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Martin Triska4, Martina Rickauer1,2, Yuri Nikolsky5,6, Paul Marjoram7,

Sergey Nuzhdin3, Tatiana V. Tatarinova4,8
5
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Abstract.20

Understanding the relationship between genomic variation and variation in phenotypes for quantitative

traits such as physiology, yield, fitness or behavior, will provide important insights for both predicting

adaptive evolution and for breeding schemes. A particular question is whether the genetic variation

that influences quantitative phenotypes is typically the result of one or two mutations of large effect,

or multiple mutations of small effect. In this paper we explore this issue using the wild model legume25

Medicago truncatula. We show that phenotypes, such as quantitative disease resistance, can be well-

predicted using genome-wide patterns of admixture, from which it follows that there must be many

mutations of small effect.

Our findings prove the potential of our novel “whole-genome modeling” –WhoGEM– method and

experimentally validate, for the first time, the infinitesimal model as a mechanism for adaptation30

of quantitative phenotypes in plants. This insight can accelerate breeding and biomedicine research

programs.
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Introduction.

All living organisms adapt to the changing environment. The adaptive traits of humans include, among

others, skin pigmentation1, altitude adaptation2 and lactose tolerance3. Plants may alter flowering35

time, length of developmental stages, or photosynthesis4. Selective pressure is often imposed by

geographic variables such as climate conditions, by pathogen exposure or food resources. Thus, in free

living species, genetics and geography are closely and measurably associated5. The species respond

by changing population structure via migration, by allele sorting due to random events (genetic drift)

and by natural selection6. Local adaptations among populations are a response to heterogeneity of the40

natural landscape. In general, a locally adapted population has higher fitness at its native site than

any other population introduced to that site7–9. Typically, local adaptation favors biodiversity, as the

alleles are selected under distinct environmental conditions10. In most cases adaptive traits represent

measurable phenotypes (i.e. “quantitative traits”), such as height, yield or pathogen resistance, that

depend on the cumulative actions of many genes, with variants occuring across multiple loci with often45

poorly understood relationships between them7.

When adaptation affects one or a few loci with large individual effect, its inheritance is explained

by classical Mendelian and population genetics. The set of variants leading to adaptation is rapidly

fixed in the population, along with neighbouring genomic regions, according to the “selective sweep”

model11. Selective sweeps create a genomic signature which consists of reduced genetic diversity50

and extended linkage disequilibrium in the genomic region surrounding the loci under selection12–14.

In plants, major selective drivers are associated with selective sweeps, for example for soil condi-

tions15, and climate adaptation16–18. For most candidate signals, we know neither the exact effect on

phenotype, nor the nature of the selective pressure12. This lack of understanding of the functional

mechanisms is the major drawback of the “selective sweep” model19. Due to the existence of multiple55

mechanisms (parallel adaptive pathways, redundant signaling and metabolic networks, etc.), an adap-

tation to the same selective stress can be achieved by different combinations of sweeps20, resulting

in a large heterogeneity of “sweeps” across populations. Therefore the signature’s content is highly

dependent upon population structure and restricted gene flow, particularly in plants21.

When adaptation has a polygenic basis, the quantitative trait will evolve rapidly, via small changes60

in the population frequencies of a large number of pre-existing polymorphisms22. Adaptation of quan-

titative traits is described by the “infinitesimal model”, proposed by Fisher23. This approach originally

consists of purely phenotype-based modeling, with no regard to molecular basis of inheritance. Con-

sequently, in classical animal and plant breeding, the degree of expression of selective traits (size,

yield etc...) are predicted based on the performances of the individuals and their relatives, ignoring65

molecular markers. Such phenotypic prediction makes the models very robust24, and they are widely

applied in breeding and in some evolutionary and ecological studies25;26. However, phenotype-based

models obviously lack the biological mechanisms behind the phenotypic traits.

Other quantitative methodologies link molecular data to phenotype via Quantitative Trait Loci

(QTLs). One set of methods is focused on studying the QTLs within relatively small families (typical70

for human diseases)27 and in the context of controlled crosses in cultivated plants28. The other

approaches deal with large populations, focusing on unrelated individuals, such as Genome-Wide

Association Studies (GWAS)29;30. In either case, the studies follow a filtering workflow aimed at

identifying relatively few QTLs or variants that are most relevant to the phenotype (be it a trait or

a disease). Over recent years, this approach, fueled by increasingly affordable genome sequencing or75
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genotyping, has led to an explosion of disease-related gene discoveries in human31 and has become a

method of choice in plant and animal breeding32 and in studies of adaptations in natural populations29.

However, GWAS (and QTL-based methodology in general) have also substantial drawbacks. First,

only a few (if any) SNPs or QTLs are likely to have statistical significance in any given GWAS on

human or plants33. Therefore, the variants found by GWAS typically explain only a minor fraction of80

the heritability of a specific trait (10-30%), making them poor predictors of phenotypes34. To address

the weak predictive power of GWAS-derived variants for phenotype (so-called “missing” heritability),

some scientists have adapted the whole-genome prediction method proposed by Meuwissen et al.35.

Such methods simultaneously use the full set of genome-wide SNPs to predict phenotypes36. It is,

however, difficult to correctly allow for population structure within these methods. Second, due to85

high level of genetic heterogeneity and epigenetic modification in organisms, most SNPs and QTLs

are “unstable”, i.e their statistical relevance to phenotype is not supported by follow-up studies37.

These drawbacks substantially limit applicability of the results of QTL or “big data” omics studies in

clinical settings (such as disease predisposition multi-gene panels) or in plant and animal breeding38.

Here, we offer a novel empirical paradigm, that we call “whole-genome modeling” -WhoGEM90

– for testing polygenic adaptation. Essentially, we consider the complete, genome-wide universe of

genetic variability, spread across several ancestral populations originally separated (e.g. by climate,

geography, tissue differentiation), ultimately displaying distinct phenotypes. Assuming that each

individual is a descendant of one or several ancestral populations, the relative contributions of such

populations to the genome of each individual – the so-called admixture components – are estimated95

using a likelihood algorithm. Our innovative working hypothesis postulates that a large proportion

of current phenotypic variation between individuals may be best explained by population admixture.

We therefore use admixture proportions, instead of SNP-based analysis of genome scans, to test for

correlation between genomic variation and quantitative phenotypes, or environmental variables. As

such, our method combines phenotypic anchoring of molecular markers with “whole-genome modeling”100

of the genotype, avoiding the major drawbacks of the abovementioned models by explicitly integrating

the population structure.

Unlike animals, plants feature complex mating systems including selfing and limited gene dispersal

through seeds and pollen, and a distinct immune system. Importantly, plants must survive under per-

manent selective pressure from local environmental conditions. These features make plants excellent105

objects for testing polygenic adaptation hypotheses8. We test our paradigm on Medicago truncat-

ula, a model legume with detailed genomic data available across a number of the Mediterranean

populations39–42. As a short-lived and self-compatible species, M. truncatula probably has a more

differentiated population structure and is expected to be a better model to study local adaptation

than long-lived or outcrossing species43. Existing knowledge of the exact population structure of M.110

truncatula was incomplete, with contradictory versions described44;45. As this is one prerequisite for

our study, we thus infer that structure with precision.

We define admixture components using a high-quality SNP set, based on the genome information

of 262 M. truncatula accessions located around the Mediterranean Basin39. As a calculation tool, we

adapt the recent Geographic Population Structure algorithm46 to plants (plantGPS). We use plant-115

GPS to refine our understanding of population structure and assess the optimal number of admixture

components. We demonstrate that WhoGEM, based on an admixture model, accurately predicts

quantitative traits. Focusing on disease resistance, we predict resistance to root pathogens. Using
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an independent set of accessions not previously characterized, we experimentally validate the predic-

tion of disease resistance levels from whole-genome data. We also unveil relations with admixture120

components by analysing other key quantitative functional traits, such as plant height. Our analysis

shows that geographic adaptations also rely upon a polygenic basis. Our results are among the first to

experimentally validate Fisher’s infinitesimal model for the adaptation of a quantitative phenotype in

plants. We also argue that our WhoGEM method is directly applicable to a wide range of biomedicine

problems, such as prediction of drug response and carcinogenesis, and to accelerate breeding programs125

in agriculturally important plants and animals.

Results.

A pattern of eight discrete populations around the Mediterranean Basin is revealed

by admixture-based analysis of the Medicago truncatula genome .

Many population genetic analyses assume a unique origin for the populations, with stepping stone130

divergence patterns. We take a different approach, relying on the glacial refugia hypothesis postulated

for M. truncatula 47, and nterpret our data assuming refuge areas with subsequent plant population

growth and admixture. To define M. truncatula populations, we conduct a three-step analysis com-

bining admixture-based tools, Principal Component Analysis (PCA) and plantGPS.

First, using a likelihood-based admixture analysis48, we identify a substructure atK = 7 andK = 8135

in which individuals appear homogeneous in their admixture composition (Figure 1, Supplementary

Figure 1). Higher K values yield noise which appears as ancestry shared by very few individuals

within the same populations.

Second, the most suitable number of admixture components is verified using a PCA-based analysis.

For K = 9 and higher, putative populations are not independently spread in the PC space, adding140

a supplementary argument for K = 8 being the optimal maximum number of source populations

(Supplementary Figures 2 to 5).

Third, we apply our novel tool plantGPS to evaluate the accuracy of geographic assignment for

each sample, using the distance between its recorded and predicted location. The plantGPS tool

uses the admixture components of each sample. The empirical cumulative curve of distances between145

predicted and observed locations shows that K = 8 results in best predictions (Supplementary Figure

6). With eight admixture components, 50% of accessions have their location predicted to within 100

km of their recorded location, and 75% within 800 km.

This three-step analysis demonstrates that population structure in M. truncatula can be adequately

explained using eight admixture components. Pair-wise Wright’s FST divergences49 between the150

admixture components (comparing the variance in allele frequencies among the components) indicate

that they are strongly differentiated (Table 1a). Therefore, we use this number of components for

subsequent analyses. The structure of the current M. truncatula population is obtained by hierarchical

clustering of the samples, based on their admixture patterns (Supplementary Figure 7, Supplementary

Table 2).155

Figure 2 displays the distribution of the eight putative M. truncatula populations around the

Mediterranean Basin, showing the genome admixture proportions of the 262 samples. Based on this

picture, we assign each population to a representative geographical region (Table 1b). Estimates

of FIS values (the inbreeding coefficient of an individual relative to its sub-population) are similar
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among the eight populations, suggesting no obvious intra-population heterogeneity (Table 1b). All160

populations are clearly differentiated, even over short geographical distances, such as with the two

Spanish populations.

Relationships among the populations are estimated based on the 840K SNP dataset, using acces-

sions that have at least 90% of their genome assigned to a given ancestral population to represent that

population. The resulting dendrogram (Supplementary Figure 8) reveals two main clades that reflect165

the major divergence event. Clade 1 contains populations from the South West of the Mediterranean

Basin: “Algiers” (K1), “Spanish Coastal” (K2) and “Spanish Morocco Inland” (K8). Clade 2 contains

the accessions from the North East of the Mediterranean Basin. We speculate that the clade 1 / clade

2 divergence reflects expansion from glacial refugia during the early Holocene50. Within clade 2, the

“French” (K6) population is clearly separated from the “Greek” (K7) population, in agreement with170

the “Maritim and Ligurian Alps” glacial refugia hypothesis50.

Geographical and bioclimatic variables significantly shape part of genetic variation

in M. truncatula .

The aspects of environmental variation that generate selective gradients are poorly understood for most

species. The repartition of the eight M. truncatula populations in the climatic zones defined by the175

Köppen-Geiger climate classification51 shows that several populations are present in the same climate

zone; and that the “Greek” population, is scattered through several climatic zones (Supplementary

Figure 9). This makes it unlikely that global climate types shaped populations.

We check for associations between admixture components and 19 local bioclimatic variables, defined

by WorldClim (http://www.worldclim.org). Correlations between the proportions of the various180

admixture components and any of the bioclimatic variables are shown in Supplementary Table 3, along

with tests of significance (Supplementary Table 4). Associations with bioclimatic variables depend

strongly on the admixture component. For example, the “Spanish Coastal” component is negatively

correlated with temperature seasonality (BIO4) and temperature annual range (BIO7), indicating

that this genome is present in accessions that grow in regions with moderate annual temperature and185

small temperature seasonal contrasts. Interestingly, the admixture proportions of the “North Tunisian

Coastal” population are not related to any bioclimatic variables, suggesting that the differentiation of

this genome may be due to other factors. Friesen et al.52 described how accessions belonging to this

population harbor alleles that assort non-randomly with soil salinity, suggesting a differentiation of

the “North Tunisian Coastal” population due to this particular abiotic condition.190

Next we use redundancy analysis (RDA53) to partition genomic variation within the species,

summarized by the admixture proportions, into components explained by climate and geography.

It allows estimating the change in the structure of genomic variation across spatial scales (latitude,

longitude and elevation) and climatic variables. Figure 3 shows that about half of the genomic variation

is due to climate or geography (r2 = 0.46; P ≤ 0.001), with climate as a major source of variation in195

admixture component (41.4%). The variation explained jointly by geography and climate is 17.6%,

geography alone contributes to 5% only.

This partition of genomic variation in response to climate is clearly different to A. thaliana, in which

Isolation By Distance (IBD) is important and climate variation among sites of origin explained only

slightly more genomic variation than geographical distance54. Here we show that genome admixture200

proportions are correlated to bioclimatic variables. This relationships suggests that a large number
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of loci/genes are involved in response to climate, even if the phenotypes involved in this response are

still unknown.

Genome admixture components predict quantitative resistance to plant pathogens,

as demonstrated by experimental validation.205

Altogether, the above results suggest that a significant part of the variation in genome admixture

components is due to other factors, such as soil or biotic interactions. Consequently, we explore

whether M. truncatula population structure might relate to adaptation for polygenic traits such as

plant-microbe interactions.

Two types of disease resistance are described in plants (i) complete resistance conditioned by a210

single gene55 and (ii) partial resistance, also called quantitative disease resistance (QDR), conditioned

by multiple genes of partial effect56. QDR often confers broad-spectrum resistance, being predicted

to be critical for efficient control of epidemics. It is characterized by a continuous range of phenotypes

from susceptible to fully resistant. QDR is often described by QTL that support the resistant pheno-

type and suggest modes of polygenic adaptation56. Studies that attempt to dissect a QDR trait have215

reported genes with various biological functions such as ABC transporters57 or atypical kinases58.

However, these genes do not explain all of the genetic variances reported using controlled crosses or

GWAS studies. The aggregating of QDR loci has been useful in decreasing disease symptoms59, but

fully resistant phenotypes are rarely described, suggesting that additional, possibly numerous loci, are

required.220

M. truncatula is prone to infection by the soil-borne fungal root pathogen Verticillium alfalfae.

Verticillium wilt response in M. truncatula is a QDR, regulated by QTLs that differ across resistant

accessions and vary according to the fungus strains60;61. Both plant and fungal species co-exist

around the Mediterranean Basin (CABI database, PlantWise database http://www.plantwise.org/,

August,25 2015).225

Figure 4 depicts the geographical partition of the Maximum Symptom Score (MSS) of 242 M.

truncatula accessions when infected with the V. alfalfae strain V31-2 (Supplementary Table 11),

together with their admixture patterns. Accessions located west of the Mediterranean Basin are

mainly resistant to the V31-2 strain (low MSS), while accessions located east of the Mediterranean

Basin are susceptible. Testing WhoGEM’s working hypothesis, we explore whether the degree of230

quantitative resistance to V. alfalfae can be explained by values of admixture components. Our

findings (Table 2) show that the proportions of four admixture components are significantly related to

MSS, as suggested by Figure 4 (r2 = 0.31, P≤ 2.2× 10−16). The average MSS value of the “Spanish

Coastal”, “Spanish-Morocco Inland” and “South Tunisian Coastal” genome components are 1.04, 1.6

and 1.71 respectively, making them resistant genomic backgrounds. The average MSS value of the235

“Greek” genome component is ' 3, making it a clearly susceptible genomic background.

We experimentally validate these computational results using an independent set of accessions

not re-sequenced previously. We predict the phenotypes from admixture components using the model

resulting from our above analysis as follows : uncharacterized accessions located within the geographic

zone of resistant (respectively susceptible) accessions should exhibit resistant (respectively susceptible)240

phenotypes. We test 32 new accessions from the ”Spanish Coastal” or ”Spanish-Morocco” geographic

zone, and 39 new accessions from the ”Greek” geographic zone (Figure 5a), and assess their disease

resistance level (Supplementary Table 12).
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Figure 5b shows the observed MSS of accessions predicted to be resistant or susceptible, along

with MSS of Spanish-Moroccoan (resistant) and “Greek” (susceptible) reference samples. MSS values245

of samples expected to be resistant or susceptible differ significantly (ANOVA P < 2 × 10−16) and

samples predicted to be resistant are significantly different from those predicted to be susceptible

(adjusted P < 2 × 10−16). Interestingly, multiple means comparisons show that predicted resistant

(or susceptible) accessions are not significantly different from their respective reference populations

(adjusted P = 0.55 and 0.90 respectively, Table 3). Defining the value MSS= 2 as a threshold for250

resistant (MSS < 2) or susceptible (MSS ≥ 2) accessions, we find that 26/32 of the samples predicted

to be resistant from their admixture proportions actually are resistant, while 27/39 samples predicted

to be susceptible are actually susceptible (χ2 = 16.03, P = 6.22 × 10−5). This shows that patterns

of QDR can be predicted from genomic admixture analysis, arguing for the utility of WhoGEM when

predicting complex phenotypes.255

We have thus shown experimentally validated theoretical predictions, by WhoGEM, of the QDR

level in M. truncatula. We show that the phenotypic difference between predicted resistant and

susceptible accessions is around two points on a scale from 0 to 4, i.e. 50% of the phenotypic difference

between the extremes of the phenotype distribution. This value is far greater than those previously

reported (0.28-0.5) for phenotypic differences between alleles at the major QTLs detected in response260

to V. alfalfae 60;61. Given the estimated narrow sense heritability of the trait60;61, we suggest that

genome admixture components are explaining the majority of the genetic control of this disease.

QDR is typically broad-spectrum, making the arms race between hosts and pathogens probably

not critical and, consequently, currently not reported in the literature. Our results re-enforce the idea

that QDR in plants is likely to result from changes to a large number of genes scattered throughout265

the genome, and that this is reflected in admixture proportions. Because of the co-occurrence of both

the plant species and the pathogen around the Mediterranean Basin, we hypothesize that the observed

pattern of quantitative resistance in the M. truncatula/V. alfalfae pathosystem may be due to natural

selection, with unknown additional contributions from drift and migration.

Genome admixture components can be significant predictors of quantitative func-270

tional traits in plants.

Knowledge of the selective pressure acting on the phenotype, could lead to insights into the respective

contributions of adaptive selection and drift toward phenotypic differentiation among populations.

This can easily be tested using plant-microbe interactions, in particular for QDR, by comparing the

geographical distribution of plants and pathogens.275

Aphanomyces euteiches is a soil-borne pathogen of legume crops, mainly occurring North of the

45th parallel. Using data reported by Bonhomme et al.45, we depict the geographical structure

of root-rot index (RRI), a typical quantitative phenotype measuring susceptibility of M. truncatula

to this oomycete, together with the admixture patterns of the studied accessions (Supplementary

Figure 10). We test whether the proportions of admixture components (Supplementary Table 2)280

are predictors for RRI and find a significant relationship (P =1.8 × 10−7, Supplementary Table 5).

The WhoGEM model accounts for 19.2% of variation in the phenotype, and provides a lower bound

for heritability. Intriguingly, the populations of the Maghreb area show a contrasting response to

the pathogen, whose presence is not reported in that geographic zone (CABI database, PlantWise

database http://www.plantwise.org/, Aug.,25 2015; Bonhomme et al.45). Hence, we hypothesize285
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that the phenotypic differentiation among the resistant and susceptible populations may be due to

genetic drift or migration. This hypothesis also suggests that the cost of resistance may be negligible

in the absence of pathogen, in contrast with previous results described for foliar pathogens62. An

alternative hypothesis is that resistance to A. euteiches is driven by, or linked to, resistance to other

factors, as suggested by Djebali et al.63, and as such, not a consequence of natural selection acting290

toward resistance to the oomycete.

Having demonstrated that genome admixture proportions can be used to predict different QDR,

we further test our approach by examining relationships between admixture component proportions

(Supplementary Table 2) and several quantitative functional traits related to development as reported

by Stanton-Geddes et al.64. Supplementary Figures 11d & e depict the geographical structure of plant295

height and leaf number combined with admixture proportions of the recorded accessions. Plant height

(Supplementary Table 6a) and the number of leaves (Supplementary Table 6b) exhibit different results

regarding association with genome admixture components. The influence of population structure on

plant height is very significant (r2 =0.21, P =2 × 10−11), but less so on number of leaves (r2 =0.05,

P =7× 10−4). The results suggest that a latitudinal cline for leaf numbers may exist, with accessions300

south of the Mediterranean Basin harboring more leaves.

Long-term positive selection is weakly involved in current population structure.

The above results suggest that response to selective pressure contributed to the differentiation among

M. truncatula populations. When trying to understand the role of natural selection, protein-coding se-

quences offer the great advantage in that they allow us to distinguish synonymous and non-synonymous305

substitutions.

The non-synonymous/synonymous rate ratio, ω = dN / dS, measures selective pressure at the pro-

tein level6. A non-synonymous rate which is significantly higher than the synonymous rate, resulting

in ω > 1, provides evidence for positive protein selection, whereas ω < 1 evidence purifying selection.

To test if adaptation to biotic and abiotic conditions involves selection over a long period of time, as310

compared to rapid changes in allelic frequencies, we compute ω in each M. truncatula population.

We conduct a population-wise binomial test to determine if the dN/dS value for each gene differs

from the genome-wide average dN/dS value. In each population, we obtain clear evidence of a trend

towards extreme dN/dS values; the QQ-plot of p-values is shown in Figure 6. We identify 15 genes

with significant purifying selection in at least one population (Table 4 and Supplemental Table 7).315

The majority of these are related to development (cell wall and growth) and energy (photosynthesis

and correlative UV protection), both involved in establishing fitness level.

Among the eight populations, we identify only 10 genes with both dN/dS ≥ 5 and a coefficient

of variation ≥ 0.40 (Supplemental Table 8 and Supplemental Table 9). Five of the 10 genes are

transcription factors of unknown function, indicative of the importance of regulatory pathways in320

adaptation. The FRIGIDA ortholog exhibits a strong differential selection pressure among the eight

populations, in accordance with the necessary adaptation of vernalization and flowering times over

contrasted environments65.

Interestingly, we identify 137 genes that have ω ≥ 7 and a low coefficient of variation (Figure 7).

These genes could be involved in the overall selection response for all accessions of M. truncatula. GO325

term enrichment analysis of these genes does not identify specific biological processes, suggesting that

all biological processes contribute to adaptation at the same pace.
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Tests based on synonymous/non-synonymous comparisons are expected to be less sensitive to

demographic assumptions than site frequency spectrum or LD-based methods21. However, they cannot

distinguish between past and current selection. Our results reveal strong purifying selection acting on330

genes directly involved in fitness, and show that putative positive selection is affecting all biological

processes. Analysis of patterns of nucleotide variation shows that observed population structure is

probably due to ongoing selection rather than long-term selection. We also show that the number of

genes under putative long-term selection is low.

Genome admixture component prediction supports the hypothesis that quantitative traits (forming335

the majority of eukaryotes’ functional traits) are affected by many genes, each being under moderate to

weak selection pressure. This will be true even if the overall selection pressure is high, and especially if

an additive mode of action is predominant. As a consequence, the number of genes that can be detected

to be under strong positive selection may be low. This agrees with our analysis of the dN/dS ratio

among the eight M. truncatula populations. Our findings challenge previously reported results39;66,340

that were based on a preliminary dataset including fewer samples, no population structure, and using

SNPs called on a previous version of the genome.

Geographic localization of the reference genome of M. truncatula : plantGPS con-

firms that genetics helps in predicting geography.

As a supplementary tool in defining the population structure, we modified the algorithm described345

by Elhaik et al.46 to adapt it to plants (plantGPS), and to reflect the expected reduced levels of

migrations and outcrossing in self-pollinating plants like A. thaliana and M. truncatula.

Using the plantGPS method, we infer the geographic source for the M. truncatula A17 reference

genome40. This accession has been isolated from the Australian Jemalong cultivar (T. Huguet, per-

sonal communication) but Jemalong’s origin in the Mediterranean Basin is not documented in the350

literature. With plantGPS, we determine a likely primary geographical position of the Jemalong-A17

accession within the “Spanish Coastal” population, as illustrated in Figure 8. The location of A17

within this population is in accordance with its resistant phenotype in response to V. alfalfae 60. This

independent result provides additional evidence of the role of admixture components in determining

phenotypes.355

Use of the plantGPS algorithm also provides us with an objective function to minimize i.e. the

distance between predicted and reported locations, when looking for the most likely number of ad-

mixture components. This investigation shows the potential of the plantGPS method in locating

unknown plant samples based on their admixture components, it may have similar applications in

forensic sciences and technologies.360

Discussion.

Understanding the relationships between genotype and phenotype is a fundamental challenge in mod-

ern biology. Linking specific genomic variations with selective traits in plants and animals (yield,

fitness, etc.) and human (disease predisposition, drug response, etc.) is key for many fields, from

plant and animal breeding to individualized healthcare and drug discovery.365

Most adaptive events in natural populations, or selected traits in breeds of domesticated species,

occur via the evolution of quantitative, polygenic traits rather than via the fixation of a single (or
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few) beneficial mutations22, with some exceptions, such as monogenic human diseases and a few plant

traits described by Mendelian laws. Therefore, the phenotypic variability found in natural populations

is due to a complex underlying genetic interplay of multiple, often unknown, loci with allelic effects370

affected by the environmental conditions24;28. Not surprisingly, the models attempting to describe

genotype / phenotype relationships suffer from major drawbacks and are reductionist (focusing on

relatively few genetic features). For instance, there are typically no clear “selective sweep” signals for

most traits, as a result of low specificity for the corresponding model. Likewise, the “major QTL”

model, which is currently the preferred concept in GWAS and controlled cross studies, shows limited375

performance in identifying the loci critical for breeding programs.

Here, we offer a novel methodology for predicting quantitative traits based on a whole-genome

model of genomic variants and population admixture-based algorithms. We propose to call our ap-

proach “whole-genome modeling” – WhoGEM –. We move away from focusing on “large impact”

variants and instead we propose calculating a simple descriptor of “mixing proportions” in individuals380

believed to originate from distinct ancestral populations. Our approach is akin to the calculation of

phenotypic resemblance as in the whole-genome genetic resemblance, popularized by Meuwissen and

others35;67. Unlike the latter approach, we explicitly embed the inferred population structure in our

calculations, thus expanding the method’s applicability. We demonstrate the relationship between ad-

mixture proportions and quantitative traits in the model legume M. truncatula and support the view385

that phenotype can be explained by an additive action of a large number of loci. These components

of inheritance represent combinations of genes (either protein-encoding or regulatory, such as non-

coding RNAs) manifested as alleles, polymorphisms and some other genetic variants. Using examples

of pathogen resistance and plant development traits, we demonstrate that the admixture proportions

descriptor can predict the degree of local adaptation better than the feature selection-based methods.390

The WhoGEM concept is likely to be expandable to all quantitative functional traits that involve

complex genetic determinism. Admixture proportions offer a meta-view of genome structure, provid-

ing information integrated across the entire genome. As admixture proportions embed information

from the linked loci, they may be a straightforward way to address the long-standing debate about the

relative contribution of protein-coding changes (micro-evolution) versus regulatory changes (expected395

to act through regulatory pathways, and thus phenotypic plasticity).

To conclude, we show that genome admixture components provide strong insights into the genetic

landscape of polygenic adaptation. To the best of our knowldege, this is the first analysis to experi-

mentally validate the infinitesimal model for natural adaptation of a quantitative phenotype in plants.

Comparative analysis of response to two different pathogens clearly demonstrates that phenotypic400

differentiation among populations, supported by an infinitesimal model, may or may not result from

natural selection. We also suggest that response to climate could be investigated using an infinitesimal

model. Predicting phenotypes on the basis of genome components will help in inferring future trends

of local adaptation related to global climate change. Both plant and animal breeding methodologies

may beneficiate from WhoGEM. Finally, we postulate that prediction of complex traits in humans,405

for example drug response in clinical trials or disease predisposition models, may benefit from the

same general methodology. Adaptations of our method may well be applicable to “omics” data-based

modeling of metastasis, clonal selection and genetic heterogeneity in cancer research. Moreover, an

extension of WhoGEM would be capable of integrating and calculating admixture proportions from

multiple types of genome-wide “big data”, such as whole-genome genetic landscapes, epigenetics and410
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expression profiling. Our findings contribute to the establishment of a strong theoretical and experi-

mental corpus of methods to detect and explain signals of polygenic adaptation within genomes.

Materials and Methods.

SNP selection. A set of 262 genuine Medicago truncatula accessions39 was used to extract415

SNPs (http://medicago.hapmap.org). After quality checking and LD-pruning using PLINK, using

the options --geno 0.05 --maf 0.01 --indep 300 60 1.3, we selected a total of 843 171 SNPs

covering the eight chromosomes of the M. truncatula genome (Supplemental Table 1).

Development of the plantGPS algorithm. plantGPS is an adaptation of the admixture-based

Geographic Population Structure (GPS) algorithm46 to plant species. This modification takes into420

account ties encountered when the genetic distances between different closely related accessions are

identical. Ties are also considered when computing the contribution of other reference accessions to

the sample’s genetic make-up. plantGPS calculated the Euclidean distance between the sample’s ad-

mixture proportions and a reference dataset, for predicting the provenance of sequenced accessions.

The matrix of admixture proportions was calculated with the ADMIXTURE software package48. The425

’shortest distance’ measure, representing the test sample’s deviation from its nearest reference popu-

lation, was subsequently converted into geographical distance using the linear relationship observed

between genetic and geographic distances. The final position of the sample on the map was calculated

by a linear combination of vectors, with the origin at the geographic center of the best matching

population weighted by the distances to 10 nearest reference populations and further scaled to fit430

on a circle with a radius proportional to the geographical distance. If the smallest distance (∆min
GEN )

that represented the sample’s deviation from the best matching accession was identical for several

accessions, those were considered as a set of accessions. Numerical values may thus contain ties and

the initial geographical position of an unknown accession was defined as the centroid of the geograph-

ical positions of the identical, or nearest accessions. The contribution of other reference accessions435

m = 2..N to the sample’s genetic make-up might also contain ties. The computation of the weight

w =
∆min

GEN
∆GEN (m) was thus modified accordingly.

To estimate the assignment accuracy of plantGPS, we used the ‘leave-one-out’ approach at the

individual level. In brief, we excluded each reference individual from the data set, recalculated the

mean admixture proportions of its reference population, predicted its biogeography, computed the440

geographical distance between predicted and reported locations, tested whether it is within the geo-

graphic regions of the reported origin and then computed the mean accuracy per population. More

specifically, we index our individual as the jth sample from the ith population that consists of ni indi-

viduals. For all populations, excluding the individual in question, the average admixture proportion

and geographical coordinates were calculated as θ̄m =

∑
s
θm,s

nm
where θ̄m is the parameter vector for445

the sth individual from the mth population, and nm is the size of the mth population. For the ith

population the adjusted average will be θ̄−ji =

∑
l 6=j

θi,l

ni−1

A set of 245 genuine M. truncatula accessions with geographical coordinates (latitudes and longi-

tudes) served as the reference set for plantGPS. Seventeen accessions, among which the Jemalong-A17

accession that is used as the reference genome40, were of unknown origin and not included in the450

reference set.
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Strategy for population structure determination. The strategy used to identify populations

combines three steps : admixture-based tools, Principal Component Analysis (PCA) and plantGPS.

First, a likelihood-based analysis is run in the unsupervised mode for K = 2 to 12. We use

the ADMIXTURE software package48 based on the collection of high-quality LD-pruned SNPs. Each455

plant sample was characterized by a vector of n proportions that sum to one, n being the number

of admixture components (i.e. n = K), possibly ranging from K = 2 to K = 12. This vector

summarizes the proportion of the plant’s genome that belong to each of the n admixture component.

A tree that summarizes the partition of the set of accessions into successive subsets defined by their

major admixture component supports K = 7 or K = 8 as providing a stable structure for population460

stratification (Supplementary Figure 1). Computations were conducted two times independently and

came to almost identical results.

Second, the most suitable number of admixture components was verified using a PCA-based anal-

ysis. ADMIXTURE outputs the inferred allele frequencies of each SNP for each hypothetical population.

This allowed us to simulate samples (called “zombies”) for each hypothetical population, viewed as465

reconstructed hypothetical ancient-like individuals, purged of centuries or millennia of admixture. The

PCA thus included both the sampled accessions and zombies, as hypothetical ancestral individuals

for each hypothetical population. Supplemental Figures 2 to 5 show pairwise PCA plots of the actual

M. truncatula accessions together with simulated samples (7 zombies per admixture component), for

K = 7 to K = 10. For each level of K, the ancestral populations were distributed in the space470

of the first six eigenvectors. PCA computations were performed using the R package SNPRelate

using PLINK formated files. Similar results were obtained using 30 simulated individuals per each

hypothetical population, or using computations with EIGENSTRAT (data not shown).

Third, we applied the “leave-one out” cross-validation approach of the plantGPS algorithm at the

“accession” level, to estimate the difference between predicted and reported location, for each sample.475

This procedure was repeated for K = 2 to K = 12 and the empirical cumulative distribution of the

geographical distances was used as a criteria to estimate the accuracy of geographical prediction at

each number of putative genome components (Supplementary Figure 6).

We then established the definitive correlation between geographic and genetic distances between

pairs of individuals, for K = 8. Given the (relatively) small distances across the Mediterranean480

Basin, we computed a “naive” geographical distance using pairwise Euclidean distance based on the

longitude/latitude reported for the accessions. The matrix of pairwise genetic distances was computed

using the admixture component proportions of each accession with K = 8. The Mantel test applied to

the initial matrices revealed a significant, yet moderate, correlation between geographical and genetic

distances (r=0.294, P = 1 × 10−4). Supplementary Figure 12 shows that the linear relationship485

between geographical and genetic distances is restricted to distances less than 950 km. When filtering

out the distance matrices for distances > 950km, the Mantel correlation coefficient raises to 0.78, a

highly significant value (P = 1 × 10−4). We thus fitted a linear relationship between geographical

and genetic distances for geographical distances less than 950 km. The regression equation is Geo =

0.204 + 4.973×Gen + ε with adjusted R2 = 0.61 and model P < 2.2× 10−16.490

The average distance between original and predicted locations is 471 km, the median is 214 km and

75% of the samples are predicted to be less than 677 km from their reported origin (Supplementary

Figure 13).

To provide population identification, the final admixture frequencies of the eight components for
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the 262 M. truncatula accessions were calculated by applying ADMIXTURE in the supervised mode.495

Accessions were then clustered into populations, using hierarchical clustering based on the genome

admixture proportions, using Euclidean distance and the ’average’ link. The name of each popula-

tion name is determined by the region which is the geographical centroid of the accessions of that

population.

Relationships among populations were computed based on selected individuals that had at least500

90% of their genome assigned to a given ancestral population. With that aim, genetic distances were

computed based on the 840K SNP dataset (R package SNPRelate) and dendrogram was computed

and drawn using R packages ape and geiger.

Maps and sample locations were drawn using the rworldmap, mapplots and maptools R packages.

dN/dS computations. To test for selection in M. truncatula populations, ancestral alleles of505

truncatula clade were estimated using MrBayes68. MrBayes estimates ancestral alleles based on a

given phylogenetic tree. We used the phylogenetic tree of Yoder et al.69 for this purpose. In the

truncatula clade, M. soleirolii, M. turbinata, and M. doliata were used as outgroups in the estimation

procedure. Ancestral alleles that were predicted with probability lower than 0.9 were removed from

further consideration. Non-synonymous and synonymous mutations in M. truncatula populations510

were then identified based on comparison to the inferred ancestral allele states. The significance of

the dN/dS ratio for each gene in each population was then calculated using a two-tailed binomial

test. Specifically, we assumed the dN(dS) values were distributed as Binomial(N, p), where N is the

observed number of mutations in that gene and p is set to be 1/6, which is the overall ratio of dN
dN+dS

in the data. This test will then indicate genes for which the dN/dS ratio is higher or lower than is515

typical.

Evaluation of quantitative resistance to Verticillium alfalfae in M. truncatula. A set

of 313 accessions of M. truncatula has been assessed for their response to Verticillium wilt, including

242 already sequenced accessions from the HapMap project39. M. truncatula seeds were from our own

collection or obtained from the INRA Medicago truncatula Stock Center (Montpellier, France). All520

the M. truncatula accessions have been phenotyped using an Augmented Randomized Block Design in

3 independent replicates for the already sequenced (reference) accessions and 2 replicates for the other

accessions. Between 4 and 10 plants per genotype were used in each replicate. 10-day-old plants were

root inoculated as described in Ben et al.60. Disease development was monitored for 32 days two or

three times a week and rated using a scale from 0 (no symptoms) to 4 (dead plants). At the end of the525

experiment, the Maximum Symptom Score (MSS) was obtained for each plant. The LS-mean of the

MSS for each accession was calculated using the linear model yijk = µ+ accessioni+ blockj + εijk (yijk

the maximum disease score for the kth plant of the ith accession of the jth block ; εijk, the residual)

using R.

Relationship between admixture proportions and quantitative phenotypic variables.530

The 19 WorldClim bioclimatic variables (30 seconds resolution, downloaded at http://www.worldclim.

org/current) were extracted for each accessions’ location, using the reported latitude and longitude

for that accession (raster R package). The relationships between genome components, the 19 World-

Clim bioclimatic variables and geography (latitude, longitude and altitude) were modeled using re-

dundancy analysis (RDA), an approach that examines how well of the variation in one set of variables535

(the bioclimatic variables and/or the geography) explains the variation in another set of variables

(the genome admixture proportions of each sample). The RDA was computed using the vegan R
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package. RDA of admixture proportions with bioclimatic variables conditionnal to geography was

also computed to estimate effects of climate “corrected for” the geography.

The relationships between genome components and phenotypes were estimated using linear models.540

Because of dependencies among the predictors (the proportions of genome components must sum to

one), a systematic search for the best minimum model was done using the leaps R package or use of

the step function with both direction, employing a significance level of α = 5% as the benchmark for

using a predictor.

Spatial interpolation of phenotypic traits was performed using a thin plate spline method, with a545

smoothing parameter of λ = 0.005, as implemented in the R package fields.

Unless otherwise stated, all computations were done using the R statistical environment70.
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Tables legends

Table 1: Putative ancestral genomes, as revealed by admixture-based analysis, and popula-720

tions participating to actual levels of structure in M. truncatula.

(a) Pair-wise Fst divergences between K = 8 admixture components.

(b) Characteristics of the eight populations defined using the K = 8 admixture

components. FIS fixation index, number of accessions per population, name of the

population and main spanned countries are indicated for each population.725

(c) Pair-wise Fst divergences between the eight populations.

Table 2: Linear model between admixture components and Maximum Symptom Scores in

response to Verticillium alfalfae in a collection of 242 M. truncatula accessions.

Table 3: Mean comparisons for quantitative resistance, among groups of M. truncatula ref-

erence accessions of the two ’Spanish’ populations, unknown accessions sampled in730

Spain, reference accessions of the ’Greek’ population and unknown accessions sam-

pled around Greece

Reference : accessions with known admixture proportions (’Spanish Coastal’, ’Span-

ish Morocco Inland’ and ’Greek’ populations); Predicted : accessions with unknown

admixture proportions sampled in Spain or Greece; R : quantitative resistance ; S :735

susceptibility

Table 4: Genes under purifying selection, as determined by dN/dS analysis in each M. trun-

catula population.

Genome Mt4.0 and annotation Mt4.0v2 were used for computations.

Figures legends740

Figure 1: ADMIXTURE proportions for 262 M. truncatula accessions, by increasing putative K.

The x axis represents accessions sorted according to their reported country and an-

cestries. Each accession is represented by a vertical stacked column of colour-coded

admixture proportions that reflects genetic contributions from putative ancestral

populations.745

Figure 2: Geographical distribution of 262 M. truncatula accessions and proposed population

structure.

The stratification of the collection is obtained assuming K=8. Each sub-plot repre-

sents the extent of accessions belonging to one population. At each location, a pie

chart represents the admixture proportions of the accessions’s genome.750

Figure 3: Venn diagram of the variation partioning for genome admixture component propor-

tions explained by climate (left) and geography (right).

Residual is the amount of genomic variation not explained by the two explanatory

variables.

Figure 4: Geographical repartition of Maximum Symptom Score (MSS) in response to Verti-755

cillium alfalfae in a collection of 242 M. truncatula accessions.

The MSS scale is displayed as a color gradient. Scale of MSS index from resistant

(blue) to susceptible (red) accessions is indicated on the right.

Admixture proportions of each phenotyped accessions are summarised by pie charts.
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Figure 5: Predicting and validating phenotypes based on the relationship between admixture760

component and partial resistance to V. alfalfae in M. truncatula.

(a) Sampling of new accessions in the geographic zone of the ’Spanish Coastal’ and

’Spanish-Morocco Inland’ resistant populations, and in the geographic zone of the

’Greek’ susceptible populations. The MSS of the reference accessions is displayed as

a color gradient (see Figure 4). (b) Violin plots of MSS for reference and sampled765

accessions.

Reference resistant accessions are sequenced accessions belonging to the ’Spanish

Coastal’ and ’Spanish-Morocco Inland’ populations, reference susceptible accessions

are sequenced accessions belonging to the ’Greek’ population.

Figure 6: QQ-plot of p-values for binomial test of dN/dS, in each of the eight M. truncatula770

populations, for all anotated genes of current M. truncatula genome.

Genome Mt4.0 and annotation Mt4.0v2 was used for computations

Figure 7: Chromosomal location of genes under putative positive selection in all M. truncatula

populations, as determined by dN/dS analysis.

Figure 8: Predicted geographical location of the M. truncatula reference accession Jemalong-775

A17, using the plantGPS algorithm.

Closest accessions with reported geographical location are displayed in cyan. The

predicted location is the centroid of the closest accessions, weighted by their genetic

distance to A17.
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K1 K2 K3 K4 K5 K6 K7

K2 0.262
K3 0.274 0.294
K4 0.226 0.249 0.105
K5 0.280 0.296 0.150 0.118
K6 0.218 0.231 0.146 0.101 0.146
K7 0.228 0.255 0.127 0.086 0.122 0.086
K8 0.262 0.229 0.318 0.272 0.322 0.259 0.279

(a)

Admixture component FIS Pop. size Population name Country

K1 0.53 11 Algiers Algeria
K2 0.69 23 Spanish Coastal Spain, Portugal
K3 0.54 15 North Tunisian Coastal Tunisia
K4 0.56 54 Atlas Algeria, Tunisia
K5 0.48 13 South Tunisian Coastal Tunisia
K6 0.62 29 French France
K7 0.58 63 Greek Greece and neighbours
K8 0.62 53 Spanish-Morocco Inland Spain, Morocco

(b)

Algiers Spanish
Coastal

N-
Tunisian
Coastal

Atlas S-
Tunisian
Coastal

French Greek

Spanish Coastal 0.251
N-Tunisian Coastal 0.294 0.255

Atlas 0.228 0.218 0.060
S-Tunisian Coastal 0.322 0.275 0.112 0.090

French 0.204 0.176 0.102 0.070 0.116
Greek 0.236 0.220 0.084 0.060 0.082 0.048

Spanish-Morocco Inland 0.243 0.149 0.300 0.261 0.316 0.229 0.266

(c)

Table 1
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Estimate Std. Error t value Pr(>|t|)
Intercept 2.4541 0.0861 28.50 0.0000

Spanish Coastal -1.4147 0.2290 -6.18 0.0000
South Tunisian Coastal -0.7222 0.2367 -3.05 0.0026

Greek 0.6017 0.1636 3.68 0.0003
Spanish-Morocco Inland -0.8518 0.1804 -4.72 0.0000

Table 2
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diff lwr upr p.adj

Reference R vs Reference S 1.3286 0.9035 1.7537 0.0000
Predicted R vs Predicted S 1.2294 0.7070 1.7518 0.0000
Reference R vs Predicted R -0.2308 -0.6859 0.2243 0.5544
Reference S vs Predicted S -0.1316 -0.6280 0.3649 0.9018
Reference S vs Predicted R 1.0978 0.6211 1.5745 0.0000
Reference R vs Predicted S -1.4602 -1.9360 -0.9844 0.0000

Table 3
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