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Abstract  

Recent emergence of nanopore sequencing technology set a challenge for the established assembly 
methods not optimized for the combination of read lengths and high error rates of nanopore reads. In 
this work we assessed how existing de novo assembly methods perform on these reads. We 
benchmarked three non-hybrid (in terms of both error correction and scaffolding) assembly pipelines 
as well as two hybrid assemblers which use third generation sequencing data to scaffold Illumina 
assemblies. Tests were performed on several publicly available MinION and Illumina datasets of E. 
coli K-12, using several sequencing coverages of nanopore data (20x, 30x, 40x and 50x). We 
attempted to assess the quality of assembly at each of these coverages, to estimate the requirements for 
closed bacterial genome assembly. Results show that hybrid methods are highly dependent on the 
quality of NGS data, but much less on the quality and coverage of nanopore data and perform 
relatively well on lower nanopore coverages. Furthermore, when coverage is above 40x, all non-
hybrid methods correctly assemble the E. coli genome, even a non-hybrid method tailored for Pacific 
Bioscience reads. While it requires higher coverage compared to a method designed particularly for 
nanopore reads, its running time is significantly lower. 

 

. 
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1  Introduction 
During the last ten years Next generation sequencing (NGS) devices have dominated genome 
sequencing market. In contrast to previously used Sanger sequencing, NGS is much cheaper, less time 
consuming and not so labour intensive.  Yet, when it comes to de novo assembly of longer genomes 

many researchers are being sceptical of using NGS reads. These devices produce reads a few hundred 
base pairs long, which is too short to unambiguously resolve repetitive regions even within relatively 
small microbial genomes (Nagarajan and Pop, 2013) . 

Although usage of paired-end and mate-pair technologies has improved the accuracy and 
completeness of assembled genomes, NGS sequencing still produces highly fragmented assemblies 
and is currently mostly employed for deep resequencing. Nonetheless, owing to NGS many efficient 

algorithms have been developed to optimize the running time and memory footprints in sequence 
assembly, alignment and downstream analysis steps. 

The need for the technologies that would produce longer reads which could solve the problem of 
repeating regions has resulted in the advent of new sequencing approaches – the so-called “third 
generation sequencing technologies”. The first among them was single-molecule sequencing 
technology developed by Pacific Biosciences (PacBio). Although PacBio sequencers produce much 
longer reads (up to several tens of thousands of base pairs), their reads have a significantly higher error 
(~10-15%) rate than NGS reads (<2%) (Nagarajan and Pop, 2013). Existing assembly and alignment 
algorithms were not capable of handling such high error rates. This caused the development of read 
error correction methods. At first hybrid correction was performed using complementary NGS 
(Illumina) data (Koren et al., 2012). Later, self-correction of PacBio-only reads was developed (Chin 
et al., 2013) which requires higher coverage (>50x). The development of new, more sensitive aligners 
was required (BLASR (Chaisson and Tesler, 2012) and optimization of existing ones (BWA-MEM 
(Li, 2013) ). 

In 2014, Oxford Nanopore Technologies (ONT) presented their tiny MinION sequencer - about the 
size of a harmonica. The MinION can produce reads up to a few hundred thousand base pairs long, but 
with a higher error rate compared to PacBio reads. For example, 1D reads from the MinION sequencer 
have raw base accuracy less than 65-75%; higher quality 2D reads (80-88% accuracy) comprise a 
fraction of all 2D reads and even smaller fraction of the total dataset, with overall median accuracy 
being between 70-85% (Ashton et al., 2014; Laver et al., 2015; Ip et al., 2015). This again spurred the 
need for development of even more sensitive algorithms for mapping such as GraphMap (Sovic et al., 
2015) and realignment marginAlign (Jain et al., 2015). Any doubt about the possibility of using 
MinION reads for de novo assembly was resolved in 2015 when Loman et al. demonstrated (Loman et 
al., 2015) that the assembly of a bacterial genome (E. Coli K-12) using solely ONT reads is possible in 
spite of high error rates. Thanks to the extremely long reads and the affordability and availability of 
the nanopore sequencing technology, these results might cause a revolution in de novo sequence 
analysis. 

Following up on the results from Loman et al. (Loman et al., 2015) and Liao et al (Liao et al., 2015), 
we explored the applicability of existing hybrid and non-hybrid de novo assembly tools that support 
third generation sequencing data and assessed their ability to cope with nanopore error profiles. In our 
study, we compared five assembly tools/pipelines which include three long-read assemblers: pipeline 
published by Loman et al. (in continuation LQS pipeline), PBcR (Koren et al., 2012), Falcon; and two 
hybrid assemblers: ALLPATHS-LG (Gnerre et al., 2011) and SPAdes (Bankevich et al., 2012). These 
tools were tested on real, publicly available datasets of a well-known clonal sample of E. coli K-12 
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MG1655. All of the tools/pipelines were tested up to the draft assembly level, not including the 
polishing phase. 

2 Background 
Majority of algorithms for de novo assembly follow either the de Bruijn graph (DBG) or the Overlap-
Layout-Consensus (OLC) paradigm (Pop, 2009). While the early assemblers, specialized for Sanger 
sequencing methods - such as Celera - use the OLC paradigm, de novo assemblers developed for NGS 
data are mostly based on the DBG approach with several exceptions. Although the DBG approach is 
faster, OLC based algorithms perform better for longer reads (Pop, 2009),. Additionally, the DBG 
assemblers depend on finding exact-matching kmers between reads (typically ~20-63 bases long). 
Given the error rates in the third generation sequencing data, this presents a serious limitation. On the 
other hand, the OLC approach should be able to cope with higher error rates given a sensitive enough 
overlapper, but contrary to DBG the time-consuming all-to-all pairwise comparison between the input 
reads still needs to be performed. 

Since the focus in the past decade has been on the NGS reads, there are not many OLC assemblers that 
could be utilized for long PacBio and ONT reads. In fact, the methods developed to handle such data 
are mostly pipelines based on the Celera assembler, including: HGAP (Chin et al., 2013), PBcR 
(Koren et al., 2012) and the LQS pipeline (Loman et al., 2015). Since its original publication (Myers 
et al., 2000), Celera has been heavily revised to support newer sequencing technologies, including 
modifications for second generation data (Miller et al., 2008), adoptions for the third generation 
(single molecule) data via hybrid error correction (Koren et al., 2012), non-hybrid error correction 
(Miller et al., 2008; Berlin et al., 2015) and hybrid approaches to assembly which combine two or 
more technologies (Goldberg et al., 2006). Celera was used in numerous sequencing projects, 
including the Drosophila assembly and the assembly of both parental haplotypes from a single human 
genome (Levy et al., 2007). All of this contributed to the popularity of Celera which led to its wide 
adoption in pipelines for the assembly of third generation sequencing data. Notably, one of the first 
was the Hierarchical Genome Assembly Process (HGAP) which is not only an assembly pipeline but 
also a specification of a workflow which can be implemented using various components at each step. 
There are currently three HGAP implementations (Pacific Biosciences, 2013): HGAP in SMRT 
Analysis, HBAR-DTK development toolkit and PacBioToCA implemented in the WGS (Celera) 
package. HGAP uses BLASR to detect overlaps between raw reads during the error correction step. 
However, HGAP requires input data to be in the PacBio-specific formats, which limits its application 
to other (e.g. nanopore) sequencing technologies. PBcR, since recently, employs the MHAP 
overlapper (Berlin et al., 2015) for sensitive overlapping of reads during the error-correction step. 
Also, recent updates to PBcR allow it to handle reads from Oxford Nanopore MinION sequencers. 
The LQS pipeline follows a similar workflow to that of HGAP, but with novel error-correction 
(Nanocorrect) and consensus (Nanopolish) steps. Instead of BLASR and MHAP, Nanocorrect uses 
DALIGNER (Myers, 2014) for overlap detection. Nanopolish presents a new signal-level consensus 
method for fine-polishing of the draft assembly using raw nanopore data. The LQS pipeline also 
employs Celera as the middle layer, i.e. for assembly of the error corrected reads. 

The only non-hybrid alternative to the Celera-based pipelines is Falcon (Biosciences, 2015). Falcon is 
a new experimental diploid assembler developed by Pacific Biosciences, not yet officially published. 
It is based on a hierarchical approach similar to HGAP, consisting of several steps: (I) raw sub-read 
overlapping for error correction using DALIGNER, (II) pre-assembly and error correction, (III) 
overlapping of error-corrected reads, (IV) filtering of overlaps, (V) construction of the string graph 
and (VI) contig construction. Unlike HGAP, it does not use Celera as its core assembler. Since Falcon 
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accepts input reads in the standard FASTA format (and not only the PacBio-specific format like 
HGAP), it can potentially be used on any bascalled long-read dataset. Although originally intended for 
PacBio data, Falcon presents a viable option for assembly of nanopore reads, which exhibit slightly 
higher error rates than PacBio, but have notably different error profiles. 

Aside from Celera-based assembly pipelines and Falcon, hybrid assembly approaches present another 
avenue to utilizing nanopore sequencing data. Liao et al. (Liao et al., 2015) recently evaluated several 
assembly tools on PacBio data, including hybrid assemblers SPAdes (Bankevich et al., 2012)  and 
ALLPATHS-LG (Gnerre et al., 2011) for which they reported good results. Both of these use 
Illlumina libraries for the primary assembly, and then attempt to scaffold the assemblies using longer, 
less accurate reads. Furthermore, SPAdes was recently updated and now officially supports nanopore 
sequencing data as the long read complement to NGS data. 

3 Methods 
Since to the best of our knowledge no dedicated MinION read simulator exists, we focus our 
benchmark on real nanopore sequencing datasets. Although, there is a number of publicly available 
datasets, many of them consist either of organisms/strains which do not yet have officially finished 
genome assemblies, or the coverage of the dataset is not high enough to provide informative nanopore-
only assembly results. Aside from the Lambda phage (which comes as a burn-in sample for every 
MinION), the most abundant are sequencing data for the well-known clonal sample of E. coli K-12 
MG1655. In this study, we use several most recent E. coli K-12 datasets to reflect on the current state 
of the nanopore data as well as the quality of assembly they provide. In addition to using the entire 
datasets, we subsampled some of the datasets to provide a larger span of coverages in order to inspect 
the scalability of assemblers as well as their ability to cope with the abundance of the data. 

3.1 Datasets 
Benchmarking datasets were extracted from several publicly available nanopore datasets and one 
publicly available Illumina dataset. These include: 
 

1. ERX708228, ERX708229, ERX708230, ERX708231: 4 flowcells used in Loman et al. 
nanopore assembly paper (Loman et al., 2015). 

2. E. coli K-12 MG1655 R7.3 dataset (Quick et al., 2014). 
3. MARC, WTCHG dataset (Ip et al., 2015): A dataset recently published by the MinION 

Analysis and Reference Consortium, consists of a compilation of data generated using several 
MinION sequencers in laboratories distributed world-wide. 

4. E. coli K-12 MG1655 SQK-MAP006-1 dataset: This is the most recent publicly available 
MinION dataset, obtained using the newest sequencing protocol. 
Link: http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/ 

5. Illumina frag and jump libraries (Liao et al., 2015): 
Link: ftp://ftp.broadinstitute.org/pub/papers/assembly/Ribeiro2012/data/ecoli_data_alt.tar.gz 

 
The datasets were designed with the idea to test the effect of varying coverage and data quality on the 
assembly process, and consist of either full datasets described above or subsampled versions of these 
datasets.  
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Test datasets used for benchmarking include: 
Dataset0 Illumina reads used by hybrid assemblers, consists of three libraries: 

- 1 frag library – paired-end reads (insert size 180bp), coverage 55x, 1186191x2 

reads, 
- 2 jump libraries – mate-pair reads (insert size 3000bp), total coverage 85x, 

1977903x2 reads. 
Dataset 1 Complete E. coli R7.3 dataset, contains both 1d and 2d reads, total coverage 67x (70531 

reads), of which 2d reads comprise 14x (11823 reads). 
Dataset 2 Reads from  (Loman et al., 2015) subsampled to coverage 19x, 2d reads only (Loman et 

al., 2015)(in total 16945 reads). 
Dataset 3 Complete dataset used by (Loman et al., 2015) nanopore assembly paper, contains 2d 

reads only, coverage 29x, 22270 reads. 
Dataset 4 Reads from MARC WTCHG dataset, 2d reads extracted from pass and fail folders, 

coverage 40x, total number of 2d reads: 29635. 
Dataset 5 2d reads extracted from the first run of the MAP006 dataset (MAP006-1), from pass 

folder only, coverage 54x, 25483 reads in total. 
 

3.2 Data preparation 
For nanopore datasets, sequence data was extracted from basecalled FAST5 files using Poretools 
(Loman and Quinlan, 2014). Data was extracted from a subset of folders or flowcells to achieve the 
desired coverage (e.g. for Dataset 2, flowcells ERX708228, ERX708229 and ERX708230 were used 
to obtain coverage close to 20x).  
 
Hybrid assemblers were tested using the Illumina dataset together with each nanopore test dataset. 
They were also run on the Illumina dataset alone, to get a reference for assembly quality and to be able 
to estimate the contribution to assembly when nanopore reads are added. All libraries in the Illumina 
dataset come with reads and quality values in separate files (fasta and quala files). These were 
combined into fastq format using convertFastaAndQualToFastq.jar script downloaded from 
http://www.cbcb.umd.edu/software/PBcR/data/convertFastaAndQualToFastq.jar. 

3.3 Assembly pipelines 
LQS pipeline: Pipeline developed and published by Loman et al. in their pivotal nanopore assembly 
paper (Loman et al., 2015) (https://github.com/jts/nanopore-paper-analysis). The pipeline consists of 
Nanocorrect, WGS and Nanopolish. The version of the pipeline tested in this paper uses Nanocorrect 
commit 47dcd7f147c, WGS version 8.2 and Nanopolish commit 6440bfbfcf4fa.  
PBcR: Implemented as a part of the WGS package  
(http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR). In this paper version 8.3rc2 of WGS was 
used. Spec file defining assembly parameters for nanopore data, was downloaded from the PBcR web 
page. 
FALCON:  To evaluate Falcon we used the FALCON-integrate project  
(https://github.com/PacificBiosciences/FALCON-integrate) (commit: 3e7dd7db190). Since no formal 
parameter specification for nanopore data currently exists, we derived a suitable set of parameters 
through trial and error (Suppl. Note 1).  
SPAdes: SPAdes v3.6.1 was downloaded from  
http://bioinf.spbau.ru/en/content/spades-download-0. 
ALLPATHS-LG: ALLPATHS-LG release 52488 was downloaded from  
https://www.broadinstitute.org/software/allpaths-lg/blog/?page_id=12.  
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3.4 Evaluating the results 
All assembly results were compared to the E. coli K-12 MG1655 NCBI reference, NC_000913.3. 
Assembly quality was evaluated using Quast 3.1 (Gurevich et al., 2013)  and Dnadiff (Kurtz et al., 
2004) tools. CPU and memory consumption was evaluated using a fork of the Cgmemtime tool 
(https://github.com/isovic/cgmemtime.git). For assemblies that produced one “big contig”, over 4Mpb 
in length, that contig was extracted and solely compared to the reference using Dnadiff tool. 

4 Results 

4.1 Assembly quality 
Since Nanopolish currently does not support 1d reads, and Falcon and PBcR do not include a 
polishing phase, we focused on comparison of only the non-polished draft assemblies. 

Table 1 displays assembly results on datasets 2-5 assessed using Quast and Dnadiff tools. Dataset 1 
analysis is omitted because of its particular characteristics. It has a greater total coverage but much 
lower data quality compared to other datasets (because of 1d reads). None of the non-hybrid 
assemblers managed to produce a good assembly using Dataset 1 (Suppl. Table 1), while both hybrid 
assemblers were able to use it to improve their assembly. It can be concluded that low 2d coverage 
together with high coverage of low quality 1d reads is not sufficient to complete an assembly of a 
bacterial genome using currently available methods.  

Looking at the table, it can be concluded that hybrid assembly pipelines achieve better results than 
non-hybrid ones. However, this is mostly because Illumina reads provide additional coverage of the 
genome. ALLPATHS-LG has better results than SPAdes on all datasets, with SPAdes almost catching 
up on Dataset 5. 

None of the non-hybrid assembly pipelines managed to complete the genome at 20x coverage. LQS 
pipeline produced the best assembly – it managed to cover almost the whole genome, albeit using 8 
separate contigs. 30x seems to be sufficient for LQS pipeline to get very good results and for PBcR to 
cover most of the genome, however with only one contig which is notably shorter than the reference 
genome. On the other hand, Falcon seems to require at least 40x to produce one big contig covering 
most of the reference genome. One surprising result that can be seen in the table is a noticeable drop in 
assembly quality for LQS pipeline on Dataset 5. While it managed to cover a greater part of the 
reference than any other pipeline on any dataset, with the assembly consists of 5 contigs, the largest of 
which is just over 4Mbp. 
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Table 1. Assembly quality assessment using Quast and Dnadiff 

Dataset Assembler 
No. of 
contigs  N50 

Genome 
fraction 
(%) 

Avg. 
Identity 
1-to-1 

Total 
SNPs 

Total 
Indels 

Dataset 2 LQS 8 1159703 99.895 98.08 8858 79746 

Dataset 2 Falcon 98 11083 6.994 94.58 3263 47211 

Dataset 2 PBcR 22 246681 0.593 93.7 14823 269053 

Dataset 2 ALLPATHS-LG 2 4639001 99.938 99.99 10 12 

Dataset 2 SPAdes 18 4488904 99.912 99.98 427 110 

Dataset 3 LQS 3 4603990 99.998 98.49 4568 65283 

Dataset 3 Falcon 124 13838 17.316 94.97 3206 59638 

Dataset 3 PBcR 1 4329903 12.825 94.03 7209 262357 

Dataset 3 ALLPATHS-LG 3 4638937 99.938 99.99 6 38 

Dataset 3 SPAdes 19 4474608 99.88 99.99 425 108 

Dataset 4 LQS 8 4622531 99.938 99.08 2256 40118 

Dataset 4 Falcon 13 4538244 99.938 97.66 3710 104165 

Dataset 4 PBcR 3 3615068 99.553 97.39 2394 117397 

Dataset 4 ALLPATHS-LG 1 4638952 99.938 99.99 8 20 

Dataset 4 SPAdes 20 4475770 99.88 99.99 399 73 

Dataset 5 LQS 5 4006324 99.991 99.43 1435 25106 

Dataset 5 Falcon 1 4580230 99.655 98.84 2589 50662 

Dataset 5 PBcR 1 4596475 99.914 98.99 1136 45542 

Dataset 5 ALLPATHS-LG 1 4638958 99.938 99.99 3 5 
Dataset 5 SPAdes 16 4648863 99.918 99.99 420 53 

 

Furthermore, in the “big contig” analysis where only one largest contig of length ≥ 4Mbp (a 
representative of the E. coli chromosome) was selected and evaluated using Dnadiff. This analysis 
gave a good estimate on the quality of the assembly from the aspects of chromosome completeness 
and breakage. Concretely, PBcR had the largest number of breakpoints on Datasets 3 and 4 (≥ 200; for 
Datasets 1 and 2 its assembly did not produce a “big contig”), while on Dataset 5 LQS had the largest 
number of breakpoints (88; see Suppl. Table 2). 

Since the results for all three non-hybrid assembly tools show notable variation in assembly quality 
across datasets (Table 1), we further investigated the differences between their pipelines. As described 
in the Background section, there are two major differences: (I) LQS and PBcR both employ WGS 
(Celera) as their middle-layer assembler while Falcon implements its own string graph layout module, 
and (II) each of these pipelines implements its own error-correction module. Taking into account that 
both Celera and Falcon utilize an overlap-graph based layout step, we suspected that (II) may have 
played a more significant role on the assembly contiguity. The error-correction process is performed 
very early in each pipeline, and the quality of corrected reads can directly influence any downstream 
analysis. For this purpose, we analysed the error rates in raw reads from Dataset3 as well as the error-
corrected reads generated by Nanocorrect, PBcR and Falcon’s error-correction modules (Suppl. Fig. 
1). For analysis, all reads were aligned to the E. coli K-12 reference (NC_000913.3) using GraphMap 
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(parameters “-a anchorgotoh”). The results show that each method produces significantly different 
error profile of the corrected reads. The raw dataset (coverage 28.78x) contained a mixture of ~3% 
insertions, ~4% deletions and ~9% mismatches. While the insertion errors were mostly eliminated by 
all error-correctors, PBcR and Falcon exhibited higher amounts of deletion errors in their output. 
Nanocorrect produced the best results, reducing both deletion and mismatch rates to 1%, while still 
maintaining a large coverage of the output error-corrected reads (25.85x). 

To assess the influence of the difference (I), we used the error-corrected reads generated by 
Nanocorrect as the input data for Falcon for every dataset. We noticed that this procedure increased 
both the contiguity of Falcons assembly and the average identity on all datasets (Suppl. Table 3). 
Increase in coverage provided a consistent increase of the quality of assembly in terms of the largest 
contig length, the average identity and the number of variants. Although the draft assemblies produced 
by the LQS pipeline exhibited a reduction in the size of the largest contig on Dataset5, these 
assemblies also resulted in a lower number of variants (SNPs and indels) compared to the 
Nanocorrect+Falcon combination. 

4.2 Resource usage 
To estimate efficiency of each assembly pipeline, the CPU time and the maximum memory usage 
were measured. All assembly pipelines consumed fewer than 20GB of memory. The memory 
consumption was mostly stable and is not shown. To conclude, for assembling bacterial genomes, 
available memory should not be an issue. 

Table 2 shows how CPU usage changes with dataset coverage for each assembly pipeline. SPAdes 
proved to be the fastest of the tested assemblers, while LQS was the most time consuming.   

Table 2. CPU time usage in hours 

Coverage 
Assembler 20 30 40 50 
LQS 1085.9 2538.6 4437.7 8142.1 

ALLPATHS-LG 13.2 26.0 44.9 144.5 

PBcR 6.2 13.7 14.1 19.3 

Falcon 3.1 6.4 19.7 13.8 

SPAdes 0.9 1.0 1.1 1.2 
 

4.3 Hybrid pipeline comparison 
Hybrid and non-hybrid assembly pipelines are not directly comparable (except by comparing 
absolutely best cases) because hybrid pipelines have an advantage in greater coverage supplied by 
Illumina reads. Table 3 gives a more detailed comparison between two hybrid assemblers 
ALLPATHS-LG and SPAdes. Besides running both pipelines on Dataset 0 (pared-end and mate-pair 
reads) together with each nanopore dataset, SPAdes was also tested using only Illumina paired-end 
reads (without mate-pair reads). 

 

The table shows that ALLPATHS-LG produces better results than SPAdes on all datasets, from 
Dataset 0 without nanopore data, for which SPAdes is not able to produce one sufficiently large 
contig, to Dataset 5 on which the difference is miniscule and apparent only in the number of SNPs and 
indels. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2015. ; https://doi.org/10.1101/030437doi: bioRxiv preprint 

https://doi.org/10.1101/030437
http://creativecommons.org/licenses/by-nc/4.0/


It is interesting to notice that while ALLPATHS-LG requires both a paired-end and a mate-pair library 
to run, SPAdes seems not to be able to leverage mate-pair reads at all. Results using paired-end 
Illumina library without mate-pairs seems to be equal to or even slightly better than with a mate-pair 
library, for all nanopore datasets. This means that in a situation where expensive-to-produce mate-
pairs reads are unavailable, SPAdes might be a good choice for a de novo assembler. 

Table 3. Comparing ALLPATHS-LG and SPAdes results 

Dataset Assembler # ctg N50 

Genome 
fraction 
(%) 

Avg. 
Identity 
1-to-1 

Total 
SNPs 

Total 
Indels 

Dataset 0 ALLPATHS-LG 3 4626283 99.219 99.99 59 73 

Dataset 0 SPAdes PE and MP 106 1105151 99.089 99.98 231 78 

 
Dataset 2 ALLPATHS-LG 2 4639001 99.938 99.99 10 12 

Dataset 2 SPAdes PE only 20 4470699 99.908 99.99 430 93 

Dataset 2 SPAdes PE and MP 18 4488904 99.912 99.98 427 110 

 Dataset 3 ALLPATHS-LG 3 4638937 99.938 99.99 6 38 

Dataset 3 SPAdes PE only 19 4474624 99.908 99.99 418 92 

Dataset 3 SPAdes PE and MP 19 4474608 99.88 99.99 425 108 

 Dataset 4 ALLPATHS-LG 1 4638952 99.938 99.99 8 20 

Dataset 4 SPAdes PE only 20 4475777 99.908 99.99 401 66 

Dataset 4 SPAdes PE and MP 20 4475770 99.88 99.99 399 73 

 Dataset 5 ALLPATHS-LG 1 4638958 99.938 99.99 3 5 

Dataset 5 SPAdes PE only 18 4648869 99.918 99.99 421 47 

Dataset 5 SPAdes PE and MP 16 4648863 99.918 99.99 420 53 
 

5 Conclusion 
In our study we compared several hybrid and non-hybrid de novo assembly tools and assessed their 
ability to work with nanopore data. Each examined tool proved capable of assembling a whole 
bacterial genome under the right conditions. The choice of the best assembly tool will heavily depend 
upon the characteristics of the datasets. ALLPATHS-LG showed overall best results, but it requires 
both paired-end and mate-pair short reads. In case only paired-end reads are available, SPAdes might 
be the better choice. Of the non-hybrid assembly tools, on some datasets LQS pipeline came close to 
or even surpassed hybrid tools. However, extremely high CPU time used by the Nanocorrect might 
make it prohibitively slow on larger genomes and larger datasets, in which case Falcon or PBcR could 
be used instead. Additionally, the good results obtained from hybrid assembly tools were largely due 
to higher coverage provided by Illumina reads. 

We can expect that with further development of nanopore technology (and other long read sequencing 
technologies) read quality will increase and the technology will become more accessible and more 
affordable. This will make de novo assembly using nanopore reads faster, more precise and applicable 
to lager genomes. 
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