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Abstract

All animals are able to rapidly change their behavior. The neural
basis of such flexibility requires that groups of distant neural ensembles
rapidly alter communications with selectivity and fidelity. Low frequency
oscillations are a strong candidate for how neurons coordinate communica-
tion via the dynamic instantiation of functional networks. These dynamic
networks are argued to rapidly guide the flow of information, with the
presumption that stronger oscillations more strongly influence informa-
tion flow. Surprisingly, there is scant evidence or theoretical support for
how oscillatory activity might enhance information flow. Here we intro-
duce a novel computational model for oscillatory neural communication
and show that, rather than the strength of the oscillation, it is the bal-
ance between excitatory and inhibitory neuronal activity that has the
largest effect on information flow. When coupling between an oscillation
and spiking has balanced excitatory-inhibitory inputs, information flow is
enhanced via improved discriminability between signal and noise. In con-
trast, when coupling is unbalanced, driven either by excessive excitation
or inhibition, information flow is obstructed, regardless of the strength
of the oscillation. A multitude of neuropathologies, including Parkin-
son’s disease, schizophrenia, and autism, are associated with oscillatory
disruptions and excitation-inhibition imbalances. Our results show that
understanding the distinction between balanced and unbalanced oscilla-
tory coupling offers a unifying mechanistic framework for understanding
effective neural communication and its disruption in neuropathology.

Introduction

In a loud, crowded room, determining who is saying what to whom and
when can be a daunting task. This communication problem pales in com-
parison to the communication problem between neural ensembles in the
brain. Brains have countless possible overlapping anatomical networks
of varying sizes and strengths. One dominant theory for how neurons
dynamically route information within and between these networks with
fidelity, depending on behavioral demands, relies on neural oscillations
[Fries, 2005].
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Neural oscillations are self-organized phenomenon that play an impor-
tant role in cognition and neural communication [Buzsáki, 2006]. They
track perception [Spaak et al., 2014], attention [Engel et al., 2001, Fries
et al., 2001, Saalmann et al., 2012, Szczepanski et al., 2014], learning
[Schaefer et al., 2006, Litwin-Kumar and Doiron, 2014, Ainsworth et al.,
2012, Tort et al., 2009], memory [Jensen et al., 1996, Fell and Axmacher,
2011, Voytek and Knight, 2010, Voytek et al., 2013, Lisman and Jensen,
2013], and cognitive control [Cooper et al., 2015, Voytek et al., 2015],
among many other behaviors and cognitive states [Wang, 2010, Womels-
dorf et al., 2007a, Buschman et al., 2012]. Mechanistically, oscillations
bias neuronal spiking [Womelsdorf et al., 2007b, Jia et al., 2013, Sohal
et al., 2009] and are thought to aid in information flow between brain
regions [Siegel et al., 2015, Buehlmann and Deco, 2010, von Nicolai et al.,
2014, Voytek and Knight, 2015]. Furthermore, they have been impli-
cated in nearly every major neurological and psychiatric disorder [Her-
rmann and Demiralp, 2005, Uhlhaas and Singer, 2006, Voytek and Knight,
2015, de Hemptinne et al., 2015, Allen et al., 2011, Khan et al., 2013].

The nature of excitatory (E) and inhibitory (I) neuronal interactions
induce oscillations naturally and spontaneously [Buzsáki, 2006, Wang,
2010]. Balanced excitatory (E) and inhibitory (I) activity have been shown
to be crucial components in the studies of effective neural communica-
tion [Vreeswijk and Sompolinsky, 1998, Ostojic, 2014], assembly formation
[Litwin-Kumar and Doiron, 2012], working memory [Lim and Goldman,
2013], and neural computation [Murphy and Miller, 2009, Litwin-Kumar
et al., 2011, Abbott and Chance, 2005]. By ’balanced E-I interactions’ we
mean that increases in excitatory firing are rapidly and exactly countered
by equivalent increases in inhibition [Atallah and Scanziani, 2009], leaving
the network in a fluctuation driven state [Renart et al., 2007].

While oscillations have been shown to have a facilitative role in cogni-
tion; they are also known to obstruct behavioral functioning [de Hemptinne
et al., 2015]. We argue that both their facilitative and obstructive roles
can be understood as a consequence of their biophysical origin. In order
to understand the functional and pathological role that oscillations play
in information flow, we need to first create a simple, generalizeable neural
framework for linking oscillations and information.

We begin with a form of oscillatory entrainment or modulation of neu-
ral activity known as phase-amplitude coupling (PAC). Generally, PAC
is thought to reflect rhythmic changes in neural excitability [Canolty
and Knight, 2010]. When phase modulates firing rate directly, as op-
posed to entraining another oscillator, PAC becomes analogous to spike-
field coupling and is often known as “high-gamma PAC”. PAC between
theta oscillations (6-12 Hz) and the high gamma frequency range (80-300
Hz) has been argued to enhance neural information flow [Siegel et al.,
2015, Buehlmann and Deco, 2010, von Nicolai et al., 2014, Voytek and
Knight, 2015], facilitate long-term potentiation [Hölscher et al., 1997], and
improve behavioral performance [Tort et al., 2009]. Seemingly paradoxi-
cally, the presence of PAC has also been linked to clinical outcomes such
as Parkinson’s disease [de Hemptinne et al., 2013], schizophrenia [Allen
et al., 2011], and autism [Khan et al., 2013], with clinical deep brain stim-
ulation in Parkinson’s disease associated with a reduction in Parkinsonian
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symptoms and a concomitant reduction in (presumably) pathological PAC
[de Hemptinne et al., 2015].

In this simulation study, we model PAC as periodic modulation of
an asynchronous, rate-based, population code. Simplified rate models of
Poissonic firing have proved to be pivotal in isolating key principles of
neural function [Heeger et al., 1996, Reynolds and Heeger, 2009, Mazurek
and Shadlen, 2002, Bays, 2014]. This simplified approach also allows our
model to encapsulate a broad class of ways in which excitatory or in-
hibitory oscillations might modulate firing rates [Silver, 2010]. We then
use information theory to separate models that facilitate communication
from those that obstruct it. We find that only models based on mul-
tiplicative gain control–a class of models that implicitly require strong
and balanced E-I inputs [Chance et al., 2002, Vreeswijk and Sompolin-
sky, 1998, Brunel, 2000, Abbott and Chance, 2005, Womelsdorf et al.,
2014]–facilitate information flow. Importantly, we identify a plausible
mechanism by which this information enhancement occurs, whereby E-I
balanced oscillations improve the ability of downstream neural popula-
tions to discriminate between input signal and noise.

Methods

Neural architecture

Our formalization of PAC is well characterized by an expanded version
of the E-I driver-modulator framework (see [Abbott and Chance, 2005]).
Our driver population is direct excitatory stimulation (population s, (Fig-
ure 1A)), which exhibits asynchronous naturalistic firing patterns (ex-
plained below). Modulation takes the form of slow (6 Hz) endogenous
oscillatory activity. While previous models used balanced E-I input to
implement gain control [Abbott and Chance, 2005]–i.e., multiplicative
scaling (modulation) of s–our model also considers modulation by strong
excitation and strong inhibition (Figure 1B). Including all three forms of
modulation corresponds to a complete implementation of “neural arith-
metic”, a well-established, perhaps canonical, view of neural computation
[Silver, 2010]. In this view, changes to excitatory conductance (generically
labeled with a g in the equations below) leads to a rightward shift of the
neurons’ tuning curves, akin to “addition” (Figure 1B, middle). Increases
in inhibitory conductance lead to a leftward shift synonymous with neural
“subtraction” (Figure 1B, bottom). Finally we simulate gain control as a
multiplicative process characterized by a leftward and upward warping of
each neurons’ response function (Figure 1B, top).

Spiking in all neural populations is treated statistically, where each
neuron acts as an independent time varying, i.e., non-homogeneous, Pois-
son process. Each population has 100 neurons, though explored values
between 50 and 500 do not alter the qualitative results. Beyond 500 neu-
rons the results do change, and the advantage of gain to information flow
rapidly declines, and begins to become obstructive. This size dependence
suggests PAC is effective when applied only to small assemblies of neu-
rons. Experimentally, it has been shown that assemblies in the 100-500
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size range form the basis of neural computation [MacLeod and Laurent,
1996, Litwin-Kumar and Doiron, 2014, Buzsáki, 2010].

The basic Poisson rate model is given by rk

k!
e−r where r is the firing

rate (traditionally designated λ) and k is the number of spikes per time
step (1 ms for all models). Diffusion processes have been suggested as
a reasonable approximation to the “naturalistic” firing patterns observed
in early visual areas during passive movie viewing [Mazzoni et al., 2011,
Barbieri et al., 2014]. As such, firing in the stimulus population was given
by, rts = rt−1

s + N(0, σs) where N(0, σs) is the normal distribution with
σs = 0.01rs and constrained so rs ≥ 0. Oscillatory firing was sinusoidal,

where, rto = rt−1
o + (

rt−1
o
2

) ∗ sin(2πft) where f is 6 Hz. ro was fixed at 2
Hz. To constrain the firing models closer to biological reality, an absolute
refractory period of 2 ms was enforced. Note that while rate terms are
explicitly functions of time (i.e., r(t)), we use the superscript notation rt.

The oscillation rate rto modulates the stimulus rts with coupling strength
g. To better simplify the initial presentation, the overall model is depicted
with independent E and I modulation terms, ge and gi (Figure 1A). How-
ever ge and gi can be replaced with a single term g. In the gain condition,
ge = gi. In the excitatory and inhibitory conditions each term is varied
independently but over the same range (Figure 1A). This new common g
term then defines the coupling strength for all models (see below). Values
of g were bound between 1-8, consistent with previous modeling efforts
[Brunel, 2000].

Our simplified “arithmetic networks“ (Figure 1) simulate changes to
excitatory or inhibitory conductance by direct linear manipulation of the
PAC population’s rate, rm. In EI, gain modulation was defined by rtm =
g ∗ rts ∗ rto whereas E and I modulation were defined by rtm = rts + g ∗ rto
and rtm = rts−g∗rto respectively (see Figure 1A for a graphical depiction).
Results in the figures are averages of 100 random simulation runs, each
defined with its own unique but randomly initialized stimulus pattern and
Poissonic neural realizations.

Information estimation

Information content was estimated from the PAC and stimulus s popula-
tions using summed population activity at every time-step (i.e., in 1 ms
intervals). To allow for reliable calculation of the conditional probabilities
necessary for information theoretic calculations, the summed rates were
discretized into 8 integer levels. Integer levels between 4 and 30 were con-
sidered, but did not alter the patterns of results we report here. Using
this new activity “alphabet”, entropy and mutual information (MI) were
subsequently calculated with the pyentropy library [Ince et al., 2009], us-
ing the Panzeri–Treves method [Panzeri and Treves, 1996] of correcting
for downward bias in estimating entropy H introduced by finite sampling
of each time window.

4

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2015. ; https://doi.org/10.1101/030304doi: bioRxiv preprint 

https://doi.org/10.1101/030304
http://creativecommons.org/licenses/by-nc/4.0/


The definition of facilitative and obstructive PAC

In line with the conceptualization of PAC as enhancing neural communi-
cations, we offer a definition of facilitative and obstructive PAC based on
a set of information theoretic inequalities. The precept is simple. Benefi-
cial PAC should improve information flow while obstructive PAC should
hinder flow. We then use the level of (Poissonic) noise present in the stim-
ulus s itself as the baseline to compare against. We estimate this baseline
by calculating the mutual information of two Poisson instantiations of the
same inhomogeneous stimulus rate process, giving two spike trains s and
s′ (for more on the origin of s see above). Facilitative PAC, by defini-
tion, has higher MI than the baseline reference, i.e., Eq 1. In contrast,
obstructive PAC is defined to have decreased information flow compared
the baseline 2.

MI(PAC, s) >= MI(s′, s) (1)

MI(PAC, s) < MI(s′, s) (2)

PAC-mediated changes to signal strength were assessed using d-prime
d′ = (r2 − r1)/

√
(r1 + r2)/2 where r1 and r2 represent firing rates. As

out underlying statistical model is Poisson the divisor in our d′ estimate
replace uses average rate in place of the traditional variance.

PAC estimation.

The degree of phase-amplitude coupling in our models was assessed using
the direct PAC estimator (see [Özkurt and Schnitzler, 2011]), a normalized
version of the common modulation index [Canolty et al., 2006]. In brief,
this method uses the summed product of instantaneous estimates of phase
and amplitude to estimate degree of coupling. Instantaneous estimates are
provided by the Hilbert transform [N. E. Huang et al., 1998]. All spectral
estimation used simulated local field potentials (LFP; next section).

LFP simulation

Simulated LFPs were constructed by convolving the population firing rate
summed at each time-step with a double exponential kernel tuned to
match fast AMPA channel kinetics. Changes to firing rate along with
an exponential post-synaptic are a reasonable, albeit simple, approxima-
tion of an LFP recording [Buzsáki et al., 2012, Barbieri et al., 2014].
Simulated LFPs were used only in spectral analyses (Figure 2).

Results

Information and oscillatory modulation

Because E-I balance has been shown to be critical for effective neural
communication, considering phase-amplitude coupling under a balanced
E-I framework, specifically as a gain control process [Murphy and Miller,
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2009, Abbott and Chance, 2005], would therefore be a fairly natural ex-
tension of past work. However empirical and simulation studies suggest
populations of only excitatory [Cellulaire, 1992, Hansel et al., 1995] or
only inhibitory neurons [MacLeod and Laurent, 1996, Wang and Buzsaki,
1996], as well as populations of both excitatory and inhibitory ensembles
[Brunel and Wang, 2003, Geisler et al., 2005, Brunel, 2000, Börgers and
Kopell, 2003, Tiesinga and Sejnowski, 2009], all can sustain robust os-
cillations across a range of frequencies (for a review see [Wang, 2010]).
This suggests the oscillatory drive in PAC may come from E or I cells
(middle, right panels in Figure 1a.), or from balanced E-I interaction syn-
onymous with multiplicative gain (left panel in Figure 1a.). Therefore,
we report here how each kind of entrainment, E, or I, or EI, altered
information flow as function of entrainment degree (g, see Methods) and
stimulus strength (rs).

Balanced inputs (EI) led to an increase in information flow (see ∆MI
in EI, Figure 1d). In contrast, information flow declined when PAC was
based on excitatory firing, modeled as a linear additive increase in rate,
or as an inhibitory process, i.e., a subtractive decrease (see E and I,
Figure 1d). Both the strength of coupling (g, blue) and the firing rate of
the stimulus population (rs) monotonically enhanced each model’s effect
on information flow. As g and rs increased in the EI model, so too did
information flow. Again, in contrast E and I saw increasing declines
(Figure 1e).

Spectral measurement and mutual information.

Phase-amplitude coupling between slow theta and high gamma in humans
was first identified in recordings of cortical tissue [Canolty et al., 2006],
and continues to be assessed with a range of largely equivalent spectral
methods [Tort et al., 2010]. We applied one of these methods, the direct
PAC estimator (see Methods and [Özkurt and Schnitzler, 2011]), to an
LFP estimate derived from our simulated neural population. Partially
confirming the validity of our model definition, we find that all models
had a degree of spectral PAC (referred to as ”SC” for spectral coupling
PAC) above that present in the stimulus alone (compare all models to S
in Figure 2a).

In the E and I models, SC positively correlates with degree of coupling
g (ρE = 0.32, ρI = 0.51, p < 2× 10−16). Interestingly, the strongest spec-
tral PAC was driven by inhibition (I in Figure 2a), which has important
implications regarding the nature and interpretations of experimentally
measured PAC. In contrast, for the EI model there is a negative corre-
lation between g and SC (ρEI = −0.39, p < 2 × 10−16). These results
suggest that under EI balance, increasing conductance actually reduces
PAC. Notably, in all models the firing rate rs negatively correlates with
SC (ρEI = −0.48, ρE = −0.60, ρI = −0.50, with p < 2× 10−16 all mod-
els). This relation is to be expected. The stronger the stimulus–the larger
its firing rate–the the more oscillatory modulation is needed to effect it.

Changes in PAC, however, does not predict changes to information
flow in any model (Figure 2b). Binning data by coupling strength g or
firing rate rs does not alter this null result (not shown). This is somewhat
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Figure 1: Phase-amplitude coupling (PAC), excitatory-inhibitory interactions,
and their mutual effect on information flow in a simplified neural circuit. a) Di-
agram of a simple neural model capable of generating PAC. This model contains
an excitatory stimulus population (s), which functions as a strong driver of the
downstream populatio, as well as a modulatory oscillatory population (o), both
of which synapse onto a third target population, PAC. All connections are
completely characterized by a synaptic strength of g, and the population firing
rate is given by r. b) Diagram of “neural arithmetic”, characterized as a single
neuron’s input-output firing rate curve (i.e., F-I curve). The top panel depicts
balanced increases to both excitation and inhibition, which lead to a multiplica-
tive increase in firing, i.e., gain control (ge = gi). Increasing only excitation
(ge > gi) leads to leftward shift of the input-output firing curve and is synony-
mous with addition (middle). Increasing only inhibition (gi > ge) is equivalent
to a rightward shift, or subtraction (bottom). c) Illustration of each PAC in
“arithmetic network” form. Each model is an implementation of a subset of
the full model outlined in (a) but replacing traditional synaptic dynamics with
linear changes to firing rate based on neural arithmetic operations – multiplica-
tive (EI), addition (E), subtraction (I). Example simulated LFP time courses, of
both s and PAC, are shown. d) Overall change in mutual information (∆MI)
for all three PAC models (see Methods). Error bars are standard deviations.
e) Change in mutual information (∆MI) plotted as a function of stimulus firing
rate rs and synaptic strength g (blue).
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Figure 2: Spectral assessment of phase-amplitude coupling, matching the ap-
proach unused in past empirical studies, and its relation to mutual information
flow. a) Average spectral coupling (SC) for all three PAC populations (EI,
E, and I), as well as the stimulus population (S). Error bars are standard
deviations. b) Change in PAC, ∆SC, (comparing PAC population to stimu-
lus population) compared to the change in mutual information, ∆MI, for all
simulations and parameters (Ntotal = 6400). Despite each condition having no-
ticeable PAC as measured by SC (a), and SC scaling with model parameters
(see text), there was no significant correlation between PAC change and infor-
mation flow change. c) Power spectrum of simulated LFPs from all three PAC
models (g = 4, rs = 14) d) Simulated LFPs from (c).

surprising given that increased PAC is often associated with improved
behavioral outcomes, except for pathological cases. This result hints at a
more complex relationship between PAC and information flow. Spectral
PAC methods, which relate band-passed regions of the power spectrum,
may be insensitive to the spectral and temporal changes that accompany
changes to information flow. SC measures were based on simulated LFPs
(see Methods).

Information flow in temporal and spectral domains

We showed (above) that changes to information flow, changes to PAC
in our models, and changes to spectral coupling are model dependent.
Specifically, we find that an increase in spectral coupling is not indicative
of an increase in information flow (Figure 3). In fact, the opposite pattern
was frequently observed (compare Figure 2 and 3). Notably, however, it is
observed from the full spectral and temporal series that facilitative PAC
has distinct temporal and spectral features compared to both obstructive
models and the original stimulus population (Figure 2c and d).
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Information flow and signal detection

From the point of view of downstream neuron receiving action potentials,
and from the point of an information theoretic framework, reliable infor-
mation transmission requires a good estimate of conditional probabilities.
That is, the system needs to determine if a change in firing rate is the re-
sult of a change to the underlying neural encoding, or due to noise-driven
fluctuations (Figure 3a). When viewing neurons as transmission devices,
ideal downstream neurons should only adjust their firing to changes in
signal or encoding, and not noise. Likewise, our information theoretic
analyses estimate both p(r), the probability of the system having rate r
and p(r|s), the probability of r given some input stimulus, s. The more
reliable these quantities are, the better our estimate of mutual informa-
tion.
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Figure 3: Signal detection theory explains the mutual information changes in
our three models of phase-amplitude coupling. a) Illustration of rate coding as
a signal detection problem. Under the rate-coding model, a critical aspect of
decoding a rate-driven population is whether an instantaneous rate change is
driven by the input signal, or noise fluctuations. b) In a rate-coding regime,
we can assess the distinction between signal and noise by comparing moment-
to-moment population firing rates using signal detection theory, using d′. We
compare d′ values between the stimulus population, S, and each PAC-modulated
population, giving ∆d′. This is done between each successive time-step to as-
sess average ∆d′. Error bars are standard deviations. c) Examples of Poisson-
distributed spike rates for the stimulus population S and each PAC-modulated
population at a single time point. We compare 100 Poisson draws at (rate = 10),
creating distribution S (light grey). S was then transformed into distributions
EI, E, or I with each transform mimicking the appropriate neural arithmetic
operation (dark grey; see Methods). As can be seen, the average firing rate for
S is approximate equal to the defined rate of 10 spikes. In the EI/gain popula-
tion (top), both the firing rate and variance of the downstream population are
higher than the input drive, greatly improving the signal-to-noise ratio. In con-
trast, oscillatory E populations only show modest signal-to-noise improvements
(middle), while I populations show small decreases (bottom).
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The relation between neural arithmetic and signal detection is clearly
demonstrated by comparing Poisson distributed data for a single time
point, r. We compare 100 Poisson draws at r = 2 , creating distribution
S. S is then transformed into distributions EI, E, or I by the appropriate
neural arithmetic operation (see Methods). Figure 3c demonstrates that
multiplicative gain leads to a strong increases in separation from S. In
contrast additive and subtractive alterations to to S, akin to those present
in models E and I, show no change or worsening separation, respectively
(Figure 3c).

To quantify signal separation in our neural models we measured d′

(Methods) between each successive time-step, comparing the observed
population rate for S to the three PAC models (Figure 3b). As expected,
model EI showed consistent increases in d′, increasing as a function of
stimulus drive (rs) and modulation strength (g). Model E had a slight
increase, while I saw a slight decrease. When comparing trends in ∆d′

to ∆MI (i.e., Figure 3b to 1e) there are two notable discrepancies. For
model EI, the MI effect plateaus as a function of both rs and g. In con-
trast, d′ scales nearly linearly. This can be explained when considering
the signal detection problem in relation to information theory.

We argue that the more reliable the estimate of p(r) and p(r|s), the
better our ability to estimate MI. However this effect has a limit. Once
the probability estimates of have become sufficiently reliable, further in-
creases to d′ are of no benefit, leading ∆MI to plateau. Additionally,
∆MI decreases strongly for both E and I, but the effect on ∆d′ in these
models is mild. However, recall that we compared the separation of only
successive estimates in rate, but the oscillatory modulation spans multiple
time-steps and introduces a very different pattern than that of naturalis-
tic firing. Without the increase in signal separation to compensate, the
modulatory oscillatory pattern corrupts our estimate of p(r) and p(r|s),
giving the observed decrease in ∆MI.

Discussion

In this modeling study we provide novel evidence that oscillatory mod-
ulation of a population of spiking neurons can actually enhance mutual
information between an input signal and its neural encoding via improved
neural signal detection. This enhancement requires that PAC act as a
multiplicative gain modulator, a requirement synonymous with strong and
balanced excitatory and inhibitory inputs [Chance et al., 2002, Vreeswijk
and Sompolinsky, 1998, Brunel, 2000, Abbott and Chance, 2005, Atallah
and Scanziani, 2009, Womelsdorf et al., 2014]. When there is an im-
balance in either direction–such that PAC is driven by either excitatory
or inhibitory inputs–information flow is obstructed. These results have
striking implications for the role of neural oscillations in coordinating
functional neural assemblies, and make a number of predictions regarding
network dysfunction in neurological and psychiatric disease. Importantly,
our model makes no a priori assumptions about the utility or function of
oscillations; rather the results emerge from a purely analytic framework
grounded in first principles of neuronal physiology. Our model unifies
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seemingly paradoxical results wherein PAC is related to successful cog-
nitive function across multiple cognitive domains, but is also observed in
neuropathological disorders[Voytek and Knight, 2015] including Parkin-
son’s disease [de Hemptinne et al., 2015], autism [Khan et al., 2013], and
schizophrenia [Allen et al., 2011].

Prior empirical and modeling work suggests that gain control requires
strong, balanced EI connections [Abbott and Chance, 2005, Lim and
Goldman, 2013, Renart and Machens, 2014]. Interestingly, in healthy
tissue there are momentary fluctuations in EI balance [Knoblich et al.,
2010, Chance et al., 2002, Renart et al., 2007], however, under normal
conditions homeostatic mechanisms keep these fluctuations from deviating
too far. One of the implications of our results is that minor alterations
in EI balance may allow for functional networks to switch between sub-
assemblies, perhaps allowing for oscillatory multiplexing of population
codes [Akam and Kullmann, 2014].

Within the E-I framework, oscillations are robust, with imbalances in
either excitation or inhibition favoring their formation. Given their ubiq-
uity, the question becomes how does neural entrainment by oscillations
interact with imbalances in E-I? That is, not all oscillations are equal,
and under E or I imbalance, EI multiplicative coupling between a stim-
ulus and oscillatory populations is replaced with obstructive coupling.

This model provides a way for oscillations to be re-framed in terms of
their informational utility. Thus, a number of neurological and psychiatric
disorders that are associated with both EI imbalances at the microscale,
and oscillatory abnormalities at the meso- and macro-scales, can now be
assessed in terms of disruptions in the information flow within functional
networks. Notably, a PAC network is itself an oscillator that can further
entrain downstream neural populations. In this sense, EI imbalance may
lead to a cascade of reduced neural information exchange. This is further
exacerbated by the fact that E-I imbalance itself can favor the formation
of oscillatory networks, resulting in the formation of sustained patholog-
ical information flow. This is strongly reminiscent of the pathologically
strong oscillatory activity and EI imbalances seen in disorders such as
Parkinson’s disease.

Additionally, our model successfully produces cross-frequency coupling
between a low frequency phase and high gamma, a common method for
assessing the functional role of oscillations. Importantly, however, cross-
frequency coupling strength does not track changes to mutual information;
more specifically, it does not track the temporal and spectral characteris-
tics of gain modulation. This suggests a disassociation between spectral
and functional changes.

It is notable that the system that yields the largest overall PAC is the
inhibitory condition. However, despite this large PAC, there is no im-
provement in the mutual information between the input and the encoding
population. This is likely due to the fact that the inhibitory system intro-
duces a severe oscillation via periods of inhibition-induced silence, which
comes at the cost of any possible encoding due to periods with no spiking.
In contrast, in the excitatory condition there is an observed minor signal
detection improvement, but relatively lower PAC. Here, it may be that
relatively weaker inputs are needed to activate the encoding population,
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which, combined with weaker inhibitory modulation makes the popula-
tion more susceptible to noise. This may yield a slight discrimination
improvement, but at the cost of encoding accuracy.

It is common in the literature to relate increases in cross-frequency
coupling to increases in communication efficiency. Our modeling suggests
that this inference is not without peril. Our results (Figure 2) strongly
suggest that, although oscillatory gain modulation has distinct spectral
and temporal signatures, these features cannot be fully captured by nar-
rowband cross-frequency coupling methods. Rather, the signatures for fa-
cilitative versus obstructive cross-frequency coupling may instead be best
captured by studying interrelations of frequency bands in power spectra
as part of a unified and temporally-sensitive system.

The time-courses of activity present under EI, E, and I conditions are
distinct (Figure 1 and 4). Empirically, oscillatory ”shape” (e.g., peaked-
ness and asymmetry) vary by frequency, brain region, and behavioral
state. However, there exists little modeling support to guide interpre-
tation of these non-sinusoidal features in cognition, in terms of either
biologically or functionally meaningful categories. Our results suggest
that time-domain, non-sinusoidal features may be critical for understand-
ing the relationship between PAC and information flow. In other words,
the common Fourier-based spectral methods–which by definition have si-
nusoidal basis functions–may by their sinusoidal nature be masking our
ability to detect biologically-relevant changes in neural information flow.

It is important to stress that any computational modeling approach
has both strong benefits and limitations. The results presented herein
would be difficult to experimentally assess given the biological difficulty
in driving excitatory or inhibitory neurons with high specificity. In con-
trast, building this computational model allows us to explore multiple
forms of biologically-plausible oscillations and their effects on information
flow. However, any model is limited by its underlying assumptions. Here
we conceive of spiking as a statistical (Poisson) process with simplified
synaptic interactions. This comes at the cost of more complex neural dy-
namics such as changes to spike-timing induced by oscillatory activity or
caused by the tuning to information flow that can follow from activity-
dependent changes to synaptic strength (i.e., spike-time dependent plas-
ticity). Nevertheless, our results offer a parsimonious explanation for a
diversity of empirical PAC results in both cognition and disease. In con-
clusion, our model predicts that in a system of excitatory and inhibitory
neurons, PAC will improve mutual information between an input stimulus
and its neural encoding only when there is a excitation/inhibition balance.
In contrast, when excitation or inhibition alone drives PAC, information
flow is obstructed.
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