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Summary 1	  

Large-scale reference data sets of human genetic variation are critical for the medical 2	  

and functional interpretation of DNA sequence changes. Here we describe the 3	  

aggregation and analysis of high-quality exome (protein-coding region) sequence data 4	  

for 60,706 individuals of diverse ethnicities generated as part of the Exome Aggregation 5	  

Consortium (ExAC). The resulting catalogue of human genetic diversity contains an 6	  

average of one variant every eight bases of the exome, and provides direct evidence for 7	  

the presence of widespread mutational recurrence. We show that this catalogue can be 8	  

used to calculate objective metrics of pathogenicity for sequence variants, and to identify 9	  

genes subject to strong selection against various classes of mutation; we identify 3,230 10	  

genes with near-complete depletion of truncating variants, 72% of which have no 11	  

currently established human disease phenotype. Finally, we demonstrate that these data 12	  

can be used for the efficient filtering of candidate disease-causing variants, and for the 13	  

discovery of human “knockout” variants in protein-coding genes. 14	  

 15	  

Background 16	  

Over the last five years, the widespread availability of high-throughput DNA sequencing 17	  

technologies has permitted the sequencing of the whole genomes or exomes (the 18	  

protein-coding regions of genomes) of hundreds of thousands of humans. In theory, 19	  

these data represent a powerful source of information about the global patterns of 20	  

human genetic variation, but in practice, are difficult to access for practical, logistical, 21	  

and ethical reasons; in addition, their utility is complicated by the heterogeneity in the 22	  

experimental methodologies and variant calling pipelines used to generate them. Current 23	  

publicly available datasets of human DNA sequence variation contain only a small 24	  

fraction of all sequenced samples: the Exome Variant Server, created as part of the 25	  

NHLBI Exome Sequencing Project (ESP)1, contains frequency information spanning 26	  
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6,503 exomes; and the 1000 Genomes (1000G) Project, which includes individual-level 1	  

genotype data from whole-genome and exome sequence data for 2,504 individuals2. 2	  

 3	  

Databases of genetic variation are important for our understanding of human population 4	  

history and biology1–5, but also provide critical resources for the clinical interpretation of 5	  

variants observed in patients suffering from rare Mendelian diseases6,7. The filtering of 6	  

candidate variants by frequency in unselected individuals is a key step in any pipeline for 7	  

the discovery of causal variants in Mendelian disease patients, and the efficacy of such 8	  

filtering depends on both the size and the ancestral diversity of the available reference 9	  

data. 10	  

 11	  

Here, we describe the joint variant calling and analysis of high-quality variant calls 12	  

across 60,706 human exomes, assembled by the Exome Aggregation Consortium 13	  

(ExAC; exac.broadinstitute.org). This call set exceeds previously available exome-wide 14	  

variant databases by nearly an order of magnitude, providing substantially increased 15	  

resolution for the analysis of very low-frequency genetic variants. We demonstrate the 16	  

application of this data set to the analysis of patterns of genetic variation including the 17	  

discovery of widespread mutational recurrence, the inference of gene-level constraint 18	  

against truncating variation, the clinical interpretation of variation in Mendelian disease 19	  

genes, and the discovery of human “knockout” variants in protein-coding genes. 20	  

 21	  

The ExAC Data set 22	  

Sequencing data processing, variant calling, quality control and filtering was performed 23	  

on over 91,000 exomes (see Online Methods), and sample filtering was performed to 24	  

produce a final data set spanning 60,706 individuals (Figure 1a). To identify the ancestry 25	  

of each ExAC individual, we performed principal component analysis (PCA) to 26	  
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distinguish the major axes of geographic ancestry and to identify population clusters 1	  

corresponding to individuals of European, African, South Asian, East Asian, and 2	  

admixed American (hereafter Latino) ancestry (Figure 1b; Supplementary Information 3	  

Table 3); we note that the apparent separation between East Asian and other samples 4	  

reflects a deficiency of Middle Eastern and Central Asian samples in the data set. We 5	  

further separated Europeans into individuals of Finnish and non-Finnish ancestry given 6	  

the enrichment of this bottlenecked population; the term “European” hereafter refers to 7	  

non-Finnish European individuals. 8	  

 9	  

We identified 10,195,872 candidate sequence variants in ExAC. We further applied 10	  

stringent depth and site/genotype quality filters to define a subset of 7,404,909 high 11	  

quality (HQ) variants, including 317,381 indels (Supplementary Information Table 7), 12	  

corresponding to one variant for every 8 bp within the exome intervals. The majority of 13	  

these are very low-frequency variants absent from previous smaller call sets (Figure 1c): 14	  

of the HQ variants, 99% have a frequency of <1%, 54% are singletons (variants seen 15	  

only once in the data set), and 72% are absent from both 1000G and ESP. 16	  

 17	  

The density of variation in ExAC is not uniform across the genome, and the observation 18	  

of variants depends on factors such as mutational properties and selective pressures. In 19	  

the ~45M well covered (80% of individuals with a minimum of 10X coverage) positions in 20	  

ExAC, there are ~18M possible synonymous variants, of which we observe 1.4M (7.5%). 21	  

However, we observe 63.1% of possible CpG transitions (C to T variants, where 22	  

the adjacent base is G), while only observing 3% of possible transversions and 9.2% of 23	  

other possible transitions (Supplementary Information Table 9). A similar pattern is 24	  

observed for missense and nonsense variants, with lower proportions due to selective 25	  

pressures (Figure 1D). Of 123,629 HQ insertion/deletions (indels) called in coding 26	  
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exons, 117,242 (95%) have length <6 bases, with shorter deletions being the most 1	  

common (Figure 1E). Frameshifts are found in smaller numbers and are more likely to 2	  

be singletons than in-frame indels (Figure 1F), reflecting the influence of purifying 3	  

selection. 4	  

 5	  

Patterns of protein-coding variation revealed by large samples 6	  

The density of protein-coding sequence variation in ExAC reveals a number of 7	  

properties of human genetic variation undetectable in smaller data sets. For instance, 8	  

7.9% of HQ sites in ExAC are multiallelic (multiple different sequence variants observed 9	  

at the same site), close to the Poisson expectation of 8.3% given the observed density of 10	  

variation, and far higher than observed in previous data sets - 0.48% in 1000 Genomes 11	  

(exome intervals) and 0.43% in ESP. 12	  

 13	  

The size of ExAC also makes it possible to directly observe mutational recurrence: 14	  

instances in which the same mutation has occurred multiple times independently 15	  

throughout the history of the sequenced populations. For instance, among synonymous 16	  

variants, a class of variation expected to have undergone minimal selection, 43% of 17	  

validated de novo events identified in external datasets of 1,756 parent-offspring trios8,9 18	  

are also observed independently in our dataset (Figure 2a), indicating a separate origin 19	  

for the same variant within the demographic history of the two samples. This proportion 20	  

is much higher for transition variants at CpG sites, well established to be the most highly 21	  

mutable sites in the human genome10: 87% of previously reported de novo CpG 22	  

transitions at synonymous sites are observed in ExAC, indicating that our sample sizes 23	  

are beginning to approach saturation of this class of variation. This saturation is 24	  

detectable by a change in the discovery rate at subsets of the ExAC data set, beginning 25	  
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at around 20,000 individuals (Figure 2b), indicating that ExAC is the first human exome-1	  

wide dataset large enough for this effect to be directly observed. 2	  

 3	  

Mutational recurrence has a marked effect on the frequency spectrum in the ExAC data, 4	  

resulting in a depletion of singletons at sites with high mutation rates (Figure 2c). We 5	  

observe a correlation between singleton rates (the proportion of variants seen only once 6	  

in ExAC) and site mutability inferred from sequence context11 (r = -0.98; p < 10-50; 7	  

Extended Data Figure 4d): sites with low predicted mutability have a singleton rate of 8	  

60%, compared to 20% for sites with the highest predicted rate (CpG transitions; Figure 9	  

2C). Conversely, for synonymous variants, CpG variants are approximately twice as 10	  

likely to rise to intermediate frequencies: 16% of CpG variants are found in at least 20 11	  

copies in ExAC, compared to 8% of transversions and non-CpG transitions, suggesting 12	  

that synonymous CpG transitions have on average two independent mutational origins in 13	  

the ExAC sample. Recurrence at highly mutable sites can further be observed by 14	  

examining the population sharing of doubleton synonymous variants (variants occurring 15	  

in only two individuals in ExAC). Low-mutability mutations (especially transversions), are 16	  

more likely to be observed in a single population (representing a single mutational 17	  

origin), while CpG transitions are more likely to be found in two separate populations 18	  

(independent mutational events); as such, site mutability and probability of observation 19	  

in two populations is significantly correlated (r = 0.884; Figure 2d). 20	  

 21	  

We also explored the prevalence and functional impact of multinucleotide 22	  

polymorphisms (MNPs), in cases where multiple substitutions were observed within the 23	  

same codon in at least one individual. We found 5,945 MNPs (mean: 23 per sample) in 24	  

ExAC (Extended Data Figure 3a) where analysis of the underlying SNPs without correct 25	  

haplotype phasing would result in altered interpretation. These include 647 instances 26	  
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where the effect of a protein-truncating variant (PTV) variant is eliminated by an adjacent 1	  

SNP (rescued PTV) and 131 instances where underlying synonymous or missense 2	  

variants result in PTV MNPs (gained PTV). Additionally our analysis revealed 8 MNPs in 3	  

disease-associated genes, resulting in either a rescued or gained PTV, and 10 MNPs 4	  

that have previously been reported as disease causing mutations (Supplementary 5	  

Information Table 10 and 11). We note that these variants would be missed by virtually 6	  

all currently available variant calling and annotation pipelines. 7	  

 8	  

Inferring variant deleteriousness and gene constraint 9	  

Deleterious variants are expected to have lower allele frequencies than neutral ones, 10	  

due to negative selection. This theoretical property has been demonstrated previously in 11	  

human population sequencing data12,13 and here (Figure 1d, Figure 1e). This allows 12	  

inference of the degree of selection against specific functional classes of variation: 13	  

however, mutational recurrence as described above indicates that allele frequencies 14	  

observed in ExAC-scale samples are also skewed by mutation rate, with more mutable 15	  

sites less likely to be singletons (Figure 2c and Extended Data Figure 4d). Mutation rate 16	  

is in turn non-uniformly distributed across functional classes - for instance, stop lost 17	  

mutations can never occur at CpG dinucleotides (Extended Data Figure 4e). We 18	  

corrected for mutation rates (Supplementary Information Section 3.2) by creating a 19	  

mutability-adjusted proportion singleton (MAPS) metric. This metric reflects (as 20	  

expected) strong selection against predicted PTVs, as well as missense variants 21	  

predicted by conservation-based methods to be deleterious (Figure 2e). 22	  

 23	  

The deep ascertainment of rare variation in ExAC also allows us to infer the extent of 24	  

selection against variant categories on a per-gene basis by examining the proportion of 25	  

variation that is missing compared to expectations under random mutation. Conceptually 26	  
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similar approaches have been applied to smaller exome datasets11,14 but have been 1	  

underpowered, particularly when analyzing the depletion of PTVs. We compared the 2	  

observed number of rare (MAF <0.1%) variants per gene to an expected number derived 3	  

from a selection neutral, sequence-context based mutational model11. The model 4	  

performs well in predicting the number of synonymous variants, which should be under 5	  

minimal selection, per gene (r = 0.98; Extended Data Figure 5b). 6	  

 7	  

We quantified deviation from expectation with a Z score11, which for synonymous 8	  

variants is centered at zero, but is significantly shifted towards higher values (greater 9	  

constraint) for both missense and PTV (Wilcoxon p < 10-50 for both; Figure 3a). The 10	  

genes on the X chromosome are significantly more constrained than those on the 11	  

autosomes for missense (p < 10-7) and loss-of-function (p < 10-50). The high correlation 12	  

between the observed and expected number of synonymous variants on the X 13	  

chromosome (r = 0.97 vs 0.98 for autosomes) indicates that this difference in constraint 14	  

is not due to a calibration issue. To reduce confounding by coding sequence length for 15	  

PTVs, we developed an expectation-maximization algorithm (Supplementary Information 16	  

Section 4.4) using the observed and expected PTV counts within each gene to separate 17	  

genes into three categories: null (observed ≈ expected), recessive (observed ≤50% of 18	  

expected), and haploinsufficient (observed <10% of expected). This metric – the 19	  

probability of being loss-of-function (LoF) intolerant (pLI) – separates genes of sufficient 20	  

length into LoF intolerant (pLI ≥0.9, n=3,230) or LoF tolerant (pLI ≤0.1, n=10,374) 21	  

categories. pLI is less correlated with coding sequence length (r = 0.17 as compared to 22	  

0.57 for the PTV Z score), outperforms the PTV Z score as an intolerance metric 23	  

(Supplementary Information Table 15), and reveals the expected contrast between gene 24	  

lists (Figure 3b). pLI is positively correlated with a gene product’s number of physical 25	  

interaction partners (p < 10-41). The most constrained pathways (highest median pLI for 26	  
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the genes in the pathway) are core biological processes (spliceosome, ribosome, and 1	  

proteasome components; KS test p < 10-6 for all) while olfactory receptors are among 2	  

the least constrained pathways (KS test p < 10-16), demonstrated in Figure 3b and 3	  

consistent with previous work5,15–18. 4	  

 5	  

Critically, we note that LoF-intolerant genes include virtually all known severe 6	  

haploinsufficient human disease genes (Figure 3b), but that 72% of LoF-intolerant genes 7	  

have not yet been assigned a human disease phenotype despite clear evidence for 8	  

extreme selective constraint (Supplementary Information Table 13). We note that this 9	  

extreme constraint does not necessarily reflect a lethal disease, but is likely to point to 10	  

genes where heterozygous loss of function confers some non-trivial survival or 11	  

reproductive disadvantage. 12	  

 13	  

The most highly constrained missense (top 25% missense Z scores) and PTV (pLI ≥0.9) 14	  

genes show higher expression levels and broader tissue expression than the least 15	  

constrained genes19 (Figure 3c). These most highly constrained genes are also depleted 16	  

for eQTLs (p < 10-9 for missense and PTV; Figure 3d), yet are enriched within genome-17	  

wide significant trait-associated loci (χ2 p < 10-14, Figure 3e). Intuitively, genes intolerant 18	  

of PTV variation are dosage sensitive: natural selection does not tolerate a 50% deficit in 19	  

expression due to the loss of single allele. Unsurprisingly, these genes are also depleted 20	  

of common genetic variants that have a large enough effect on expression to be 21	  

detected as eQTLs with current limited sample sizes. However, smaller changes in the 22	  

expression of these genes, through weaker eQTLs or functional variants, are more likely 23	  

to contribute to medically relevant phenotypes.  24	  

 25	  
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Finally, we investigated how these constraint metrics would stratify mutational classes 1	  

according to their frequency spectrum, corrected for mutability as in the previous section 2	  

(Figure 3f). The effect was most dramatic when considering nonsense variants in the 3	  

LoF-intolerant set of genes. For missense variants, the missense Z score offers 4	  

information additional to Polyphen2 and CADD classifications, indicating that gene-level 5	  

measures of constraint offer additional information to variant-level metrics in assessing 6	  

potential pathogenicity. 7	  

 8	  

ExAC improves variant interpretation in Mendelian disease 9	  

We assessed the value of ExAC as a reference dataset for clinical sequencing 10	  

approaches, which typically prioritize or filter potentially deleterious variants based on 11	  

functional consequence and allele frequency (AF)6. Filtering on ExAC reduced the 12	  

number of candidate protein-altering variants by 7-fold compared to ESP, and was most 13	  

powerful when the highest AF in any one population (“popmax”) was used rather than 14	  

average (“global”) AF (Figure 4a). ESP is not well-powered to filter at 0.1% AF without 15	  

removing many genuinely rare variants, as AF estimates based on low allele counts are 16	  

both upward-biased and imprecise (Figure 4b). We thus expect that ExAC will provide a 17	  

very substantial boost in the power and accuracy of variant filtering in Mendelian disease 18	  

projects. 19	  

 20	  

Previous large-scale sequencing studies have repeatedly shown that some purported 21	  

Mendelian disease-causing genetic variants are implausibly common in the population20–22	  

22 (Figure 4c). The average ExAC participant harbors ~54 variants reported as disease-23	  

causing in two widely-used databases of disease-causing variants (Supplementary 24	  

Information Section 5.2). Most (~41) of these are high-quality genotypes but with 25	  

implausibly high (>1%) popmax AF. We therefore hypothesized that most of the 26	  
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supposed burden of Mendelian disease alleles per person is due not to genotyping error, 1	  

but rather to misclassification in the literature and/or in databases. 2	  

 3	  

We manually curated the evidence of pathogenicity for 192 previously reported 4	  

pathogenic variants with AF >1% either globally or in South Asian or Latino individuals, 5	  

populations that are underrepresented in previous reference databases. Nine variants 6	  

had sufficient data to support disease association, typically with either mild or 7	  

incompletely penetrant disease effects; the remainder either had insufficient evidence for 8	  

pathogenicity, no claim of pathogenicity, or were benign traits (Supplementary 9	  

Information Section 5.3). It is difficult to prove the absence of any disease association, 10	  

and incomplete penetrance or  genetic modifiers may contribute in some cases. 11	  

Nonetheless, the high cumulative AF of these variants combined with their limited 12	  

original evidence for pathogenicity suggest little contribution to disease, and 163 variants 13	  

met American College of Medical Genetics criteria23 for reclassification as benign or 14	  

likely benign (Figure 4d). 126 of these 163 have been reclassified in source databases 15	  

as of December 2015 (Supplementary Information Table 20). Supporting functional data 16	  

were reported for 18 of these variants, highlighting the need to review cautiously even 17	  

variants with experimental support. 18	  

 19	  

We also sought phenotypic data for a subset of ExAC participants homozygous for 20	  

reported severe recessive disease variants, again enabling reclassification of some 21	  

variants as benign. North American Indian Childhood Cirrhosis is a recessive disease of 22	  

cirrhotic liver failure during childhood requiring liver transplant for survival to adulthood, 23	  

previously reported to be caused by CIRH1A p.R565W24. ExAC contains 222 24	  

heterozygous and 4 homozygous Latino individuals, with a population AF of 1.92%. The 25	  

4 homozygotes had no history of liver disease and recontact in two individuals revealed 26	  
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normal liver function (Supplementary Information Table 22). Thus, despite the rigorous 1	  

linkage and Sanger sequencing efforts that led to the original report of pathogenicity, the 2	  

ExAC data demonstrate that this variant is either benign or insufficient to cause disease, 3	  

highlighting the importance of matched reference populations. 4	  

 5	  

The above curation efforts confirm the importance of AF filtering in analysis of candidate 6	  

disease variants6,25,26. However, literature and database errors are prevalent even at 7	  

lower AFs: the average ExAC individual contains 0.89 (<1% popmax AF) reportedly 8	  

Mendelian variants in well-characterized dominant disease genes27 and 0.21 at <0.1% 9	  

popmax AF. This inflation likely results from a combination of false reports of 10	  

pathogenicity and incomplete penetrance, as we have recently shown for PRNP28. The 11	  

abundance of rare functional variation in many disease genes in ExAC is a reminder that 12	  

such variants should not be assumed to be causal or highly penetrant without careful 13	  

segregation or case-control analysis7,23. 14	  

 15	  

Impact of rare protein-truncating variants 16	  

We investigated the distribution of PTVs, variants predicted to disrupt protein-coding 17	  

genes through the introduction of a stop codon or frameshift or the disruption of an 18	  

essential splice site; such variants are expected to be enriched for complete loss of 19	  

function of the impacted genes. Naturally-occurring PTVs in humans provide a model for 20	  

the functional impact of gene inactivation, and have been used to identify many genes in 21	  

which LoF causes severe disease29, as well as rare cases where LoF is protective 22	  

against disease30. 23	  

 24	  

Among the 7,404,909 HQ variants in ExAC, we found 179,774 high-confidence PTVs (as 25	  

defined in Supplementary Information Section 6), 121,309 of which are singletons. This 26	  
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corresponds to an average of 85 heterozygous and 35 homozygous PTVs per individual 1	  

(Figure 5a). The diverse nature of the cohort enables the discovery of substantial 2	  

numbers of novel PTVs: out of 58,435 PTVs with an allele count greater than one, 3	  

33,625 occur in only one population. However, while PTVs as a category are extremely 4	  

rare, the majority of the PTVs found in any one person are common, and each individual 5	  

has only ~2 singleton PTVs, of which 0.14 are found in PTV-constrained genes (pLI 6	  

>0.9). ExAC recapitulates known aspects of population demographic models, including 7	  

an increase in intermediate-frequency (1-5%) PTVs in Finland31 and relatively common 8	  

(>1%) PTVs in Africans (Figure 5b). However, these differences are diminished when 9	  

considering only LoF-constrained (pLI > 0.9) genes (Extended Data Figure 10). 10	  

 11	  

Using a sub-sampling approach, we show that the discovery of both heterozygous 12	  

(Figure 5c) and homozygous (Figure 5d) PTVs scales very differently across human 13	  

populations, with implications for the design of large-scale sequencing studies for the 14	  

ascertainment of human “knockouts” described below.  15	  

 16	  

Discussion 17	  

Here we describe the generation and analysis of the most comprehensive catalogue of 18	  

human protein-coding genetic variation to date, incorporating high-quality exome 19	  

sequencing data from 60,706 individuals of diverse geographic ancestry. The resulting 20	  

call set provides unprecedented resolution for the analysis of low-frequency protein-21	  

coding variants in human populations, as well as a public resource 22	  

[exac.broadinstitute.org] for the clinical interpretation of genetic variants observed in 23	  

disease patients.   24	  

 25	  
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The very large sample size of ExAC also provides opportunities for a high-resolution 1	  

analysis of the sensitivity of human genes to functional variation. While previous sample 2	  

sizes have been adequately powered for the assessment of gene-level intolerance to 3	  

missense variation11,14, ExAC provides for the first time sufficient power to investigate 4	  

genic intolerance to PTVs, highlighting 3,230 highly LoF-intolerant genes, 72% of which 5	  

have no established human disease phenotype in OMIM or ClinVar. We note that this 6	  

extreme constraint does not necessarily reflect a lethal disease, but is likely to point to 7	  

genes where heterozygous loss of function confers some non-trivial survival or 8	  

reproductive disadvantage. In independent work [Ruderfer et al., manuscript submitted] 9	  

we show that ExAC similarly provides power to identify genes intolerant of copy number 10	  

variation. Quantification of genic intolerance to both classes of variation will provide 11	  

added power to disease studies.   12	  

 13	  

The ExAC resource provides the largest database to date for the estimation of allele 14	  

frequency for protein-coding genetic variants, providing a powerful filter for analysis of 15	  

candidate pathogenic variants in severe Mendelian diseases. Frequency data from ESP1 16	  

have been widely used for this purpose, but those data are limited by population 17	  

diversity and by resolution at allele frequencies ≤0.1%. ExAC therefore provides 18	  

substantially improved power for Mendelian analyses, although it is still limited in power 19	  

at lower allele frequencies, emphasizing the need for more sophisticated pathogenic 20	  

variant filtering strategies alongside on-going data aggregation efforts.  21	  

 22	  

Finally, we show that different populations confer different advantages in the discovery 23	  

of gene-disrupting PTVs, providing guidance for the identification of human “knockouts” 24	  

to understand gene function. Sampling multiple populations would likely be a fruitful 25	  

strategy for a researcher investigating common PTV variation. However, discovery of 26	  
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homozygous PTVs is markedly enhanced in the South Asian samples, which come 1	  

primarily from a Pakistani cohort with 38.3% of individuals self-reporting as having 2	  

closely related parents, emphasizing the extreme value of consanguineous cohorts for 3	  

“human knockout” discovery32–34 (Figure 5d). Other approaches to enriching for 4	  

homozygosity of rare PTVs, such as focusing on bottlenecked populations, have already 5	  

proved fruitful31,32. 6	  

 7	  

Even with this large collection of jointly processed exomes, many limitations remain. 8	  

Firstly, most ExAC individuals were ascertained for biomedically important 9	  

disease; while we have attempted to exclude severe pediatric diseases, the inclusion of 10	  

both cases and controls for several polygenic disorders means that ExAC certainly 11	  

contains disease-associated variants35. Secondly, future reference databases would 12	  

benefit from including a broader sampling of human diversity, especially from under-13	  

represented Middle Eastern and African populations. Thirdly, the inclusion of whole 14	  

genomes will also be critical to investigate additional classes of functional variation and 15	  

identify non-coding constrained regions. Finally, and most critically, detailed phenotype 16	  

data are unavailable for the vast majority of ExAC samples; future initiatives that 17	  

assemble sequence and clinical data from very large-scale cohorts will be required to 18	  

fully translate human genetic findings into biological and clinical understanding. 19	  

 20	  

While the ExAC dataset exceeds the scale of previously available frequency reference 21	  

datasets, much remains to be gained by further increases in sample size. Indeed, the 22	  

fact that even the rarest transversions have mutational rates11 on the order of 1 x 10-9 23	  

implies that the vast majority of possible non-lethal SNVs likely exist in some living 24	  

human. ExAC already includes >63% of all possible protein-coding CpG transitions at 25	  
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well-covered synonymous sites; orders-of-magnitude increases in sample size will 1	  

eventually lead to saturation of other classes of variation. 2	  

 3	  

ExAC was made possible by the willingness of multiple large disease-focused consortia 4	  

to share their raw data, and by the availability of the software and computational 5	  

resources required to create a harmonized variant call set on the scale of tens of 6	  

thousands of samples. The creation of yet larger reference variant databases will require 7	  

continued emphasis on the value of genomic data sharing. 8	  

 9	  

  10	  
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Online Methods 1	  

Variant discovery 2	  

We assembled approximately 1 petabyte of raw sequencing data (FASTQ files) from 3	  

91,796 individual exomes drawn from a wide range of primarily disease-focused 4	  

consortia (Supplementary Information Table 2). We processed these exomes through a 5	  

single informatic pipeline and performed joint variant calling of single nucleotide variants 6	  

(SNVs) and short insertions and deletions (indels) across all samples using a new 7	  

version of the Genome Analysis Toolkit (GATK) HaplotypeCaller pipeline. Variant 8	  

discovery was performed within a defined exome region that includes Gencode v19 9	  

coding regions and flanking 50 bases. At each site, sequence information from all 10	  

individuals was used to assess the evidence for the presence of a variant in each 11	  

individual. Full details of data processing, variant calling and resources are described in 12	  

the Supplementary Information Sections 1.1-1.4.  13	  

 14	  

Quality assessment 15	  

We leveraged a variety of sources of internal and external validation data to calibrate 16	  

filters and evaluate the quality of filtered variants (Supplementary Information Table 7). 17	  

We adjusted the standard GATK variant site filtering36 to increase the number of 18	  

singleton variants that pass this filter, while maintaining a singleton transmission rate of 19	  

50.1%, very near the expected 50%, within sequenced trios. We then used the 20	  

remaining passing variants to assess depth and genotype quality filters compared to 21	  

>10,000 samples that had been directly genotyped using SNP arrays (Illumina 22	  

HumanExome) and achieved 97-99% heterozygous concordance, consistent with known 23	  

error rates for rare variants in chip-based genotyping37. Relative to a “platinum standard” 24	  

genome sequenced using five different technologies38, we achieved sensitivity of 99.8% 25	  

and false discovery rates (FDR) of 0.056% for single nucleotide variants (SNVs), and 26	  
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corresponding rates of 95.1% and 2.17% for insertions and deletions (indels). Lastly, we 1	  

compared 13 representative Non-Finnish European exomes included in the call set with 2	  

their corresponding 30x PCR-Free genome. The overall SNV and indel FDR was 0.14% 3	  

and 4.71%, while for SNV singletons was 0.389%. The overall FDR by annotation 4	  

classes missense, synonymous and protein truncating variants (including indels) were 5	  

0.076%, 0.055% and 0.471% respectively (Supplementary Information Table 5 and 6). 6	  

Full details of quality assessments are described in the Supplementary Information 7	  

Section 1.6. 8	  

 9	  

Sample filtering 10	  

The 91,796 samples were filtered based on two criteria. First, samples that were outliers 11	  

for key metrics were removed (Extended Data Figure 2b). Second, in order to generate 12	  

allele frequencies based on independent observations without enrichment of Mendelian 13	  

disease alleles, we restricted the final release data set to unrelated adults with high-14	  

quality sequence data and without severe pediatric disease. After filtering, only 60,706 15	  

samples remained, consisting of ~77% of Agilent (33 Mb target) and ~12% of Illumina 16	  

(37.7 Mb target) exome captures. Full details of the filtering process are described in the 17	  

Supplementary Information Section 1.7. 18	  

 19	  

ExAC data release 20	  

For each variant, summary data for genotype quality, allele depth and population specific 21	  

allele counts were calculated before removing all genotype data. This variant summary 22	  

file was then functionally annotated using variant effect predictor (VEP) with the LOFTEE 23	  

plugin. This data set can be accessed via the ExAC Browser 24	  

(http://exac.broadinstitute.org) or downloaded from 25	  

ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3/ExAC.r0.3.sites.vep.vcf.gz. Full 26	  
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details regarding the annotation of the ExAC data set are described in the 1	  

Supplementary Information Sections 1.9-1.10. 2	  

 3	  
 4	  

  5	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2016. ; https://doi.org/10.1101/030338doi: bioRxiv preprint 

https://doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/


	   23	  

References 1	  
 2	  

1. Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most 3	  
human protein-coding variants. Nature 493, 216–20 (2013). 4	  

2. 1000 Genomes Project Consortium et al. A global reference for human 5	  
genetic variation. Nature 526, 68–74 (2015). 6	  

3. Li, H. & Durbin, R. Inference of human population history from individual 7	  
whole-genome sequences. Nature 475, 493–496 (2011). 8	  

4. Stoneking, M. & Krause, J. Learning about human population history from 9	  
ancient and modern genomes. Nat. Rev. Genet. 12, 603–614 (2011). 10	  

5. MacArthur, D. G. et al. A systematic survey of loss-of-function variants in 11	  
human protein-coding genes. Science 335, 823–8 (2012). 12	  

6. Bamshad, M. J. et al. Exome sequencing as a tool for Mendelian disease 13	  
gene discovery. Nat. Rev. Genet. 12, 745–55 (2011). 14	  

7. MacArthur, D. G. et al. Guidelines for investigating causality of sequence 15	  
variants in human disease. Nature 508, 469–476 (2014). 16	  

8. Deciphering Developmental Disorders Study. Large-scale discovery of 17	  
novel genetic causes of developmental disorders. Nature 519, 223–8 18	  
(2015). 19	  

9. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic 20	  
networks. Nature 506, 179–84 (2014). 21	  

10. Cooper, D. N. & Youssoufian, H. The CpG dinucleotide and human genetic 22	  
disease. Hum. Genet. 78, 151–155 (1988). 23	  

11. Samocha, K. E. et al. A framework for the interpretation of de novo 24	  
mutation in human disease. Nat. Genet. (2014). doi:10.1038/ng.3050 25	  

12. Tennessen, J. a et al. Evolution and functional impact of rare coding 26	  
variation from deep sequencing of human exomes. Science 337, 64–9 27	  
(2012). 28	  

13. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the 29	  
Icelandic population. Nat. Genet. 47, 435–444 (2015). 30	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2016. ; https://doi.org/10.1101/030338doi: bioRxiv preprint 

https://doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/


	   24	  

14. Petrovski, S., Wang, Q., Heinzen, E. L., Allen, A. S. & Goldstein, D. B. 1	  
Genic intolerance to functional variation and the interpretation of personal 2	  
genomes. PLoS Genet. 9, e1003709 (2013). 3	  

15. Jeong, H., Mason, S. P., Barabási, a L. & Oltvai, Z. N. Lethality and 4	  
centrality in protein networks. Nature 411, 41–42 (2001). 5	  

16. Goh, K.-I. et al. The human disease network. Proc. Natl. Acad. Sci. U. S. A. 6	  
104, 8685–8690 (2007). 7	  

17. Rolland, T. et al. Resource A Proteome-Scale Map of the Human 8	  
Interactome Network. Cell 159, 1212–1226 (2014). 9	  

18. Itan, Y. et al. The human gene damage index as a gene-level approach to 10	  
prioritizing exome variants. Proc. Natl. Acad. Sci. U. S. A. 112, 13615–20 11	  
(2015). 12	  

19. GTEx Consortium. Human genomics. The Genotype-Tissue Expression 13	  
(GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 14	  
648–60 (2015). 15	  

20. Bell, C. J. et al. Carrier testing for severe childhood recessive diseases by 16	  
next-generation sequencing. Sci. Transl. Med. 3, 65ra4 (2011). 17	  

21. Xue, Y. et al. Deleterious- and disease-allele prevalence in healthy 18	  
individuals: Insights from current predictions, mutation databases, and 19	  
population-scale resequencing. Am. J. Hum. Genet. 91, 1022–1032 (2012). 20	  

22. Piton, A., Redin, C. & Mandel, J.-L. XLID-Causing Mutations and 21	  
Associated Genes Challenged in Light of Data From Large-Scale Human 22	  
Exome Sequencing. Am. J. Hum. Genet. 93, 368–383 (2013). 23	  

23. Richards, S. et al. Standards and guidelines for the interpretation of 24	  
sequence variants: a joint consensus recommendation of the American 25	  
College of Medical Genetics and Genomics and the Association for 26	  
Molecular Pathology. Genet. Med. 17, 405–423 (2015). 27	  

24. Chagnon, P. et al. A missense mutation (R565W) in cirhin (FLJ14728) in 28	  
North American Indian childhood cirrhosis. Am. J. Hum. Genet. 71, 1443–9 29	  
(2002). 30	  

25. Stenson, P. D. et al. The Human Gene Mutation Database: Building a 31	  
comprehensive mutation repository for clinical and molecular genetics, 32	  
diagnostic testing and personalized genomic medicine. Hum. Genet. 133, 33	  
1–9 (2014). 34	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2016. ; https://doi.org/10.1101/030338doi: bioRxiv preprint 

https://doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/


	   25	  

26. Dewey, F. E. et al. Sequence to Medical Phenotypes: A Framework for 1	  
Interpretation of Human Whole Genome DNA Sequence Data. PLOS 2	  
Genet. 11, e1005496 (2015). 3	  

27. Blekhman, R. et al. Natural Selection on Genes that Underlie Human 4	  
Disease Susceptibility. Curr. Biol. 18, 883–889 (2008). 5	  

28. Minikel, E. V. et al. Quantifying prion disease penetrance using large 6	  
population control cohorts. Sci. Transl. Med. 8, 322ra9–322ra9 (2016). 7	  

29. Chong, J. X. et al. The Genetic Basis of Mendelian Phenotypes: 8	  
Discoveries, Challenges, and Opportunities. Am. J. Hum. Genet. 1–17 9	  
(2015). doi:10.1016/j.ajhg.2015.06.009 10	  

30. Kathiresan, S. Developing Medicines That Mimic the Natural Successes of 11	  
the Human Genome. J. Am. Coll. Cardiol. 65, 1562–1566 (2015). 12	  

31. Lim, E. T. et al. Distribution and Medical Impact of Loss-of-Function 13	  
Variants in the Finnish Founder Population. PLoS Genet. 10, e1004494 14	  
(2014). 15	  

32. Sulem, P. et al. Identification of a large set of rare complete human 16	  
knockouts. Nat. Genet. 47, 448–452 (2015). 17	  

33. Narasimhan, V. M. et al. Health and population effects of rare gene 18	  
knockouts in adult humans with related parents. Science (80-. ). 8624, 1–8 19	  
(2016). 20	  

34. Saleheen, D. et al. Human knockouts in a cohort with a high rate of 21	  
consanguinity. bioRxiv (2015). doi:10.1101/031518 22	  

35. Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and 23	  
fronto-temporal dementia. Nat. Neurosci. 18, (2015). 24	  

36. DePristo, M. a et al. A framework for variation discovery and genotyping 25	  
using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 26	  
(2011). 27	  

37. Voight, B. F. et al. The Metabochip, a Custom Genotyping Array for 28	  
Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits. 29	  
PLoS Genet. 8, e1002793 (2012). 30	  

38. Zook, J. M. et al. Integrating human sequence data sets provides a 31	  
resource of benchmark SNP and indel genotype calls. Nat. Biotechnol. 32, 32	  
246–251 (2014).  33	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2016. ; https://doi.org/10.1101/030338doi: bioRxiv preprint 

https://doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/


	   26	  

 1	  

Acknowledgements 2	  
We would like to thank the reviewers and editor for their time, valuable comments and 3	  
suggestions. The scientific community for their support and comments on biorxiv, twitter 4	  
and other public forums. Brendan Bulik-Sullivan and Jon Bloom for their help with 5	  
mathematical notation. 6	  
 7	  
M.Lek is supported by the Australian National Health and Medical Research Council CJ 8	  
Martin Fellowship, Australian American Association Sir Keith Murdoch Fellowship and 9	  
the MDA/AANEM Development Grant. K.J.K. is supported by NIGMS Fellowship 10	  
(F32GM115208). A.H.O. is supported by Pfizer/ACMG Foundation Translational 11	  
Genomic Fellowship. J.S.W. is supported by Fondation Leducq and Wellcome Trust. 12	  
A.J.H. is supported by NSF Graduate Research Fellowship. M.I.K is supported by 13	  
Instrumentarium Science Foundation, Finland; Finnish Foundation for Cardiovascular 14	  
Research; Orion Research Foundation and the University of Eastern Finland, 15	  
Saastamoinen Foundation. P.N. is supported by John S. LaDue Memorial Fellowship in 16	  
Cardiology, Harvard Medical School. G.M.P. is supported by the National Heart, Lung, 17	  
and Blood Institute of the National Institutes of Health under Award Number 18	  
K01HL125751. M.T.Tusie-Luna is supported by CONACyT grant 128877. H.W. is 19	  
supported by postdoctoral award from the American Heart Association 20	  
(15POST23280019). R.E. is supported by Instituto Salud Carlos III-FIS-FEDER-ERDF: 21	  
RD12/0042/0013, PI12/00232; Agència de Gestió Ajuts Universitaris de Recerca: 2014 22	  
SGR 240. S.K. is supported by grants from the National Institutes of Health 23	  
(R01HL107816), the Donovan Family Foundation and Fondation Leducq. S.J.G. is 24	  
supported by NIH/NIMH grant R01MH085521 and NARSAD: The Brain and Behavior 25	  
Research Foundation and the Sidney R. Baer, Jr. Foundation. M.I.M is supported by 26	  
Wellcome Trust Senior Investigator, NIHR Senior Investigator;; EU Framework VII 27	  
HEALTH-F4-2007-201413; Medical Research Council G0601261; Wellcome Trust 28	  
090532, 098381, 090367; NIH RC2-DK088389, U01-DK085545. R.M is supported by 29	  
Canadian Institutes of Health Research MOP136936; MOP82810, MOP77682, 30	  
Canadian Foundation for Innovation 11966, Heart & Stroke Foundation of Canada T-31	  
7268. J.M.S is supported by NINDS grants NS40024-09S1 and NS085048. P.S. is 32	  
supported by NIMH grant MH095034 and MH089905. P.F.S is supported by Swedish 33	  
Research Council award D0886501; NIMH grants MH077139 and MH094421; Yeargen 34	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2016. ; https://doi.org/10.1101/030338doi: bioRxiv preprint 

https://doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/


	   27	  

Family; Stanley Center. H.C.W. is supported by BHF Centre of Research Excellence, 1	  
NIHR Senior Investigator. M.T.Tsuang is supported by NIH/NIMH grant R01MH085560. 2	  
D.G.M is supported by NIGMS R01 GM104371 and NIDDK U54 DK105566.  3	  
 4	  
ATVB & Precocious Coronary Artery Disease Study (PROCARDIS): Exome 5	  
sequencing was supported by a grant from the NHGRI (5U54HG003067-11) to Drs. 6	  
Gabriel and Lander. Bulgarian Trios: Medical Research Council (MRC) Centre 7	  
(G0800509) and ProgramGrants (G0801418), the European Community’s Seventh 8	  
Framework Programme (HEALTH-F2-2010-241909 (Project EU-GEI)),and 9	  
NIMH(2P50MH066392-05A1). GoT2D & T2DGENES: NHGRI (“Large Scale Sequencing 10	  
and Analysis of Genomes” U54HG003067), NIDDK (“Multiethnic Study of Type 2 11	  
Diabetes Genes” U01DK085526), NIH (“LowF Pass Sequencing and High Density SNP 12	  
Genotyping in Type 2 Diabetes” 1RC2DK088389), National Institutes of Health 13	  
(“Multiethnic Study of Type 2 Diabetes Genes” U01s DK085526, DK085501, DK085524, 14	  
DK085545, DK085584; “LowF Pass Sequencing and HighF Density SNP Genotyping for 15	  
Type 2 Diabetes” DK088389). The German Center for Diabetes Research (DZD). 16	  
National Institutes of Health (RC2F DK088389, DK085545, DK098032). Wellcome Trust 17	  
(090532, 098381). National Institutes of Health (R01DK062370, R01DK098032, 18	  
RC2DK088389). METSIM: Academy of Finland and the Finnish Cardiovascular 19	  
Research Foundation. Inflammatory Bowel Disease: The Helmsley Trust 20	  
Foundation, #2015PG-IBD001, Large Scale Sequencing and Analysis of Genomes 21	  
Grant (NHGRI), 5 U54 HG003067-13. Jackson Heart Study: We thank the Jackson 22	  
Heart Study (JHS) participants and staff for their contributions to this work. The JHS is 23	  
supported by contracts HHSN268201300046C, HHSN268201300047C, 24	  
HHSN268201300048C, HHSN268201300049C, HHSN268201300050C from the 25	  
National Heart, Lung, and Blood Institute and the National Institute on Minority Health 26	  
and Health Disparities. Ottawa Genomics Heart Study: Canadian Institutes of Health 27	  
Research MOP136936; MOP82810, MOP77682, Canadian Foundation for Innovation 28	  
11966, Heart & Stroke Foundation of Canada T-7268. Exome sequencing was 29	  
supported by a grant from the NHGRI (5U54HG003067-11) to Drs. Gabriel and Lander. 30	  
Pakistan Risk of Myocardial Infarction Study (PROMIS): Exome sequencing was 31	  
supported by a grant from the NHGRI (5U54HG003067-11) to Drs. Gabriel and Lander. 32	  
Fieldwork in the study has been supported through funds available to investigators at the 33	  
Center for Non-Communicable Diseases, Pakistan and the University of Cambridge, UK. 34	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2016. ; https://doi.org/10.1101/030338doi: bioRxiv preprint 

https://doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/


	   28	  

Registre Gironi del COR (REGICOR): Spanish Ministry of Economy and Innovation 1	  
through the Carlos III Health Institute [Red HERACLES RD12/0042, CIBER 2	  
Epidemiología y Salud Pública, PI12/00232, PI09/90506, PI08/1327, PI05/1251, 3	  
PI05/1297], European Funds for Development (ERDF-FEDER), and by the Catalan 4	  
Research and Technology Innovation Interdepartmental Commission [SGR 1195]. 5	  
Swedish Schizophrenia & Bipolar Studies: National Institutes of Health (NIH)/National 6	  
Institute of Mental Health (NIMH) ARRA Grand Opportunity grant NIMHRC2MH089905, 7	  
the Sylvan Herman Foundation, the Stanley Center for Psychiatric Research, the 8	  
Stanley Medical Research Institute, NIH/National Human GenomeResearch Institute 9	  
(NHGRI) grant U54HG003067. SIGMA-T2D: The work was conducted as part of the 10	  
Slim Initiative for Genomic Medicine, a project funded by the Carlos Slim Health Institute 11	  
in Mexico. The UNAM/INCMNSZ Diabetes Study was supported by Consejo Nacional de 12	  
Ciencia y Tecnologıía grants 138826, 128877, CONACT- SALUD 2009-01-115250, and 13	  
a grant from Dirección General de Asuntos del Personal Académico, UNAM, IT 214711. 14	  
The Diabetes in Mexico Study was supported by Consejo Nacional de Ciencia y 15	  
Tecnología grant 86867 and by Instituto Carlos Slim de la Salud, A.C. The Mexico City 16	  
Diabetes Study was supported by National Institutes of Health (NIH) grant R01HL24799 17	  
and by the Consejo Nacional de Ciencia y Tenologia grants 2092, M9303, F677-M9407, 18	  
251M, and 2005-C01-14502, SALUD 2010-2-151165. Schizophrenia Trios from 19	  
Taiwan: NIH/NIMH grant  R01MH085560. Tourette Syndrome Association 20	  
International Consortium for Genomics (TSAICG): NIH/NINDS U01 NS40024-09S1. 21	  
Exome Aggregation Consoritum (ExAC): NIDDK U54 DK105566. 22	  
 23	  
Author Contributions 24	  
M.Lek,K.J.K.,E.V.M.,K.E.S.,E.B.,T.F.,A.H.O.,J.S.W.,A.J.H.,B.B.C.,T.T.,D.P.B.,J.A.K.,L.D.25	  
,K.E.,F.Z.,J.Z.,E.P.,M.J.D.,D.G.M. contributed to the analysis and writing of the 26	  
manuscript. M.Lek, E.B.,T.F.,K.J.K.,E.V.M.,F.Z.,D.P.B.,J.B.,D.N.C.,N.D.,M.D.,R.D.,J.F., 27	  
M.F.,L.G.,J.G.,N.G.,D.H.,A.K.,M.I.K.,A.L.M.,P.N.,L.O.,G.M.P.,R.P.,M.A.R.,V.R.,S.A.R.,D.28	  
M.R.,K.S.,P.D.S.,C.S.,B.P.T.,G.T.,M.T.T.,B.W.,H.W.,D.Y.,S.B.G.,M.J.D.,D.G.M.contribut29	  
ed to the production of the ExAC data set. D.M.A.,D.A.,M.B.,J.D.,S.D.,R.E.,J.C.F., 30	  
S.B.G.,G.G.,S.J.G.,C.M.H.,S.K.,M.Laakso,S.M.,M.I.M.,D.M.,R.M.,B.M.N.,A.P.,S.M.P.,D.31	  
S.,J.S.,P.S.,P.F.S.,J.T.,M.T.T.,H.C.W.,J.G.W.,M.J.D.,D.G.M. contributed to the design 32	  
and conduct of the various exome sequencing studies and critical review of manuscript. 33	  
 34	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2016. ; https://doi.org/10.1101/030338doi: bioRxiv preprint 

https://doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/


	   29	  

Author Information 1	  
P.F.S is a scientific advisor to Pfizer. 2	  
ExAC data set is publicly available at http://exac.broadinstitute.org 3	  
 4	  
Collaborators (alphabetical order) 5	  
Hanna E Abboud61, Goncalo Abecasis35, Carlos A Aguilar-Salinas62, Olimpia Arellano-6	  
Campos62, Gil Atzmon63,64, Ingvild Aukrust65,66,67, Cathy L Barr68,69, Graeme I Bell70, 7	  
Graeme I Bell70,71, Sarah Bergen42, Lise Bjørkhaug66,67, John Blangero72,73, Donald W 8	  
Bowden74,75,76, Cathy L Budman77, Noël P Burtt2, Federico Centeno-Cruz78, John C 9	  
Chambers79,80,81, Kimberly Chambert6, Robert Clarke82, Rory Collins82, Giovanni 10	  
Coppola83, Emilio J Córdova78, Maria L Cortes18, Nancy J Cox84, Ravindranath 11	  
Duggirala85, Martin Farrall59,44, Juan C Fernandez-Lopez78, Pierre Fontanillas2, Timothy 12	  
M Frayling86, Nelson B Freimer83, Christian Fuchsberger35, Humberto García-Ortiz78, 13	  
Anuj Goel59,44, María J Gómez-Vázquez62, María E González-Villalpando87, Clicerio 14	  
González-Villalpando87, Marco A Grados88, Leif Groop89, Christopher A Haiman90, Craig 15	  
L Hanis91, Craig L Hanis91, Andrew T Hattersley86, Brian E Henderson92, Jemma C 16	  
Hopewell82, Alicia Huerta-Chagoya93, Sergio Islas-Andrade94, Suzanne BR Jacobs2, 17	  
Shapour Jalilzadeh59,44, Christopher P Jenkinson61, Jennifer Moran2, Silvia Jiménez-18	  
Morale78, Anna Kähler42, Robert A King95, George Kirov96, Jaspal S Kooner80,9,81, 19	  
Theodosios Kyriakou59,44, Jong-Young Lee97, Donna M Lehman61, Gholson Lyon98, 20	  
William MacMahon99, Patrik KE Magnusson42, Anubha Mahajan100, Jaume Marrugat37, 21	  
Angélica Martínez-Hernández78, Carol A Mathews101, Gilean McVean100, James B 22	  
Meigs102,26, Thomas Meitinger103,104, Elvia Mendoza-Caamal78, Josep M Mercader2,105,106, 23	  
Karen L Mohlke55, Hortensia Moreno-Macías107, Andrew P Morris108,100,109, Laeya A 24	  
Najmi65,110, Pål R Njølstad65,66, Michael C O'Donovan96, Maria L Ordóñez-Sánchez62, 25	  
Michael J Owen96, Taesung Park111,112, David  L Pauls25, Danielle Posthuma113,114,115, 26	  
Cristina Revilla-Monsalve94, Laura Riba93, Stephan Ripke6, Rosario Rodríguez-Guillén62, 27	  
Maribel Rodríguez-Torres62, Paul Sandor116,68, Mark Seielstad117,118, Rob Sladek119,120,121, 28	  
Xavier Soberón78, Timothy D Spector122, Shyong E Tai123,124,125, Tanya M Teslovich35, 29	  
Geoffrey Walford105,26, Lynne R Wilkens92, Amy L Williams2,126 30	  
 31	  
61Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 32	  
USA 33	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2016. ; https://doi.org/10.1101/030338doi: bioRxiv preprint 

https://doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/


	   30	  

 62Instituto Nacional de Ciencias M_dicas y Nutrici—n Salvador Zubir‡n, Mexico City, 1	  
Mexico 2	  
63Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York 3	  
City, NY, USA 4	  
64Department of Natural Science, University of Haifa, Haifa, Israel 5	  
65Department of Clinical Science, University of Bergen, Bergen, Norway 6	  
66Department of Pediatrics, Haukeland University Hospital, Bergen, Norway 7	  
67Department of Biomedicine, University of Bergen, Bergen, Norway 8	  
68The Toronto Western Research Institute, University Health Network, Toronto, Canada 9	  
69The Hospital for Sick Children, Toronto, Canada 10	  
70Departments of Medicine and Human Genetics, University of Chicago, Chicago, IL, 11	  
USA 12	  
71Department of Medicine, University of Chicago, Chicago, IL, USA 13	  
72South Texas Diabetes and Obesity Institute, University of Texas Health Science 14	  
Center, San Antonio, TX, USA 15	  
73University of Texas Rio Grande Valley, Brownsville, TX, USA 16	  
74Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 17	  
USA 18	  
75Center for Genomics and Personalized Medicine Research, Wake Forest School of 19	  
Medicine, Winston-Salem, NC, USA 20	  
76Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, 21	  
USA 22	  
77North Shore-Long Island Jewish Health System, Manhasset, NY, USA 23	  
78Instituto Nacional de Medicina Gen—mica, Mexico City, Mexico 24	  
79Department of Epidemiology and Biostatistics, Imperial College London, London, UK 25	  
80Department of Cardiology, Ealing Hospital NHS Trust, Southall, UK 26	  
81Imperial College Healthcare NHS Trust, Imperial College London, London, UK 27	  
82Nuffield Department of Population Health, University of Oxford, Oxford, UK 28	  
83Center for Neurobehavioral Genetics, University of California, Los Angeles, CA, USA 29	  
84Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 30	  
USA 31	  
85Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA 32	  
86University of Exeter Medical School, University of Exeter, Exeter, UK 33	  
87Instituto Nacional de Salud Publica, Mexico City, Mexico 34	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2016. ; https://doi.org/10.1101/030338doi: bioRxiv preprint 

https://doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/


	   31	  

88Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School 1	  
of Medicine, Baltimore, MD, USA 2	  
89Department of Clinical Sciences, Lund University Diabetes Centre, Malm_, Sweden 3	  
90Department of Preventive Medicine, University of Southern California, Los Angeles, 4	  
CA, USA 5	  
91Human Genetics Center, The University of Texas Health Science Center, Houston, TX, 6	  
USA 7	  
92Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA 8	  
93Instituto de Investigaciones Biom_dicas, Mexico City, Mexico 9	  
94Instituto Mexicano del Seguro Social, Mexico City, Mexico 10	  
95Department of Genetics, Yale University School of Medicine, New Haven, CT, USA 11	  
96MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, 12	  
UK 13	  
97Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do, 14	  
Republic of Korea 15	  
98Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, 16	  
NY, USA 17	  
99Department of Psychiatry, University of Utah, Salt Lake City, UT, USA 18	  
100Nuffield Department of Medicine, University of Oxford, Oxford, UK 19	  
101Department of Psychiatry, University of Florida, Gainesville, FL, USA 20	  
102General Medicine Division, Massachusetts General Hospital, Boston, MA, USA 21	  
103Institute of Human Genetics, Technische Universit_t MŸnchen, Munich, Germany 22	  
104Institute of Human Genetics, German Research Center for Environmental Health, 23	  
Neuherberg, Germany 24	  
105Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, 25	  
MA, USA 26	  
106Research Program in Computational Biology, Barcelona Supercomputing Center, 27	  
Barcelona, Spain 28	  
107Universidad Aut—noma Metropolitana, Mexico City, Mexico 29	  
108Estonian Genome Centre,University of Tartu,Tartu,Estonia, University of Tartu, Tartu, 30	  
Estonia 31	  
109Department of Biostatistics, University of Liverpool, Liverpool, UK 32	  
110Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 33	  
Bergen, Norway 34	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2016. ; https://doi.org/10.1101/030338doi: bioRxiv preprint 

https://doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/


	   32	  

111Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic 1	  
of Korea 2	  
112Department of Statistics, Seoul National University, Seoul, Republic of Korea 3	  
113Department of Functional Genomics, University of Amsterdam, Amsterdam, The 4	  
Netherlands 5	  
114Department of Clinical Genetics, VU Medical Centre, Amsterdam, The Netherlands 6	  
115Department of Child and Adolescent Psychiatry, Erasmus University Medical Centre, 7	  
Rotterdam, The Netherlands 8	  
116Department of Psychiatry, University of Toronto, Toronto, Canada 9	  
117Department of Laboratory Medicine, University of California, San Francisco, CA, USA 10	  
118Blood Systems Research Institute, San Francisco, CA, USA 11	  
119Department of Human Genetics, McGill University, Montreal, Canada 12	  
120Department of Medicine, McGill University, Montreal, Canada 13	  
121McGill University and G_nome Qu_bec Innovation Centre, Montreal, Canada 14	  
122Department of Twin Research and Genetic Epidemiology, King's College London, 15	  
London, UK 16	  
123Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 17	  
Singapore 18	  
124Department of Medicine, National University of Singapore, Singapore, Singapore 19	  
125Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School 20	  
Singapore, Singapore, Singapore 21	  
126Department of Biological Sciences, Columbia University, New York, NY, USA 22	  
 23	  
 24	  
  25	  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2016. ; https://doi.org/10.1101/030338doi: bioRxiv preprint 

https://doi.org/10.1101/030338
http://creativecommons.org/licenses/by-nd/4.0/


	   33	  

Figures 1	  
 2	  

 3	  
 4	  
Figure 1. Patterns of genetic variation in 60,706 humans.  5	  
a) The size and diversity of public reference exome datasets. ExAC exceeds previous datasets in 6	  
size for all studied populations. b) Principal component analysis (PCA) dividing ExAC individuals 7	  
into five continental populations. PC2 and PC3 are shown; additional PCs are in Extended Data 8	  
Figure 2a. c) The allele frequency spectrum of ExAC highlights that the majority of genetic 9	  
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variants are rare and novel. d) The proportion of possible variation observed by mutational 1	  
context and functional class. Over half of all possible CpG transitions are observed. Error bars 2	  
represent standard error of the mean. e-f) The number (e) and frequency distribution (proportion 3	  
singleton; f) of indels, by size. Compared to in-frame indels, frameshift variants are less common 4	  
(have a higher proportion of singletons, a proxy for predicted deleteriousness on gene product). 5	  
Error bars indicate 95% confidence intervals. 6	  
 7	  
  8	  
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 1	  

 2	  
Figure 2. Mutational recurrence at large sample sizes.  3	  
a) Proportion of validated de novo variants from two external datasets that are independently 4	  
found in ExAC, separated by functional class and mutational context. Error bars represent 5	  
standard error of the mean. Colors are consistent in a-d. b) Number of unique variants observed, 6	  
by mutational context, as a function of number of individuals (down-sampled from ExAC). CpG 7	  
transitions, the most likely mutational event, begin reaching saturation at ~20,000 individuals. c) 8	  
The site frequency spectrum is shown for each mutational context. d) For doubletons (variants 9	  
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with an allele count of 2), mutation rate is positively correlated with the likelihood of being found in 1	  
two individuals of different continental populations. e) The mutability-adjusted proportion of 2	  
singletons (MAPS) is shown across functional classes. Error bars represent standard error of the 3	  
mean of the proportion of singletons. 4	  
 5	  
  6	  
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Figure 3. Quantifying intolerance to functional variation in genes and gene sets.  1	  
a) Histograms of constraint Z scores [Samocha 2014] for 18,225 genes. This measure of 2	  
departure of number of variants from expectation is normally distributed for synonymous variants, 3	  
but right-shifted (higher constraint) for missense and protein-truncating variants (PTVs), indicating 4	  
that more genes are intolerant to these classes of variation. b) The proportion of genes that are 5	  
very likely intolerant of loss-of-function variation (pLI ≥ 0.9) is highest for ClinGen haploinsufficient 6	  
genes, and stratifies by the severity and age of onset of the haploinsufficient phenotype. Genes 7	  
essential in cell culture and dominant disease genes are likewise enriched for intolerant genes, 8	  
while recessive disease genes and olfactory receptors have fewer intolerant genes. Black error 9	  
bars indicate 95% confidence intervals (CI). c) Synonymous Z scores show no correlation with 10	  
the number of tissues in which a gene is expressed, but the least missense- and PTV-constrained 11	  
genes tend to be expressed in fewer tissues. Thick black bars indicate the first to third quartiles, 12	  
with the white circle marking the median. d) Highly missense- and PTV-constrained genes are 13	  
less likely to have eQTLs discovered in GTEx as the average gene. Shaded regions around the 14	  
lines indicate 95% CI. e) Highly missense- and PTV-constrained genes are more likely to be 15	  
adjacent to GWAS signals than the average gene. Shaded regions around the lines indicate 95% 16	  
CI. f) MAPS (Figure 2d) is shown for each functional category, broken down by constraint score 17	  
bins as shown. Missense and PTV constraint score bins provide information about natural 18	  
selection at least partially orthogonal to MAPS, PolyPhen, and CADD scores, indicating that this 19	  
metric should be useful in identifying variants associated with deleterious phenotypes. Shaded 20	  
regions around the lines indicate 95% CI. For panels a,c-f: synonymous shown in gray, missense 21	  
in orange, and protein-truncating in maroon. 22	  
	  23	  
  24	  
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 1	  

 2	  
Figure 4. Filtering for Mendelian variant discovery.  3	  
a) Predicted missense and protein-truncating variants in 500 randomly chosen ExAC individuals 4	  
were filtered based on allele frequency information from ESP, or from the remaining ExAC 5	  
individuals. At a 0.1% allele frequency (AF) filter, ExAC provides greater power to remove 6	  
candidate variants, leaving an average of 154 variants for analysis, compared to 1090 after 7	  
filtering against ESP. Popmax AF also provides greater power than global AF, particularly when 8	  
populations are unequally sampled. b) Estimates of allele frequency in Europeans based on ESP 9	  
are more precise at higher allele frequencies. Sampling variance and ascertainment bias make 10	  
AF estimates unreliable, posing problems for Mendelian variant filtration. 69% of ESP European 11	  
singletons are not seen a second time in ExAC (tall bar at left), illustrating the dangers of filtering 12	  
on very low allele counts. c) Allele frequency spectrum of disease-causing variants in the Human 13	  
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Gene Mutation Database (HGMD) and/or pathogenic or likely pathogenic variants in ClinVar for 1	  
well characterized autosomal dominant and autosomal recessive disease genes27. Most are not 2	  
found in ExAC; however, many of the reportedly pathogenic variants found in ExAC are at too 3	  
high a frequency to be consistent with disease prevalence and penetrance. d) Literature review of 4	  
variants with >1% global allele frequency or >1% Latin American or South Asian population allele 5	  
frequency confirmed there is insufficient evidence for pathogenicity for the majority of these 6	  
variants. Variants were reclassified by ACMG guidelines23. 7	  
 8	  
 9	  
  10	  
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 1	  

 2	  
Figure 5. Protein-truncating variation in ExAC.  3	  
a) The average ExAC individual has 85 heterozygous and 35 homozygous protein-truncating 4	  
variants (PTVs), of which 18 and 0.19 are rare (<0.1% popmax AF), respectively. Error bars 5	  
represent standard deviation. b) Breakdown of PTVs per individual (a) by popmax AF bin. Across 6	  
all populations, most PTVs found in a given individual are common (>5% popmax AF). c-d) 7	  
Number of genes with at least one PTV (c) or homozygous PTV (d) as a function of number of 8	  
individuals, downsampled from ExAC. South Asian population is broken down by consanguinity 9	  
(Inbreeding coefficient, F). 10	  
 11	  
 12	  
  13	  
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 1	  

 2	  
Extended Data Figure 1 The GATK 3.1 pipeline used for the joint calling of 91,796 exomes. 3	  
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a) The resources used for the variant calling in terms of CPU days and storage (terabytes). b) 1	  
The impact of VQSLOD on singleton TiTv. c) The impact of VQSLOD on singleton transmission in 2	  
trios. Note: In b) and c) singleton variants discovered in joint called set was ordered by VQSLOD 3	  
in descending order (i.e. higher confident variants first) and then binned into percentiles. The 4	  
black dotted line indicates the current VQSR cut off and the red dotted line is where the less 5	  
stringent threshold was moved. d) The number of individuals called at each variant site as a 6	  
fraction of the total number of High Quality (HQ) variants. 7	  
 8	  
 9	  
  10	  
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 1	  

 2	  
Extended Data Figure 2. Principal component analysis (PCA) and key metrics used to filter 3	  
samples. 4	  
a) Principal component analysis using a set of 5,400 common exome SNPs. Individuals are 5	  
colored by their distance from each of the population cluster centers using the first 4 principal 6	  

!
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components. b) The metrics number of variants, TiTv, alternate heterozygous/homozygous 1	  
(HetHom) ratio and Insertion/Deletion (InsDel) ratio. Populations are their respective colors: 2	  
Latino (red), African (purple), European (blue), South Asian (yellow) and East Asian (green). 3	  
 4	  
 5	  
  6	  
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 1	  

 2	  
Extended Data Figure 3. Multi-nucleotide variants discovered in the ExAC data set. 3	  
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a) Number of MNPs per impact on the variant interpretation. b) Distribution of the number of 1	  
MNPs per sample where phasing changes interpretation, separated by allele frequency. Common 2	  
> 1%, Rare < 1%. MNPs comprised of a rare and common allele are considered rare as this 3	  
defines the frequency of the MNP. 4	  
 5	  
 6	  
  7	  
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 1	  

 2	  
Extended Data Figure 4. The impact of recurrence across different mutation and functional 3	  
classes. 4	  
a) TiTv (Transition to transversion) ratio of synonymous variants at downsampled intervals of 5	  
ExAC. The TiTv is relatively stable at previous sample sizes (<5000) but changes drastically at 6	  
larger sample sizes. b) For synonymous doubleton variants, mutability of each trinucleotide 7	  
context is correlated with mean Euclidean distance of individuals that share the doubleton. 8	  
Transversion (red) and non-CpG transition (green) doubletons are more likely to be found in 9	  
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closer PCA space (i.e. more similar ethnicities) than CpG transitions (blue) c) The proportion 1	  
singleton among various functional categories. The functional category stop lost has a higher 2	  
singleton rate than nonsense. Error bars represent standard error of the mean. d) Among 3	  
synonymous variants, mutability of each trinucleotide context is correlated with proportion 4	  
singleton, suggesting CpG transitions (blue) are more likely to have multiple independent origins 5	  
driving their allele frequency up. e) The proportion singleton metric from c) broken down by 6	  
transversions, non-CpG transitions, and CpG variants. Notably, there is a wide variation in 7	  
singleton rates among mutational contexts in functional classes, and there are no stop-lost CpG 8	  
transitions. Error bars represent standard error of the mean. 9	  
 10	  
  11	  
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 1	  

 2	  
Extended Data Figure 5. Relationships between depth and observed vs expected variants 3	  
as well as correlations between observed and expected variant counts for synonymous, 4	  
missense, and protein-truncating..  5	  
a) The relationship between the median depth of exons (bins of 2) and the sum of all observed 6	  
synonymous variants in those exons divided by the sum of all expected synonymous variants. 7	  
The curve was used to determine the appropriate depth adjustment for expected variant counts. 8	  
For the rest of the panels, the correlation between the depth-adjusted expected variants counts 9	  
and observed are depicted for synonymous (b), missense (c), and protein-truncating (d). The 10	  
black line indicates a perfect correlation (slope = 1). Axes have been trimmed to remove TTN. 11	  
 12	  
  13	  
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 1	  

 2	  
Extended Data Figure 6. Distribution of synonymous, missense, and protein-truncating Z 3	  
scores for gene sets.  4	  
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The number of genes in the set, the Wilcoxon p-value for the difference from the full distribution, 1	  
and the percentage of expected variation observed are reported on the right. Thick black bars 2	  
indicate the first to third quartiles, with the white circle marking the median. 3	  
 4	  
  5	  
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 1	  

 2	  
Extended Data Figure 7. Ratio of missing synonymous, missense and protein truncating 3	  
variation. 4	  
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a) The distribution of the ratio of missing expected variation for synonymous, missense, and 1	  
protein-truncating  as well as for gene sets of interest. Note that 1 means there were no variants 2	  
observed and negative values indicate more variation observed than expected. b) The median 3	  
ratio of missing protein-truncating variation for all transcripts is indicated by the dashed maroon 4	  
line. For a, the x-axis has been trimmed at -8 (out of -18) to highlight the patterns of the data. 5	  
Similarly, x-axis in the bottom panel has been trimmed at -2 (out of -5) to highlight the patterns of 6	  
the data. Thick black bars indicate the first to third quartiles, with the white circle marking the 7	  
median. 8	  
 9	  
  10	  
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 1	  

 2	  
Extended Data Figure 8. The distribution of pNull, pRec, and pLI across all transcripts and 3	  
the fraction of genes in a gene set with pLI ≥ 0.9. 4	  
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a) The distributions of pNull, pRec, and pLI for all canonical transcripts. The distribution is roughly 1	  
bimodal for each. pLI close to one indicates extreme intolerance to loss-of-function variation; we 2	  
therefore take pLI ≥ 0.9 as the cut-off for extreme loss-of-function intolerance and depict, in b, the 3	  
fraction of genes from gene sets of interest that have pLI ≥ 0.9. The black error bars indicate a 4	  
95% confidence interval. olfactory = olfactory receptor genes (n=371); recessive = recessive 5	  
disease genes from Blekhman and Berg (n=1,183); all (n=18,225); dominant = dominant disease 6	  
genes from Blekhman and Berg (n=709); mouse hom = genes that are lethal in mice when both 7	  
copies are knocked out (n=2,760); essential = genes that are essential in cell culture as curated 8	  
by Hart et al 2014 (n=285); mouse het = genes that are lethal in mice when one copy is knocked 9	  
out (n=387); mild HI = haploinsufficient genes that cause a mild disease (n=59); mouse cond = 10	  
genes that are lethal in mice when conditionally knocked out in adult mice (n=402); moderate HI = 11	  
haploinsufficient genes that cause moderately severe disease (n=77); severe HI = 12	  
haploinsufficient genes that cause severe disease (n=44). Please refer to Supplementary Table 13	  
10 for more details on gene lists. 14	  
 15	  
  16	  
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 1	  

 2	  
Extended Data Figure 9. Application of pLI on RNA-Seq data and GWAS hits. 3	  
a) The relationship between constraint and median gene expression across all tissues. b) The 4	  
relationship between constraint and tissue expression at different RPKM cutoffs. Thick black bars 5	  
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indicate the first to third quartiles, with the white circle marking the median. c) The odds ratio of 1	  
being a GWAS hit for each Experimental Factor Ontology trait for the most constrained genes vs 2	  
the middle bin. The error bars indicate a 95% confidence interval. 3	  
 4	  
  5	  
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 1	  

 2	  
Extended Data Figure 10. Number of protein-truncating variants in constrained genes per 3	  
individual by allele frequency bin. 4	  
Equivalent to Figure 5b limited to constrained (pLI ≥ 0.9) genes. 5	  
 6	  
 7	  
 8	  
 9	  
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