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Abstract

Demographic, genetic, or stochastic factors can lead to perfect
linkage disequilibrium (LD) between alleles at two loci without re-
spect to the extent of their physical distance, a phenomenon that
Lawrence et al. (2005a) refer to as “genetic indistinguishability”. This
phenomenon can complicate genotype-phenotype association testing
by hindering the ability to localize causal alleles, but has not been thor-
oughly explored from a theoretical perspective or using large, dense
whole-genome polymorphism datasets. We derive a simple theoret-
ical model of the prevalence of genetic indistinguishability between
unlinked loci, and verify its accuracy via simulation. We show that
sample size and minor allele frequency are the major determinants
of the prevalence of perfect LD between unlinked loci but that de-
mographic factors, such as deviations from random mating, can pro-
duce significant effects as well. Finally, we quantify this phenomenon
in three model organisms and find thousands of pairs of moderate-
frequency (> 5%) genetically indistinguishable variants in relatively
large datasets. These results clarify a previously underexplored popu-
lation genetic phenomenon with important implications for association
studies, and define conditions under which it is likely to manifest.

A basic genomic property of sexually reproducing organisms is genetic
disequilibrium, the non-random association between alleles at two or more
loci. This quantity is often referred to as linkage disequilibrium (LD) to em-
phasize the important role of genetic linkage in generating and maintaining
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the association at physically proximal loci. The concept of LD as a prop-
erty of two loci that are physically near each other is a natural viewpoint
given the large body of theoretical and empirical work characterizing mecha-
nisms by which demography and selection influence patterns of LD between
physically proximal loci. The existence and extent of LD between linked
loci is influenced by the demographic history of a population, reveals locus-
specific selective forces, and is a critical parameter governing the resolution of
marker-trait association studies (reviewed in Slatkin, 2008). Nevertheless, it
is well known that physically distant or even independently segregating loci
can also exhibit non-random associations. Specifically, LD between alleles
segregating at physically unlinked loci can be induced by a variety of forces
such as selection, genetic drift, non-random mating, epistasis, pleiotropy,
and non-random chromosome transmission (Michie, 1953; Bennett and Bi-
net, 1956; Nei, 1967; Crow and Kimura, 1970; Lewontin, 1988; Petkov et al.,
2005; Platt et al., 2010; Rohlfs et al., 2010; Corbett-Detig et al., 2013; Long
et al., 2013). In this paper we examine non-random associations between
alleles at pairs of physically unlinked loci. We use the term LD to describe
these associations but stress that they are not a result of genetic linkage
between the loci.

For two main reasons, a common approach to empirical examinations
of LD in genome analysis studies has been to focus on characterizing LD
across modestly-sized bins of specified physical distance (e.g. The Interna-
tional HapMap Consortium, 2005; Liti et al., 2009). First, this has been
an informative approach for exploring the well-recognized tradeoffs that LD
engenders in mapping studies. Specifically, surveys of LD within bins allow
assessment of the degree to which LD may facilitate the identification of risk-
conferring variants through the typing of nearby neutral polymorphisms but
may simultaneously impede efforts to finely map the causal variants responsi-
ble for those signals (Kruglyak, 1999; Sutter et al., 2004). Second, in genome
studies cataloging a large number of polymorphic sites, exploration of LD
across the complete genome often constitutes a daunting set of calculations,
since the number of possible pairs of single nucleotide polymorphisms (SNPs)
increases as n2 where n is the number of SNPs.

A number of previous studies have explored LD between unlinked loci.
Rohlfs et al. (2010) observed association between alleles present at two puta-
tively coevolving human gamete-recognition genes, and found support for the
hypothesis of selection for allele matching at these loci. Similarly, Takano-
Shimizu et al. (2004) reported LD between polymorphisms in Drosophila
chemoreceptor genes, which they attributed to the effects of multilocus selec-
tion with epistasis. Sved (2011) and Koch et al. (2013) examined measures of
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LD between blocks or patches of variants in subsets of the HapMap dataset,
with Sved (2011) finding a slight bias toward positive associations among
unlinked blocks and Koch et al. (2013) observing an excess of LD extending
over long ranges on the same chromosome. However, the focus of these au-
thors on measures of LD between blocks of variants necessarily obscures the
most extreme examples of LD between specific pairs of unlinked sites. Petkov
et al. (2005) focused on LD “domains” in mice consisting of large blocks of
sequence with disequilibrium between relatively distant markers on the same
chromosome, and they identified an example of LD between domains on two
different chromosomes containing genes with strong functional similarity,
implying selection for coadapted alleles (Petkov et al., 2005). The authors
also identified additional cases of high interchromosomal LD (D′ > 0.8) but
did not focus on this result and did not discuss in detail the frequency of
high interchromosomal LD or the distribution of LD among loci with strong
disequilibrium. Long et al. (2013) calculated genome-wide pairwise LD in
a dense polymorphism dataset and found many pairs of loci with high r2

values even after correcting for population structure, but did not focus on
modeling this phenomenon or quantifying the factors that could affect it.
Lawrence et al. (2005a) examined LD between ∼30,000 SNPs on chromo-
some 20 in several human populations, focusing on SNPs in perfect LD that
they dubbed “genetically indistinguishable” SNPs (giSNPs; we adopt this ab-
breviation and use it throughout this paper). The authors considered both
linked and unlinked variation, and found that most giSNPs occurred within
haplotype blocks, but did not explore the underlying causes leading to the
emergence of unlinked giSNPs (Lawrence et al., 2005a). Finally, we note
that Lawrence et al. (2009) published a tool for examining genome-wide LD
in the HapMap dataset.

The investigations described herein are motivated by prospects for genome-
wide association mapping studies (GWAS) in model and non-model organ-
isms. Specifically, falling sequencing costs and methodological advances are
making it increasingly feasible to gather virtually complete catalogs of ge-
nomic variation in moderate-sized samples of individuals from a species of in-
terest. This raises the possibility of performing GWAS in a setting where the
casual allele(s) are almost certainly tested directly. This approach amelio-
rates the concerns that several previous studies have raised involving tests for
indirect association using so-called “tag” SNPs that are in LD with untyped
variants (Zhang et al., 2004; Terwilliger and Hiekkalinna, 2006). However,
the approach becomes potentially problematic when the possibility exists
for very strong LD between alleles at a true causal site and at unlinked loci
elsewhere in the genome. If alleles at a causal site and at one or more phys-
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ically distant loci were to form a cluster of SNPs in perfect LD, it would
be impossible to localize the causal site using marker-trait association. At
worst, a causal site that is contained within such a cluster along with distant
loci that happen to be near a priori candidate genes could falsely reinforce
assumptions about the genetic basis of trait variation.

This potential pitfall for association studies has been noted previously in
the literature. In a review article, Lawrence et al. (2005b) emphasized the
potential difficulties that giSNPs could create for localizing causal variation
in the association mapping setup. They gave an unambiguous example of
this phenomenon appearing in an early empirical exploration of the potential
for gene expression quantitative trait locus (QTL) mapping in humans (al-
though they acknowledged that their sample size was small; Lawrence et al.,
2005b). Rohlfs et al. (2010) raised the possibility of this same phenomenon
and called for further investigation of interchromosomal LD, although they
focused on the role of selection. The possibility of LD between unlinked loci
hindering localization of genes in association mapping was also discussed in
a study of LD in cattle, although the magnitude of LD between unlinked loci
was lower than what we consider (Farnir et al., 2000). In the Drosophila lit-
erature, several published genome-wide association studies provide empirical
examples of unlinked SNPs with low association p-values and either perfect
or high long-range LD (Jordan et al., 2012; Harbison et al., 2013; Swarup
et al., 2013).

This study has several factors that differentiate it from previous work.
First, we consider all (or nearly all) polymorphic sites present in large ge-
nomic datasets consisting of complete genomes for at least 100 individuals,
and we calculate LD between all pairs of sites no matter their physical dis-
tance. Second, we focus our attention on the most extreme values of LD
between physically distant loci; only these pairs of sites will pose the type of
problem that we describe above in the GWAS setting. We specifically exam-
ine perfect LD (genetic indistinguishability) as this phenomenon is amenable
to simple theoretical modeling and to demonstrate that this “worst-case”
phenomenon is in fact present in real data. Finally, we explore how genetic
indistinguishability could be caused purely by stochastic or demographic fac-
tors, as such factors are frequently unaccounted for in studies of the genetic
basis of phenotypic variation.

To address these issues, we first derive a simple theoretical model to
quantify the rate of giSNP occurrence in a randomly mating population,
and verify its accuracy via coalescent simulations. Next we show that sam-
ple size and minor allele frequency (MAF) are the most important factors
determining the prevalence of giSNPs, but that demographic forces and de-
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viations from random mating can also affect the rate of giSNP occurrence, in
some cases dramatically. Finally, by fully enumerating the global landscape
of LD in several large model organism datasets, we demonstrate that a signif-
icant fraction of loci in real datasets can be members of giSNP clusters. As
complete sequence data for cohorts of individuals becomes readily available
in many model and non-model organisms, it will be important to recognize
that this phenomenon can have important implications for the success of
trait mapping studies.

Materials and Methods

Simulations

We performed simulations to validate our theoretical model and to explore
the effects of population structure and demographic perturbations on the
prevalence of giSNPs using the software ms (Hudson, 2002). Since we are
primarily interested in LD between unlinked sites, we assume that segregat-
ing sites arise from independent realizations of the Wright-Fisher process.
Thus, for all simulations with more than one segregating site, we chose a
single site at random and ignored the remaining segregating sites. Then,
the collection of N sites resulting from N independent simulations with at
least one segregating site represented the hypothetical overall collection of
genomic variants. For all simulations we used a sample size of 50 chromo-
somes (haploid individuals). We used a mutation rate of µ = 1× 10−10 per
base pair.

Population bottleneck simulations

In simulations exploring population bottlenecks, the initial effective popu-
lation size was Ne = 10, 000. We simulated a bottleneck that occurred 100
generations before population sampling. After the reduction in population
size due to the bottleneck, the population size remained constant (at the
new, reduced size). The severity of the bottleneck varied, ranging from a
drastic reduction in population size (1% of original size) to no reduction
(100% of original size).

Exponential growth simulations

In simulations of exponential growth, population expansion began 50 gener-
ations before population sampling. Starting population size varied, and for
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all simulations the ending effective population size was Ne = 10, 000. Vary-
ing the starting population size allowed us to simulate exponential growth
that differed in magnitude. Starting population size ranged from very small
(Ne = 50, very strong exponential growth) to large (Ne = 10, 000, no expo-
nential growth).

Population splitting simulations

For simulations modeling a single population splitting into two subpopula-
tions, we considered a population with effective size Ne = 10, 000 split into
two subpopulations, each with size Ne = 5, 000. We varied the timing of the
population split from 0 to 10,000 generations, but once the split occurred
it was absolute and no migration between subpopulations was allowed. For
our ending sample of 50 chromosomes we drew N = 25 chromosomes from
each population.

Ten population model

We simulated a single population of size Ne = 10, 000 that fragmented into
ten subpopulations 500 generations before population sampling. Each sub-
population had an equal size, Ne = 1, 000. For any given simulation, migra-
tion between each of the ten subpopulations was symmetric and occurred at a
constant rate from the fragmentation event until the present. The migration
rate varied between simulations. At the lowest level there was no migration
allowed between subpopulations, and at the highest level migration replaced
90% of each subpopulation each generation. For our ending sample of 50
chromosomes we drew N = 5 chromosomes from each population.

Calculating linkage disequilibrium

For simulated, theoretical, and empirical data, we use the term allelic con-
figuration to refer to the specific constellation of individuals carrying the
minor and major allele at a segregating site. To identify giSNPs, we con-
verted genotype data to counts specifying the number of minor alleles present
in each individual, and identified sites with identical allelic configurations.
For empirical data, we ignored missing data and identified giSNPs using only
pairwise complete data (that is, only individuals with non-missing genotype
data for both loci of interest). To measure the entropy of the distribution of
allelic configurations, we used the formula −

∑
i pi log2 pi where i indexes the

allelic configurations observed for a particular MAF and pi is the fraction
of all allelic configurations of that MAF that possess configuration i. This
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is a standard formulation for measuring entropy in an information theoretic
context. For a particular MAF, the entropy is independent of sample size
(the number of polymorphic sites) given a constant probability of sampling
each of the possible allelic configurations. Furthermore, entropy is a more
appropriate measure of the evenness of the distribution of allelic configura-
tions than an alternate measure such as the standard deviation, because the
former measure does not require assigning arbitrary numerical values to al-
lelic configurations. We performed all analyses using R (R Core Team, 2014)
version 3.1.0 and python version 2.7.3 (Python Software Foundation, 2014).

Genetically indistinguishable SNPs in real data

For our empirical examinations of giSNPs, we focused on biallelic SNPs, and
discarded any sites with over 10% missing data. When tabulating cases of
perfect LD, we only examined loci that were on different chromosomes or
far enough apart on the same chromosome to be effectively randomly assort-
ing. Specifically, we obtained rough estimates of the meiotic recombination
rate [in centimorgans (cM) per kilobase (kb) or megabase (Mb)] and con-
verted this to the approximate physical distance at which loci on the same
chromosome are 50 cM apart.

For S. cerevisiae, we used data from the “Yeast 100 Genomes” collection
described in Strope et al. (2015). We tabulated LD between SNPs at least
100 kb apart or on different chromosomes, since the meiotic recombination
rate in S. cerevisiae is approximately 0.5 cM/kb (Cherry et al., 1997).

For D. melanogaster, we used freeze 2.0 samples from the Drosophila
melanogaster Genetic Reference Panel project (Huang et al., 2014). The
meiotic recombination rate in D. melanogaster is on the order of 10 cM/Mb
(Comeron et al., 2012), so we ignored giSNPs less than 5 Mb apart on the
same chromosome. The individuals in this project have been inbred to near
complete homozygosity, but a few heterozygous sites still persist, so we set
genotypes at these sites to missing data and treated all genotypes as haploid.

For A. thaliana, we used genotype data (non-imputed data) of 180 lines
from Sweden (Long et al., 2013). The meiotic recombination rate in A.
thaliana is roughly 3.6 cM/Mb (Salome et al., 2012), so we ignored giSNPs
less than 14 Mb apart on the same chromosome.
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Results and Discussion

A theoretical model for the prevalence of genetically indistin-
guishable variants

To gain a detailed understanding of the phenomena that affect the prevalence
of giSNPs in an idealized haploid population, we derived a simple theoretical
model. We assume that samples are drawn from a single panmictic, constant-
sized Wright-Fisher population, with mutations generated according to the
infinite-sites model, and that all mutations are selectively neutral. Since we
are interested in LD between unlinked sites, we assume that segregating sites
arise from independent realizations of the Wright-Fisher process.

We begin by considering a variant with MAF k/N , whereN is the number
of samples drawn from the haploid population. For a set of variants drawn
from the above model, the expected fraction of variants with the same MAF
k/N is approximately

1/k + 1/(N − k)

(1 + δk,N−k)
∑N−1

i=1
1
i

(1)

where δ is the Kronecker delta. Equation 1 was previously derived by Tajima
(1989, eqn. 51) and Fu (1995, eqns. 6-8).

We use the term allelic configuration to refer to the specific constellation
of individuals carrying the minor and major allele at a segregating site (i.e.
which individuals carry the minor allele and which carry the major allele).
Thus, two sites are giSNPs if and only if they share identical allelic config-
urations. The presence of identical allelic configurations does not imply an
identical derived allele distribution among samples, since a derived allele with
frequency k/N or (N − k)/N could present the same allelic configuration.

Under the neutral Wright-Fisher model (panmixis, constant population
size, infinite-sites mutation), for a given MAF k/N , all allelic configurations
are equally likely since the labeling of individuals is arbitrary. There are

(
N
k

)
unique allelic configurations for a site with MAF k/N . Thus, the fraction
of variants with minor allele frequency k/N that have an identical allelic
configuration is

(
N
k

)−1
.

Combining these results, given a variant with MAF k/N , the expected
fraction of other variants that are genetically indistinguishable can be ex-
pressed as

1/k + 1/(N − k)

(1 + δk,N−k)
∑N−1

i=1
1
i

(
N

k

)−1
(2)

This expression represents the probability that, with a single variant in hand,
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a second variant drawn at random will be genetically indistinguishable from
the first (i.e. they are giSNPs). This probability is independent of the total
number of variants in the dataset.

We verified this model by using a computer program to generate samples
drawn from a randomly mating, constant-sized population generated using
the Wright-Fisher model with an infinite-sites model of mutation (Hudson,
2002). Figure 1 shows the expected number of giSNPs as a function of MAF
for simulations using six different sample sizes. For all sample sizes, the mean
number of giSNPs is in very close agreement with the expectation according
to our theoretical model. Figure 1 shows intervals that indicate the range in
the number of giSNPs across simulated allelic configurations for each MAF.
These intervals are noticeable only for giSNPs occurring at a very low, but
non-zero, rate and arise due to the increased sampling variation present for
very rare events.

In the supporting information, we detail how our theoretical model can
be extended to diploid populations. Briefly, in the context of our analysis
of giSNPs, we are primarily interested in physically distant pairs of loci
(loci that are far apart or on different chromosomes), so phase becomes
arbitrary. For unphased allelic configurations that contain no heterozygotes,
the expected number of giSNPs is identical to Equation 2, but where N refers
not to the number of haploid individuals but to the number of chromosomes
(N/2 diploid individuals). For unphased allelic configurations that contain
at least one heterozygote, this probability will be inflated by a factor of
2h, where h is the number of heterozygotes present in the configuration
(Supporting Information).

Key insights from theoretical model

Figure 1 clearly illustrates two central determinants of giSNP prevalence.
First, it is clear that the prevalence of giSNPs is reduced as MAF increases.
This follows from intuition, as can be shown by considering the extreme
example of a singleton SNP present in only one individual: this SNP will
have the lowest possible MAF, and will be a member of the giSNP cluster
containing all other singleton SNPs present in the same individual. As the
MAF increases, the number of possible allelic configurations grows faster
than exponentially, and the chance of two unlinked SNPs sharing the same
allelic configuration becomes very small for a randomly mating population.

Second, it is apparent from Figure 1 that expectations of giSNP preva-
lence are strongly dependent on sample size, with almost no giSNPs for
sample sizes 200 and 500 except at singleton sites. Again, this phenomenon
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follows from our theoretical model – the number of possible allelic config-
urations increases very rapidly as sample size increases, regardless of MAF
(although the increase is more dramatic for higher MAF ). Overall, these
two points indicate that sample size and MAF both play an important role
in determining the prevalence of giSNPs through their impact on the total
number of possible allelic configurations, a relationship that follows from the
combinatorics of minor alleles being partitioned among individuals.

Demography and mating patterns can exacerbate giSNP preva-
lence

The theoretical model described above provides quantitative estimates of the
prevalence of giSNPs in a randomly mating population of constant size. How-
ever, any real population is likely to violate one or more of these assumptions.
The derivation above illustrates the strong dependence of giSNP prevalence
on sample size and MAF, as discussed previously, but also suggests condi-
tions under which the occurrence of giSNPs is likely to deviate from idealized
conditions. We explore these conditions using coalescent simulations with
a sample size of N = 50. We restrict our simulations to neutrally evolv-
ing loci and do not investigate cases of selection or other phenomena such
as epistasis. In our simulations, the specific parameters of each departure
from the constant-sized panmictic model are necessarily arbitrary, but they
will nevertheless be useful for illustrating overall patterns of changes in the
prevalence of giSNPs.

Perturbation of allele frequency spectrum

In the derivation of our model, equation 1 represents a contribution to the
prevalence of giSNPs due to the allele frequency spectrum. The allele fre-
quency spectrum is well-known to be affected by both demographic and
selective forces (Marth et al., 2004; Achaz, 2009). We explored the effect of
perturbations to the allele frequency spectrum on giSNP prevalence by sim-
ulating data from a population subject to (1) a bottleneck starting a fixed
number of generations ago and lasting until the present, and (2) a period of
exponential growth starting a fixed number of generations ago and lasting
until the present. In the former case the starting population size was con-
stant but the strength of the bottleneck (fraction by which the population
size was reduced) varied, while in the latter case the starting population size
and magnitude of exponential growth varied such that final population size
was constant in all simulations.
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As Figures 2A and 2C show, the allele frequency spectrum is distorted
by these demographic events. In the case of a strong population bottle-
neck, a large portion of rare variation is lost and the frequency spectrum
shifts toward higher frequency variation (Fig. 2A). When the population
grows exponentially at a high rate, the reverse is true and the fraction of
rare variation increases dramatically at the expense of common variation
(Fig. 2C). Figures 2B and 2D demonstrate that these shifts in the allele
frequency spectrum have detectable effects on the prevalence of giSNPs, al-
though they tend to be mild. Specifically, strong exponential growth shifts
the allele frequency spectrum toward low frequency variation, which simul-
taneously creates a larger “pool” of low frequency variants and a smaller pool
of higher frequency variants, resulting in slightly higher/lower rates of giSNP
occurrence, respectively (Fig. 2C-D). In contrast to exponential growth, a
bottleneck has an opposing effect on the allele frequency spectrum in that
it produces shifts toward moderate/high frequency variation and away from
low frequency variation (Fig. 2A). Perhaps counterintuitively, strong bottle-
necks do not lead to any appreciable increases in giSNP prevalence. The
reduction in low frequency variants due to the bottleneck decreases giSNP
prevalence among low MAF variants (Fig. 2B), but a corresponding increase
in higher frequency variants that would be expected to increase giSNP oc-
currences is mitigated by the vast number of allelic configurations at these
MAFs. In particular, the allele frequency spectrum shift toward higher fre-
quency variation (Fig. 2A) does not manifest until MAF ∼ 15% (where there
are already 100 million possible allelic combinations), which results in a neg-
ligible increase (about 1× 10−5 per million SNPs) in the total rate of giSNP
occurrence (Fig. 2B).

Non-uniform probability distribution of allelic configurations

Next, we consider the second component of equation 2,
(
N
k

)−1
. As described

above, this factor accounts for the equal likelihood of each allelic config-
uration, which is a consequence of arbitrary labeling of individuals under
the neutral Wright-Fisher model. However, the equal likelihood of all al-
lelic configurations will not hold if mating is non-random. To explore the
effect of changes in the probability distribution of allelic configurations due
to deviations from random mating among the individuals in a sample, we
simulated two models that incorporate population structure: (1) a model of
a population that instantly splits into two completely isolated equally-sized
subpopulations, and (2) a model of a population that instantly fragments
into ten equally-sized subpopulations at a single timepoint with subsequent
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migration between subpopulations. For the former model we varied the tim-
ing of the split, and for the latter model we varied the amount of migration
between subpopulations after the fragmentation event. For both models, we
drew an equal number of chromosomes from each simulated subpopulation
and combined them into one large sample in order to calculate occurrences
of giSNPs.

To quantify the non-uniformity of the probability distribution of allelic
configurations for a given demographic scenario, we calculated entropy (the
“entropy of allelic configurations”) for each MAF. In an information-theoretic
sense, the entropy is maximized when the probability distribution is most
disordered (a uniform probability distribution of allelic configurations) and
minimized when the probability distribution has no randomness (only a sin-
gle allelic configuration). As Figures 3A and 3C show, the demographic sce-
narios outlined above produce shifts in the entropy of allelic configurations
at only a subset of minor allele frequencies. In the two population model,
entropy is drastically reduced for MAF = 0.5, which corresponds to variation
either fixing in one subpopulation and being lost in the other or to varia-
tion that arose in one subpopulation after the split and subsequently rose
to fixation (a “subpopulation-specific” allelic configuration; Fig. 3A). Allelic
configurations with MAF slightly less than 0.5 show a reduction in entropy
as well, although it is less dramatic. This reduction is due to the overrep-
resentation of allelic configurations with a small number of differences from
the subpopulation-specific configuration. In the ten population model, there
are similar dips in entropy that occur at regular intervals rather than only
at MAF = 0.5 (Fig. 3C). Specifically, these reductions occur at 10%, 20%,
30%, 40%, and 50% MAF and represent allelic configurations corresponding
to variation that is unique to one subpopulation or fixed only within cer-
tain subpopulations (with population size 50, 5 chromosomes were sampled
from each subpopulation, and 5/50 = 10%, 10/50 = 20%, etc.). Like the two
population model, MAFs near those corresponding to perfect subpopulation-
specific division of variation also display reductions in entropy. As described
above, these reductions are due to the overrepresentation of allelic configu-
rations with a small number of differences from the subpopulation-specific
configurations. Figures 3B and 3D demonstrate that these shifts in the prob-
ability distribution of allelic configurations can have very strong effects on
the prevalence of giSNPs. Specifically, a reduction in the entropy of allelic
configurations increases the rate of giSNP occurrence for alleles of the same
MAF (but does not affect the rate of giSNP occurrence for alleles of other
MAFs). Intuitively, if only a few different allelic configurations dominate a
particular MAF, the chance of any two variants with that MAF sharing an
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Organism Sample size1 Number of SNPs examined Reference

A. thaliana 206 3,067,372 Long et al. (2013)
D. melanogaster 181 3,660,570 Huang et al. (2014)
S. cerevisiae 100 503,846 Strope et al. (2015)

Table 1: Characteristics of datasets examined

allelic configuration is much higher than if there were many allelic configu-
rations present at roughly equal frequencies.

Overall, these results indicate that population structure can increase the
prevalence of giSNPs for particular minor allele frequencies by increasing
non-uniformity of the probability distribution of allelic configurations. The
particular MAFs that will be affected are specific to the demographic history
of the population in question. In the simulated scenarios above, the allele
frequency spectrum is also shifted from the neutral case, although this is not
strictly required in order to affect giSNP prevalence. We note that there are
many other possible scenarios through which deviations from random mat-
ing could lead to a non-uniform probability distribution of allelic configura-
tions, including (but not limited to) associative mating, selfing/inbreeding,
and other forms of population subdivision. More generally, it is clear from
both theory and simulation that non-uniformity of the distribution of allelic
configurations, no matter the mechanism, has the potential to be a more
important determinant of prevalence of giSNPs than shifts in the allele fre-
quency spectrum. A large shift in the allele frequency spectrum might lead
to a change in the fraction of variants at a particular MAF of 2-3 fold. In
contrast, strong favoring of a small number of allelic configurations could
change the probability of particular allelic configurations by several orders
of magnitude.

An examination of giSNPs in real datasets

We first examined giSNPs in humans using data from the 1000 genomes
project (The 1000 Genomes Project Consortium, 2012). We found very
few giSNPs, indicating that this phenomenon is unlikely to affect results in
modern human GWAS with large sample sizes (Supporting Information).
However, we found a very different pattern when we examined the land-
scape of giSNPs in several large datasets of commonly used model organisms.

1Including the appropriate reference genome.
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Number (percent) of possible
pairs of SNPs that are geneti-
cally indistinguishable

Number (percent) of SNPs
that have at least one giSNP

Organism all SNPs MAF ≥ 5% only all SNPs MAF ≥ 5% only

A. thaliana 2.72× 109 (0.058%) 38,033 (< 0.01%) 1.57× 106 (51%) 30,964 (2.5%)
D. melanogaster 1.90× 109 (0.028%) 80,936 (< 0.01%) 1.36× 106 (37%) 1,555 (0.097%)
S. cerevisiae 1.22× 109 (0.96%) 5.12× 106 (0.052%) 352,235 (70%) 10,447 (7.4%)

Table 2: Number of giSNPs in real data

Specifically, we comprehensively surveyed LD at all pairwise combinations of
SNPs in 100 Saccharomyces cerevisiae genomes, 181 Drosophila melanogaster
genomes, and 206 Arabidopsis thaliana genomes (Table 1). We treated all
genotypes as haploid, since the yeast genomes sequenced were haploid or
homozygous diploid (Strope et al., 2015), and the fly and A. thaliana in-
dividuals were inbred to complete or nearly complete homozygosity (Long
et al., 2013; Huang et al., 2014). In total, our survey of LD at pairwise
combinations of SNPs consisted of searching for giSNPs at nearly 12 trillion
pairs of SNPs. We found the presence of giSNPs in all datasets, although
the amount varied between datasets. We identified billions of giSNPs in the
yeast, fly, and A. thaliana genomes (Fig. 4A-C, Table 2). Despite this large
number of giSNPs, in all three datasets it represented only a tiny fraction
(< 1%) of the enormous number of possible pairs of SNPs. In all datasets
the bulk of the giSNPs we identified were between variants with low MAF,
as predicted by the theory above (Fig. 4A). Nevertheless, we identified thou-
sands of giSNPs with at least moderate allele frequency (≥ 5%; Table 2).
According to most measures, the rate of giSNP occurrence was highest in
yeast, intermediate in A. thaliana, and lowest in flies (Fig. 4A-B).

A list of pairs of giSNPs could consist of many pairs of independently
genetically indistinguishable SNPs, or could be large clusters of a relatively
smaller number of SNPs that are all mutually giSNPs. To explore the fraction
of SNPs impacted by genetic indistinguishability, we calculated the number
of SNPs that have at least one giSNP. We found that a significant fraction of
SNPs in each dataset had at least one giSNP, with this quantity especially
high in the yeast data (∼ 70%; Table 2). The median number of giSNPs per
SNP was also highest in yeast, with a slightly lower number in A. thaliana,
and the lowest number in flies (Fig. 4B). In all cases, the great majority
of SNPs that had at least one giSNP were rare (MAF < 5%), although
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there are thousands of SNPs in each dataset with at least moderate allele
frequency that have at least one giSNP (Table 2). To explore the “worst-case”
scenario, we tabulated the maximum number of giSNPs among all allelic
configurations at each MAF and found in each dataset some configurations
with relatively high MAF (> 10%) that had hundreds of mutually genetically
indistinguishable SNPs (Fig. 4C).

Overall, our estimates of giSNP prevalence in real datasets are likely to be
very slight overestimates due to missing genotype data — we focused on sites
with < 10% missing data and ignored individuals with a missing genotype
for either SNP in the pair, but it is possible that a missing genotype could
break up perfect LD between an otherwise genetically indistinguishable pair
of SNPs. We note that, for the Arabidopsis data we used, a careful analysis of
long-range LD that specifically employed methods to correct for population
structure in LD calculations results in many fewer instances of high-LD pairs
(Long et al., 2013). However, in our examinations of giSNPs in real data, we
chose to naively combine individuals known to vary in relatedness in order
quantify giSNP prevalence in a set of individuals that might serve as a sample
population for GWAS.

Genetically indistinguishable SNPs in datasets with equal sample
sizes

Results from our theoretical model of genetically indistinguishable SNPs and
the coalescent simulations described above show that two central determi-
nants of the prevalence of giSNPs are sample size and MAF. In order to
examine giSNPs in real datasets on an equal footing from the perspective
of sample size, we considered 100 randomly selected individuals from each
model organism dataset (S. cerevisiae, D. melanogaster, and A. thaliana).
Since the absolute number of giSNPs is highly dependent on the number of
SNPs in a dataset, we randomly selected 100,000 SNPs from each reduced
sample of individuals. After removing differences in sample size, the four
datasets show similar overall rates of giSNP prevalence (Fig. 4D, F). Nev-
ertheless, there was a consistent pattern of the highest median number of
giSNPs being present in yeast and the lowest in flies (Fig. 4E). The the-
oretical model introduced earlier predicts giSNP prevalence to be roughly
on par with that found in flies (Fig. 4E, dashed gray line). This result is
consistent with the fact that the D. melanogaster dataset is the only dataset
we examined that was collected from a single geographic location and could
reasonably be thought to derive from a quasi-randomly mating population
(Huang et al., 2014).
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Almost genetically indistinguishable SNPs

In this paper we have focused on the simplest possible scenario of LD be-
tween two independently segregating loci, namely the occurrence of perfect
LD between alleles at the two loci. This “worst-case” scenario provides a
useful point of entry for studying LD between independent loci, as it is well-
suited to simple theoretical modeling and calculations do not depend on the
specific measure of LD used. However, LD between alleles at two loci can be
substantial without the presence of perfect disequilibrium. We use the term
“almost genetically indistinguishable” to describe this phenomenon of high
but not complete LD between alleles at two loci, and the abbreviation “al-
most giSNP” to encompass SNPs that are either genetically indistinguishable
or nearly so. Almost genetically indistinguishable SNPs could still present a
significant impediment to the localization of causal alleles in the association
study design, and might be of more general interest given the relative rarity
of perfect LD.

As a preliminary exploration of the scale of almost genetically indistin-
guishable SNPs relative to giSNPs, we focused on the yeast data described
above and quantified LD between all pairs of variants using r2. As Figure 5
shows, the fraction of SNPs at each MAF with at least one almost giSNP in-
creases as the threshold for disequilibrium decreases from r2 = 1 (giSNPs) to
r2 = 0.6. Similarly, the mean number (as a function of MAF) and maximum
number (across all allelic configurations) of almost giSNPs both increase as
the r2 threshold decreases (data not shown). The maximum MAF at which
a substantial fraction of SNPs has at least one almost giSNP is shifted up-
wards as r2 decreases; for example, the maximum MAF where at least 25%
of SNPs have a giSNP is 6.5% for r2 = 1, 8.5% for r2 = 0.8, and 13.5% for
r2 = 0.6 (Figure 5). Interestingly, there is an upward trend in the fraction
of SNPs with at least one giSNP that is particularly apparent at the lowest
threshold (r2 = 0.6; Figure 5). This effect likely arises for combinatoric rea-
sons; specifically, assuming that a maximum of n alleles can be “flipped” from
ancestral to derived or vice versa, there are more possible ways to achieve
r2 = 0.6 starting with an allelic configuration with MAF 0.5 than there are
when starting with an allelic configuration of MAF 0.25.

Conclusions and Implications for Future Studies

The phenomenon of unlinked genetically indistinguishable SNPs is of prac-
tical importance to investigators conducting mapping studies using dense
polymorphism data in model and non-model organisms using the associa-
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tion study design. In particular, causal loci with giSNPs elsewhere in the
genome could completely eliminate the ability to localize causal alleles via
association. Even for Mendelian or nearly Mendelian traits that are com-
monly considered “easy” to map, giSNPs could lead to confusion about the
true source of signal driving a phenotypic association.

As described above, we used theoretical models, simulations, and genome-
wide SNP data to explore the conditions under which giSNPs are expected
to manifest, and to quantify their prevalence in real data. We find that sam-
ple size and MAF are the most important factors determining how often loci
are genetically indistinguishable. Nevertheless, giSNPs can also be strongly
elevated for particular MAFs under models with deviations from random
mating. These observations are particularly relevant for marker-trait asso-
ciation studies in non-model organisms or those where phenotype data is
labor-intensive to obtain, as these studies are likely to be conducted with
modest sample sizes. In such studies, a global survey of LD could reveal the
extent to which it is likely to ultimately impede localization of causal alleles.
Such surveys are particularly important for samples consisting of individuals
likely to have a complex demographic history, given the potential for strong
population structure to elevate the prevalence of giSNPs. At the same time,
we recognize that the use of mixed models to account for population struc-
ture in association mapping is likely to significantly ameliorate the effect of
giSNPs that lie along major axes of population subdivision.

How can we “cure” genetic indistinguishability? In order to reduce the
number of giSNPs in a particular dataset, we must break up associations
between alleles at two loci that are in perfect disequilibrium. Aside from
collecting more individuals (which may not always be possible), the most
straightforward way to accomplish this is to take advantage of meiosis, dur-
ing which recombination and independent assortment break up associations
between alleles at loci on the same and different chromosomes, respectively.
Specifically, if variation involved in giSNPs is segregating in a cross, and n
offspring are collected, then a fraction 1 − 0.5n of the genetically indistin-
guishable pairs of loci should be broken up and no longer genetically indistin-
guishable (assuming giSNPs segregate independently). Although this strat-
egy addresses the “worst-case” scenario of giSNPs, it is not a panacea. As we
have shown, almost genetically indistinguishable SNPs can be widespread in
genomic datasets. Both genetically indistinguishable and almost genetically
indistinguishable SNPs could impede localization of causal alleles. In theory,
almost genetically indistinguishable SNPs could result in a stronger marker-
trait association between the phenotype and a non-causal locus than at the
causal locus itself. Given the potentially disruptive effects of almost genet-
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ically indistinguishable SNPs, we suggest that further investigation into its
prevalence and practical importance is warranted.
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Figure 1: Correspondence between simulated and theoretical expectations
of giSNP prevalence. Dotted lines show results calculated using the theoret-
ical model introduced above. Solid lines (directly underneath dotted lines)
indicate mean number of giSNPs per million SNPs obtained via simulation
(averaged across all sampled allelic configurations). Lighter ribbon surround-
ing each line shows the range in the number of giSNPs across sampled allelic
configurations for each minor allele frequency. Y-axis is inverse hyperbolic
sine transformed in this figure and in other figures plotting giSNP prevalence
as a function of MAF throughout the paper.
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Figure 2: Demographic perturbations can affect the occurrence of giSNPs.
Figure shows the allele frequency spectrum and corresponding rate of giSNP
occurrence for two demographic models. (A, B) Results from the bottleneck
model described in the main text. (C, D) Results from the exponential
growth model discussed the main text. In the exponential model, population
growth is proportional to exp−αt for t units of time; α in panels C and D
refers to this exponential growth factor.
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Figure 3: Population structure can greatly increase giSNP prevalence for
specific MAFs. Figure shows results from two models that include population
structure as described in the main text. (A) and (C) Ratio of the entropy
of the distribution of allelic configurations, at each MAF, compared to the
neutral scenario (split time of 0 or complete migration between populations,
respectively). (B) and (D) Mean number of giSNPs per million SNPs as a
function of MAF. Lines in A and B are colored according to split time in
generations. Lines in C and D are colored according to the migration rate
between populations after the fragmentation event, expressed as the fraction
of each subpopulation replaced with migrants each generation.
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Figure 4: Genetically indistinguishable SNPs in real datasets. (A-C) Statis-
tics calculated from all data for each organism. (D-F) Statistics calculated
from datasets downsampled randomly to match a sample size of 100 chromo-
somes and 100,000 SNPs. (A, D) Fraction of SNPs with at least one giSNP
as a function of MAF. (B, E) Median number of giSNPs as a function of
MAF. Small black notches indicate bootstrap 95% confidence intervals on
the median. The median number of giSNPs for all MAFs > 0.08 is negligible
in all datasets. (C, F) Maximum number of giSNPs across all allelic config-
urations, as a function of MAF. Dots indicate the number of giSNPs for the
“worst” allelic configuration at each specific MAF. Solid lines provide a local
smoothing via the loess method.
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Figure 5: Almost genetically indistinguishable SNPs in 100 S. cerevisiae
genomes. Lines show the fraction of SNPs with at least one giSNP (r2 = 1)
or almost genetically indistinguishable SNP (r2 < 1) as a function of MAF.
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