Genomics) site frequency spectrum was 

calculated based on segregating sites in this same region. We calculated the expected site frequency 

spectrum for the Argentine samples as a subsample of size 40 after applying the filters shown in S2 

Fig. (12.7 Mb of total unmasked sites). We also calculated the expected site frequency spectrum for 

386 Argentine individuals genotyped on the Illumina exome chip, as described above. We used exome 

chip genotypes located in both filtered and unfiltered regions.  

 

Principal components analysis 

We merged the Argentine GBS data with 1000 Genomes Project SNP data (CEU, YRI, and MXL 

populations), and with HGDP SNP data from sequenced Mayan individuals[29]. Of the segregating 

sites in the merged data set, 715,082 were present in each of the original data sets. We kept Argentine 

individuals that had > 25% of these sites sequenced to ≥ 7X (42/63 samples were kept). We then 

filtered out sites where < 90% of all samples had called genotypes. We then applied the hard filters 

listed previously, and pruned SNPs for linkage disequilibrium (r2 < 0.8 in 50 bp windows with 5 bp 
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step size) with PLINK[30], resulting in a final set of 45,630 SNPs. We performed principal components 

analysis on this set of SNPs with smartpca[31]. 
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Fig. 2. Concordance before and after applying GBS SNP filters. A. Proportion of GBS genotype calls concordant with Complete Genomics 
heterozygote calls for HapMap individuals vs number of segregating sites after applying various filters. Sites passing the basic filters had: mapping 
quality ≥ 57, SNP quality ≥ 30, coverage ≥ 8X in all samples, and position outside the 1000 Genomes Project callability mask. Sites failing the 
GBStools filter had: Non-cut allele frequency estimate > 0.05, or likelihood ratio > 2.71 (p < 0.05). Sites failing the 1000 Genomes filter had > 10% 
of spanning reads mapped to known polymorphic restriction site (allele frequency > 0.01). B. Same data as in A, but with genotypes binned by depth 
of coverage. C. Same data as A-B, but with genotypes binned by alternative allele frequencies, which were inferred from whole genome sequencing 
of the eight HapMap individuals (two sequenced by SOLiD technology, and six sequenced by Complete Genomics). D-F. Same analysis as A-C, but 
for concordance between GBS genotypes calls and exome array calls for the Argentine individuals. Basic filters are same as in A-C, but require ≥ 8X 
coverage in ≥ 40/63 samples. Allele frequencies were estimated from genotypes of 389 Argentine individuals on the exome array.
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Fig. 3. Read coverage distributions at sites with a known restriction site polymorphism. Distributions of normalized depth of GBS coverage for 
HapMap individuals with one non-cut restriction site allele (genotype +/–) or with two intact restriction site copies (genotype +/+) at sites with a 
known restriction site polymorphism.
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Fig. 4. Sensitivity and specificity of GBStools likelihood ratio test. A. Response operator characteristic (ROC) curves for classification of incorrect 
vs correct heterozygote genotype calls by GBStools likelihood ratio test or Hardy-Weinberg equilibrium exact test p-values. The data were filtered by 
call rate (sites with > 10% missing genotypes were excluded) before applying either test, and the axes refer to the proportion of genotypes that passed 
this filter. The diagonal represents performance of an uninformative (random) classifier. B. Power of GBStools likelihood ratio test for detecting 
restriction site polymorphism with simulated and empirical data. We used a critical value of 2.71 for calculating power, based on the expected null 
distribution, a one-half chi-squared distribution with one degree of freedom (p < 0.05). Empirical power was calculated for 331,861 autosomal SNPs 
in the HapMap GBS data set that passed insert size filters and where the EM parameter estimates converged (see Methods).
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Fig. 5. Empirical sensitivity and specificity of GBStools test. A. Response operator characteristic (ROC) curves, as in Fig. 4A, for GBStools and 
Hardy-Weinberg tests with HapMap data. The data were filtered by coverage, call rate, and mapping quality (methods), before applying either test. B. 
Same as (A), but for Argentine data set.
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Fig. 6. Expected non-cut restriction site allele counts. The true numbers of non-cut restriction site alleles 
carried by each sample are latent variables in the GBStools likelihood model. Boxplots representing the 
distributions of the expected values of these variables are shown here, and are grouped by the true non-cut 
allele counts inferred from Complete Genomics whole-genome sequencing data for HapMap samples. Allele 
counts of 0, 1 and 2 correspond to restriction site genotypes +/+, +/– and –/– respectively, where (–) is the 
non-cut allele. Plots are also grouped by site allele count (with 8 samples total) and site mean coverage. Only 
sites with allele frequencies between 0.0625-0.25 are shown.
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Fig. 7: Detecting population structure and growth with GBS data. A. Normalized site frequency spectra (SFS) of the derived allele for six 
HapMap samples represented as the expected SFS of a subsample of size five to account for missing data. SNPs from the 29.2 Mb region that 
passed all filters were used for both GBS and whole-genome sequencing (WGS) spectra. The expected SFS under a neutral coalescent model is 
shown for comparison. B. Bins 1-9 of the normalized SFS for SNPs in the Argentine GBS data set, represented as the expected SFS of a 
subsample of size 40. Exome chip data was from 386 Argentine individuals, including some of those sequenced by GBS. C. Principal compo-
nents 1 and 2 of the admixed Argentine individuals, Europeans (CEU), Yoruba (YRI), Mexican (MXL), and Maya (HGDP), using 30,691 SNPs. 
Of the Argentine samples, 40/63 passed the 5% data missingness filter and were used in the PCA.
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