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Abstract

Prostate cancer metastasis to the bone is predominantly lethal and results from
the ability of successful metastatic prostate cancer cells to co-opt microenvironmental
cells and processes involved in bone remodelling. Understanding how the interactions
between tumour and stromal cells determine successful metastases and how
metastatic tumours respond to treatment is an emergent process that is hard to asses
biologically and thus can benefit from mathematical models. In this work we describe
a mathematical model of bone remodelling and the establishment of a prostate cancer
metastasis in the bone using evolutionary game theory. We have mathematically
recapitulated the current paradigm of a vicious cycle driving the tumor growth and
we have used this tool to investigate the key interactions between the tumour and the
bone stroma. Crucially, the model sheds light on the role that the interactions of
heterogeneous tumor cells with the bone microenvironment have in the treatment of
cancer. Our results show that resistant populations naturally become dominant in
the metastases under a number treatment schemes and that schedules designed by an
evolutionary game theory approach could be used to better control the tumour and
the associated bone growth than the current standard of care.
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1 Introduction

Prostate cancer is one of the most common types of cancer, with over 220,000 men diagnosed
annually in the US alone, of which over 27,000 will succumb to it [1].

Virtually every patient that succumbs to prostate cancer does it as a consequence of
metastatic growths in other organs. Furthermore, over 90 % of patients that die of prostate
cancer show evidence of metastases to the bone. For this reason, a better understanding of
how prostate cancer cells successfully metastasis to the bone is key if we are to improve how
bone metastatic prostate cancer (mPCa) patients are treated. Improvements in our under-
standing of the molecular mechanisms involved have lead to the discovery of new putative
therapeutical targets. But understanding the impact of treatments in a complex heteroge-
neous tumour requires new models that can incorporate several scales of biological insights
to recapitulate the emergent process of cancer progression. In the past we demonstrated how
a sophisticated but complex agent-based computational model could help us understand the
role of tumor-host interactions [2]. While sophisticated agent-based models can accurately
and quantitatively recapitulate cell dynamics in a specific area of a tumour, capturing the
relevant intra-tumour heterogeneity and sensitivity to treatments can be a challenging and
time-consuming process. Furthermore, simpler models can be used to represent the entire
metastatic burden of the disease and thus could be used as proxies for the patient in optimi-
sation algorithms [3]. For these reasons simpler qualitative models can be useful in providing
an understanding of how certain interactions can shape evolution and resistance in cancer.

Previously Ryser and colleagues have used simple (ODE-based) mathematical models
to understand bone remodelling. In this paper we use a mathematical model based on
evolutionary game theory to investigate how prostate cancer tumour cells co-opt cells from
the Basic Multicellular Unit (BMU), an area of trabecular bone that is being remodeled,
to promote their own growth. The model recapitulates bone homeostasis in the absence of
tumor cells. Bone homeostasis and its disruption by cancer has already been investigated
by Dingli and colleagues [4]. But for the first time in a mathematical model of cancer based
on game theory, we explicitly consider the role of the physical microenvironment in the
progression of the tumour. Our model shows that tumor cells can interrupt the process of
bone remodeling and co-opt the bone resident cells, the Osteoblast (OB) and Osteoclast
(OC) into a vicious cycle of bone remodeling, where bone, a common good, is continuously
being manipulated into being excessively created. Our results suggest that the pressure
exerted by standard of care treatments, such as continuous chemotherapy, can lead to the
rapid selection of resistant tumor cells. We propose that by discretising and modulating the
treatment, it is possible to have a better control over the tumor growth.

1.1 Evolutionary Game Theory

Game Theory was initially developed by John Von Neumann and Oskar Morgernstern [5] to
model problems in the fields of sociology and economics. Evolutionary Game Theory (EGT)
is a branch of the game theory developed by John Maynard Smith [6] to better understand
evolutionary dynamics in biological populations. Over the last decade and a half, research
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has emerged to use EGT to understand somatic evolution in cancer [7, 8, 9]. The main
focus of these EGT models of cancer is how the interactions between different cell types
in a heterogeneous tumour explain progression towards more aggressive cancers as well as
towards treatment resistance. This focus on interactions with a heterogeneous population
has recently gained increased focus thanks to the discovery of strong clinical evidence to
suggest the importance of heterogeneity and Darwinian evolution in cancer [10].

2 The Model

2.1 The Environment

Our model aims to characterise homeostasis disruption by prostate cancer cells so the first
step is to describe how this bone homeostasis is modelled. Bone remodelling is one of the
processes that make the bone a very dynamic organ [11]. This process, involves a number of
cellular species that interact together through a number of signalling molecules to orchestrate
bone remodelling. It is known that this complex environment allows tumour cells to come
in and co-opt the process for their own benefit [12]. We assume the tumor exists in the bone
remodeling process (BMU) which is dominated by the stromal cells, specifically Osteoclasts
and Osteoblasts, which remove and create bone, respectively. It is known that their is strong
interplay between these two cells with the Osteoclasts releasing growth factors for Osteoblast
generation and Osteoblasts release RANK-L which promotes Osteoclast differentiation and
survival. In order to better characterise the interactions and proportions of the Osteoblasts
and Osteoclasts we define functions that correlate their fitness to the amount of bone present:

O = Ot−1 + (OB) − (OC), O(t = 0 (2.1)

Additionally, as the variables OB and OC represent proportions, it is important to be able to
discern a large proportion and small number of cells and large proportion and large number
of cells as they would have quite different effects on the change of bone. Thus, we introduce
coefficients to the above equation to weight the proportions with their prospective growth,
the relative fitness.

O = Ot−1 + (W (OB))(OB) − (W (OC))(OC), O(t = 0 (2.2)

The functions that describes the bone-derived benefit or cost for OBs and OCs are symmet-
rical. Net bone formation is a function of the relative proportion of OBs and OCs in the
population. The fitness of OCs and OBs are then inversely correlated so that the more bone
the higher the fitness of OCs and the lower the fitness of OBs. This intuitively leads to a
robust homeostasis. So bone-derived benefit for OCs could be described as:

h(O) =
1

(1 + e4∗(x−1))
(2.3)
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Respectively, the bone-derived fitness of OBs can be described as follows:

k(O) =
1

(1 + e−4∗(x−1))
(2.4)

Thus, the replicator equations for OBs and OCs will be based on these relative fitness:

W (OB) = OC ∗ h(O) (2.5)

W (OB) = OB ∗ k(O) (2.6)

From these equations we can then generate plots showing the change in phenotype propor-
tions over time. Given the way we have defined bone formation we can also plot net bone
change over time.
From the replicator equations we can calculate the proportions of the next timestep by the
following:

W̄ =
n∑

i=1

Pi ∗W (Playeri) (2.7)

Where P is the proportion of Playeri. And:

Pt+1 = P ∗ W (P )

W̄
(2.8)

Thus for the replicator equations 2.6 and 2.7 we get the plots shown in figure 1.

2.2 Tumor Introduction

Now that we have established a working model for bone homeostasis, we can begin to inves-
tigate how the game changes when metastatic prostate cancer cells are introduced:

W (OB) = OC ∗ h(O) + T ∗ δ (2.9)

W (OC) = OB ∗ k(O) (2.10)

W (T ) = OC ∗ γ + T ∗ ε (2.11)

We define γ to be the benefit the tumor receives from the OCs breaking the bone to re-
lease growth factors including TGF-β, δ to be the benefit OBs receive as a result of their
interactions with tumor cells mediated by signalling molecules such as TGF-β and RANKL
[Bussard], and ε as the benefit the tumor receives the growth factors released by other tumor
cells. γ � δ � ε. We use these equations to generate the plots seen in figure 2.

3 Chemotherapy

Chemotherapy is part of the standard of care for metastatic prostate cancer patients and is
the main tumor treatment we will consider in the remaining of this report.
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3.1 Model

Chemotherapy targets cells which are proliferating, and the quicker the proliferation, the
more that phenotype is attacked by the treatment. Thus in order to apply chemotherapy to
our model takes into account the impact of the treatment not only the tumor population,
but also on the Osteoclasts and Osteoblasts. This is done by reducing the relative fitness
for the affected phenotypes by multiplying an equivalent cost to the replicator equations as
such, the larger the cost, the more efficacious the treatment scheme. This equivalent cost
has a larger effect on the tumor population due to its larger relative fitness - a proxy for the
player’s proliferation rate.

W (OB) = (OC ∗ h(O) + T ∗ δ + Tr ∗ δ) ∗ cost (3.1)

W (OC) = (OB ∗ k(O)) ∗ cost (3.2)

W (T ) = (OC ∗ γ + T ∗ ε+ Tr ∗ ε) ∗ cost (3.3)

These equations can be used to produce figure 3. Though the treatment is initiated we see
no effect on the tumour proportion, and we are only cued to a change by the substantial
drop in the players’ relative finesses. The unchanging proportion and falling of the relative
fitnesses forces us to think of the behavior of the count of cells - falling - as opposed to the
presented proportion of cells - unchanged.

3.2 Resistant Tumor Population

However, it is also well observed and accepted that during treatment schemes the compo-
sition of the tumour changes as parts of the tumour population becomes immune to the
treatment, often due to a mutation. Thus, in order to improve the reality of our model we
include this population, changing the equations to:

W (OB) = OC ∗ h(O) + T ∗ δ + Tr ∗ δ (3.4)

W (OC) = OB ∗ k(O) (3.5)

W (T ) = OC ∗ γ + T ∗ ε+ Tr ∗ ε (3.6)

W (Tr) = OC ∗ (γ − r) + T ∗ ε+ Tr ∗ ε (3.7)

The variable for γ, δ, ε are kept the same as the susceptible tumor population as both tumor
populations exhibit similar lifestyles; however the tumor’s which are resistant (Tr), are so
due to a different pathology which while having a benefit during treatment schemes, extricate
a cost from the cell, which lowers the cell’s relative fitness. This is shown in the replicator
equations above through the subtraction of a cost ”r” from the γ to lower the Tr’s fitness.
These equations are then used to create plots as shown in figure 4.
In fig. 4 we see the change in the composition of the tumour as the resistant population takes
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over. In some cases, as seen in fig 4, the susceptible tumour population becomes dominant
once again due to it’s small but present proportion and a larger relative fitness than other
players.

3.3 Model Results

The starting point of our work was to ensure that the mathematical model would recapitulate
bone homeostasis in the absence of interruptions by tumour cells. Fig. 1 shows the results
of the replicator equation with only OBs and OCs. Although OBs and OCs do not interact
directly, they maintain bone homeostasis over time and their proportions, although cyclical,
remain similar over time. This homeostasis is disrupted by the inclusion of tumour cells.
Figure 2 shows how the introduction of this population, and the assumption that T and OB
populations work in a synergistic fashion, leads to a vicious cycle where tumour cells become
the majority and where, given the relative abundance of OBs over OCs, bone keeps growing
over time leading to growth in pathological bone.

The application of chemotherapy will impact the tumour but, as figure 3 shows, this
might not change the relative proportions of the different populations. Since chemotherapy
is assumed to impact rapidly proliferating cells equally (we do not assume that stromal cells
are more resistant to chemotherapy than tumour cells, only that they usually proliferate at
a lower rate), the impact of the treatment can be better seen in fig 3c. The success of the
treatment can also be appreciated in fig. 3b as bone growth is halted during the treatment
windows. A more realistic scenario is the one portrayed in fig. 4 where the tumour popula-
tion is heterogeneous and made of tumour cells that are susceptible to chemotherapy (and
thus pay a cost under the presence of treatment) and tumour cells that are chemoresistant
(TR). Under this scenario, the application of chemotherapy changes the composition of the
population by selecting for the TR phenotypes. If the application of chemotherapy is short
enough, there might be enough susceptible tumour cells that could allow for this subpop-
ulation to recover. Bone growth can be observed during, and in between, applications of
chemotherapy.

All these examples highlight how a simple game theoretical model can be used to explore
different schemes of chemotherapy application. These schemes were characterized by the
variables of treatment interval, duration, efficacy and amount. We considered three types
of treatment duration - short, average, and long. In each case the replicator equations were
iterated 40 times before the treatment started with an initially small proportion of tumor
cells (3.6∗10−4) and a resistant tumor population of 4∗10−5, in order to allow tumor growth
as in reality treatments do not begin as soon as tumors appear but only after symptoms
show up. We assumed a cost of resistance (r) to be 0.1 and ε to be 0.03. For each of these
schemes 4 different values were recorded and grouped in figure 5: (1) susceptible tumour
proportion, (2) bone growth, (3) average tumour fitness, and (4) average player fitness. The
last two yield results that can be understood intuitively. As we increase drug efficacy we
reduce the proportion of the population made of tumour cells (resistant and susceptible) and
the amount of bone produced.
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3.4 Result Analysis

Regarding the tumour susceptible proportion: The values were taken exactly one timestep
after the last treatment in order to best determine the outcome of the treatment. The
general trend is for the tumour proportion to decrease as the treatment scheme becomes
more intense (due to a higher efficacy and more treatments). The top bar is unaltered as it
signals no treatment so despite an unrealistically high efficacy the tumour grows unhindered.
Regarding the bone difference plot: The amount of bone growth shows a trend towards larger
bone growth in light yet long treatments. During these schemes the susceptible tumour cells
are given a longer duration of time, due to longer treatment schedules, and thus have longer
perturbation on the OB fitness causing the rapid bone growth over a longer period of time.
Additionally, with other long treatment schemes the treatment often eliminates the tumour
susceptible and creates an ESS between the resistant phenotype and stromal cells such that
bone re-normalizes and becomes static.
Additionally, we continue studying the aforedescribed treatment schemes through another
perspective: the average fitness, which tells us more about the model and the potential
and rate of growth and when combined with our data of the proportions gives us a better
conception of how the players (stromal and tumor cells) are interacting. It is of no surprise
when looking that both the average tumor fitness and the average player fitness behave in
the similar fashion of decreasing as the treatment intensifies.The dark blue line that is seen
in the average tumor fitness subplot is due to disproportionately high OB fitness in the
disrupted cycle of OB and OC proportions which causes the tumor fitness to drop - however,
in other cases the efficacy is either too high or too low to cause the cycle’s nadir to occur
right at the end of the treatment.

4 Adaptive Therapy

Adaptive Therapy (AT) is an evolutionary enlightened treatment scheme in which the goal of
the treatment is not to kill the tumour, but rather control its size. By controlling the tumour
population we prevent the resistant population from becoming the dominant phenotype,
while still controlling the overall tumour burden.
This treatment would be applied by checking the patients tumor population and giving
treatment only when the tumour population grows over a certain size. In this EGT model
we assume that the fitness of the tumour population constitutes a proxy to tumour size.
However, this would involve checking the patients tumor levels on a daily basis which is not
always possible. Thus, in order to apply this treatment we modify it in the following way:

1. Chemotherapy will start as in other treatment schemes at a late timestep such that the
tumor proportion has achieved some form of evolutionary stable proportion, mirroring
a fully grown tumor.

2. The patient’s tumor proportion will be checked three times a week and if the tumor
proportion is higher than a set proportion the treatment, much like a boolean, will be
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turned off and will only be turned on if during another checkup the tumor proportion
crosses the predefined value

Using this modified Adaptive Therapy treatment scheme, we are able to generate the results
shown in figure 6.

4.1 Model Results

We see that the realistic Adaptive Therapy method which we outline above is successful
at controlling the bone growth and changes the cancer from a fatal disease to a chronic
problem. Additionally, we observe that, based on what values are chosen for control, the
tumor burden can be controlled and the resistant population can be controlled and prevented
from completely displacing the susceptible population The full impact of the AT treatment
scheme can be seen in figure 6, where the average tumor fitness for an Adaptive Therapy
treatment (with the with the tumor controlled to 0.5) is overlayed on the average tumor
fitness. Here we see that as soon as treatment is the average tumor fitness (avgT) falls
followed by controlled oscillations of the AT avgT compared to oscillations and large spikes
of the Chemotherapy avgT. Additionally, we show the bone growth over time for both of
these treatment schemes, and as expected, the bone under the adaptive therapy is controlled,
while the bone under standard chemotherapy increases indefinitely. Within the bone plot
we note two spikes in the bone under the chemotherapy.

5 Discussion

The results presented in this report were collected during the HIP-IMO in June-August 2015.
During these months we developed a qualitative mathematical model of bone remodeling that
involves the interactions between bone-producing cells (osteoblasts) and bone-destroying cells
(osteoclasts). While qualitatively modeling bone homeostasis with these two cell types is
not novel [4], our approach explicitly incorporates, for the first time in a mathematical
model of cancer based on game theory, the microenvironment. This is important because
the model we presented allows us to study not only bone homeostasis but also homeostasis
disruption as a result of metastasis from the bone and the impact of such metastasis in the
bone. Our results recapitulate not only this (vicious cycle) but also the bone formation that
characterizes prostate metastases in the bone [1].

The heterogeneity of tumours is increasingly recognized as an important driver of evolu-
tion of resistance in cancer. Chemotherapy is one of the most widely used treatment options
in metastatic prostate cancer. Resistance to chemotherapy is common and results from the
treatment providing strong selection for tumor cells that can avoid its cyto-toxic effects.
This resistance is often obtained through the upregulation of drug exporter pumpts on the
surface of tumour cells. Producing and maintaining these pumps is energetically costly to
the tumour cells but allow those that have many of them to deal with many of the drugs
commonly used in the treatment of metastatic prostate cancer. Our results show that con-
ventional chemotherapy-based treatments that aim to reduce tumour burden as much as
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possible work well if the metastases are homogeneous. Assuming heterogeneity with regards
to chemotherapy resistance, our model allows us to explore how different treatment dura-
tions and intervals between drug application impact tumour heterogeneity, fitness, and the
increase in bone formation (see fig. 5).

While some of the results are very intuitive, some of them are not. The number of
treatment intervals for instance, while having an impact on the tumour fitness, also impacts
the formation of pathological bone. This is not obvious from the model assumptions and is a
result of clinical significance as many treatments for metastatic prostate cancer patients are
palliative [13] and pathological bone is a major factor impacting negatively patient’s quality
of life.

While the standard of care involves the use of treatments like chemotherapy where dosage
is determined by maximum tolerable dose, new treatment strategies have been recently
proposed that could be described as evolutionary enlightened. One of them is known as
adaptative therapy (AT) and the aim is to control the tumour population rather than to
reduce the burden. AT have been explored mathematically by Gatenby and colleagues [14]
but under the assumption that the microenvironment of the tumour is not relevant and that
tumour populations do not interact with each other. Our investigation of AT on prostate
cancer metastases to the bone assumes that we can track metastatic burden with PSA
(Prostate Specific Antigen). Results (see fig. 6) suggest that AT can indefinitely control the
tumour population (assuming that chemotherapy resistance is costly even if easy to evolve).
Furthermore, we have also shown that compared to standard chemotherapy, AT can control
bone formation.

We intend to use this simple model as a theoretical platform in which to investigate other
treatments of the standard of care for metastatic prostate cancer patients. These include, but
are not limited, to biphosphonates, anti-RANKL and hormonal therapy. These will allow us
to understand how the combination of treatments in heterogeneous bone metastases would
allow us to control metastatic burden and pathological bone growth.
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(a) Proportions (b) Bone

Figure 2: Homeostatic disruption due to tumour introduction. The simulation begins pri-
marily with Ostebolasts and Osteoclasts with a very small proportion of tumor cells, which
due to a higher relative fitness dominates and causes the bone to surge. Initial values:
POB = POC = 0.4998;PT = 0.0004; γ = 0.95; ε = 0.03; δ = 0.2.
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(a) Proportions (b) Bone

(c) Fitness

Figure 3: Chemotherapy on a homogeneous tumour population. We see that the treatment
has no effect on the proportions of the cells, but it effects the amount as shown by the drop in
the player’s relative fitness. Initial values: POB = POC = 0.4998;PT = 0.0004; γ = 0.95; ε =
0.03; δ = 0.2. Treatment began at timestep 40, for two 40 timestep treatments with a 20
timestep interval and an efficacy of 0.5.
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(a) Proportion (b) Bone

(c) Relative Fitness

Figure 4: Chemotherapy on a heterogeneous population. The bone level begins to temporar-
ily decrease after treatment due to decreased level of tumour and increased level of stromal
cells.Initial values: POB = POC = 0.4998;PT = 0.0004; r = 0.1; γ = 0.95; ε = 0.03; δ = 0.2.
Treatment began at timestep 40, for two 40 timestep treatments with a 20 timestep interval
and an efficacy of 0.5.
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(a) Tumour Proportion (b) Bone Difference

(c) Average Tumour Fitness (d) Average Player Fitness

Figure 5: Chemotherapy on a heterogeneous tumour population. The (1) Tumor proportion,
(2) difference in bone level after treatment, (3) average tumour fitness, and (4) average player
fitness. We show the average fitness for the players in our model under different treatment
schemes. The major horizontal axis on the outside represents the treatment duration and the
major vertical axis on the outside represents the treatment interval. The smaller horizontal
axis on each square is the treatment efficacy, incremented by 10 percent while the smaller
vertical axis on each square is the amount of treatments given incremented from at the top
1 to 10. Initial values: POB = POC = 0.4998;PT = 0.00036;PTr = 0.00004; r = 0.1; γ =
0.95; ε = 0.03; δ = 0.2.
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(a) Proportion-0.1 (b) Bone-0.1

(c) Proportion-0.5 (d) Bone-0.5

Figure 6: Adaptive Therapy controls the Tumor proportion to be less than 0.5. The growth
of the heterogeneous tumor population remains checked. These plots also show the effect
of such a treatment on the amount of bone. Initial values: POB = POC = 0.4998;PT =
0.00036;PTr = 0.00004; r = 0.1; γ = 0.95; ε = 0.03; δ = 0.2.
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(a) Tumor Fitness (b) Bone

Figure 7: Tumor fitness for a classic treatment versus adaptive therapy. Initial values:
POB = POC = 0.4998;PT = 0.00036;PTr = 0.00004; r = 0.1; γ = 0.95; ε = 0.03; δ = 0.2.
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