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ABSTRACT: 63 

Background  64 

Four gene expression-based subtypes of high-grade serous ovarian cancer (HGSC), variably 65 

associated with differential survival, have been previously described. However, in these studies, 66 

clustering heuristics were consistent with only three subtypes and reproducibility of the subtypes 67 

across populations and assay platforms has not been formally assessed. Therefore, we 68 

systematically determined the concordance of transcriptomic HGSC subtypes across populations. 69 

Methods  70 

We used a unified bioinformatics pipeline to independently cluster (k = 3 and k = 4) five mRNA 71 

expression datasets with >130 tumors using k-means and non-negative matrix factorization 72 

(NMF) without removing “hard-to-classify” samples. Within each population, we summarized 73 

differential expression patterns for each cluster as moderated t statistic vectors using Significance 74 

Analysis of Microarrays. We calculated Pearson’s correlations of these vectors to determine 75 

similarities and differences in expression patterns between clusters. We identified sets of clusters 76 
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that were most correlated across populations to define syn-clusters (SC), and we associated SC 77 

expression patterns with biological pathways using geneset overrepresentation analyses.  78 

Results  79 

Across populations, for k = 3, moderated t score correlations for clusters 1, 2 and 3 ranged 80 

between 0.77-0.85, 0.80-0.90, and 0.65-0.77, respectively. For k = 4, correlations for clusters 1-4 81 

were 0.77-0.85, 0.83-0.89, 0.51-0.76, and 0.61-0.75, respectively. Within populations, 82 

comparing analogous clusters (k = 3 versus k = 4), correlations were high for clusters 1 and 2 83 

(0.91-1.00), but lower for cluster 3 (0.22-0.80). Results were similar using NMF. SC1 84 

corresponds to mesenchymal-like, SC2 to proliferative-like, SC3 to immunoreactive-like, and 85 

SC4 to differentiated-like subtypes reported previously. 86 

Conclusions  87 

While previous single-population studies reported four HGSC subtypes, our cross-population 88 

comparison finds strong evidence for only two subtypes and our re-analysis of previous data 89 

suggests that results favoring four subtypes may have been driven, at least in part, by the 90 

inclusion of samples with low malignant potential. Because the mesenchymal-like and 91 

proliferative-like subtypes are highly consistent across populations, they likely reflect intrinsic 92 

biological subtypes and are strong candidates for targeted therapies. The other two previously 93 

described subtypes (immunoreactive-like and differentiated-like) are considerably less consistent 94 

and may represent either a single subtype or signal that is not amenable to clustering. 95 

 96 

INTRODUCTION: 97 

Invasive ovarian cancer is a heterogeneous disease typically diagnosed at a late stage, 98 

with high mortality [1] . The most aggressive and common histologic type is high-grade serous 99 

(HGSC) [2], characterized by extensive copy number variation and TP53 mutation [3]. Given the 100 
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genomic complexity of these tumors, mRNA expression can be thought of as a summary 101 

measure of these genomic and epigenetic alterations, to the extent that the alterations influence 102 

gene expression. Efforts to use whole genome mRNA expression analyses to stratify HGSC into 103 

clinically relevant subtypes have yielded potentially promising results, with all studies to date 104 

observing three to four subtypes with varying components of mesenchymal, proliferative, 105 

immunoreactive, and differentiated gene expression signatures [3–6], and some studies observing 106 

survival differences across subtypes [4, 5] . Tothill et al. first identified four HGSC subtypes (as 107 

well as two other subtypes which largely included low grade and low malignant potential 108 

samples) in an Australian population using k-means clustering. The authors labeled the subtypes 109 

as C1-C6, and observed that women with the C1 subtype, with a stromal-like gene signature, 110 

experienced the poorest survival compared to the other subtypes [4] . Later, The Cancer Genome 111 

Atlas (TCGA), in an assemblage of tumors from various institutions throughout The United 112 

States, used non-negative matrix factorization (NMF) clustering and also reported four subtypes 113 

which they labeled as ‘mesenchymal’, ‘differentiated’, ‘proliferative’, and ‘immunoreactive’, but 114 

there were no observed differences in survival [3] . The TCGA group also applied NMF 115 

clustering to the Tothill data, and noted that analogous subtypes had similar significantly 116 

differentially expressed genes [3]. Konecny et al. also applied NMF to cluster HGSC samples 117 

from the Mayo Clinic and reported four subtypes, which they labeled as C1-C4 [5] . While these 118 

subtypes are similar to those described by TCGA, the Konecny et al. refined classifier was better 119 

able to differentiate survival between groups in their own data, and in data from TCGA and 120 

Bonome et al. [6] . In the Konecny et al. population, as similarly observed in Tothill et al., the 121 

mesenchymal-like (described as stromal-like in Tothill et al.) and proliferative-like subtypes had 122 

poor survival, and the immunoreactive-like subtype had favorable survival [5] .  123 
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While results from these studies are relatively consistent, there exist several limitations 124 

inherent to each study that must be overcome in order to confirm the existence and 125 

reproducibility of HGSC subtypes across different populations. For example, in more recent 126 

TCGA analyses by the Broad Institute Genome Data Analysis Center (GDAC) Firehose initiative 127 

with the largest number of HGSC cases evaluated to date (n = 569), three subtypes fit the data 128 

better than did four [7, 8]. Also, in the original analysis of the TCGA data, over 80% of the 129 

samples were assigned to more than one subtype [9], as were 42% of the Mayo samples in 130 

Konecny et al. Furthermore, in both TCGA and Tothill et al., ~8-15% of samples were not able 131 

to be classified and were excluded. Because of this uncertainty in HGSC subtyping, further 132 

characterization is essential in order to determine whether homogeneous, unique subtypes exist 133 

and to subsequently identify etiologic factors and to develop targeted treatments. 134 

To comprehensively characterize subtypes, we analyzed data from five independent 135 

populations using a unified bioinformatics pipeline. Previous approaches to integrate subtype 136 

analyses across populations either removed samples that were difficult to classify or identified 137 

subtypes in a single population, built a classifier for those subtypes within the population, and 138 

applied the  classifier to other populations to label samples [3, 5]. In contrast with these 139 

population-specific approaches, our pipeline performs unsupervised clustering using both k-140 

means clustering and NMF separately in each population without removing “hard-to-classify” 141 

samples. This allows us to systematically identify and compare the presence and reproducibility 142 

of subtypes in the largest study of HGSC subtypes to date. We summarize the expression 143 

patterns of over 10,000 genes for each identified subtype and comprehensively characterize 144 

correlations between subtype-specific gene expression both within and between populations.  We 145 
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identify reproducible clusters characterized by patterns of differentially expressed genes that are 146 

positively correlated across populations, which we term “syn-clusters” (SC). 147 

 148 

METHODS: 149 

Data Inclusion 150 

We applied inclusion criteria as described in the supplementary materials using data from 151 

the R package, curatedOvarianData [10] (Table S1) and a separate dataset (“Mayo”) [5]. We 152 

deposited the Mayo HGSC samples as well as other samples with mixed histologies and grades, 153 

for a total of 528 additional ovarian tumor samples, in NCBI’s Gene Expression Omnibus (GEO) 154 

[11]. The data can be accessed with the accession number GSE74357 155 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74357).  All uploaded tumor samples 156 

were collected with approval by an institutional review board and by the U.S. Department of 157 

Health and Human Services. After applying the unified inclusion criteria pipeline, our final 158 

analytic datasets include: TCGA (n = 499) [3, 7]; Mayo (n = 379; GSE74357) [5]; Yoshihara (n 159 

= 256; GSE32062.GPL6480) [12]; Tothill (n = 241; GSE9891) [4]; and Bonome (n = 185; 160 

GSE26712) [6] (Table 1). We analyzed the intersection of genes measured in all five 161 

populations, which included 10,930 genes (Supplementary Fig. S1). Software to replicate all 162 

analyses is provided under a permissive open source license [13]. 163 

 164 

Clustering 165 

Because 3 or 4 subtypes had been reported previously, and the heuristics for the TCGA 166 

firehose analyses, the original HGSC TCGA publication, and Konecny et al. suggest 3 subtypes, 167 

we focused on examining cluster assignment within and across populations for clusters identified 168 
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using k = 3 or k = 4.  As detailed in the supplemental methods, we identified the 1,500 genes 169 

with the highest variance from each population and used the union of these genes (n = 3,698) for 170 

subsequent analyses. We performed k-means clustering on these 3,698 genes in each population 171 

using the R package “cluster” (version 2.0.1) [14] with 20 initializations, and we characterized 172 

patterns of sample assignment changes  when k = 3 versus k = 4. We further characterized 173 

clustering solutions within populations using sample-by-sample Pearson’s correlation matrices. 174 

We repeated these analyses using NMF in the R package “NMF” (version 0.20.5) [15] with 100 175 

initializations used for each k. Lastly, we investigated the reproducibility of previous HGSC 176 

subtyping studies identifying four subtypes by calculating cophenetic correlation coefficients 177 

following NMF with 10 consensus runs for k = 2 through 8. 178 

 179 

Identification of Syn-Clusters 180 

 We performed a significance analysis of microarray (SAM) [16, 17] analysis on all 181 

clusters from each population for k = 3 and k = 4 using all 10,930 genes. This resulted in a 182 

cluster-specific moderated t statistic for each of the input genes [18]. To summarize the 183 

expression patterns of all 10,930 genes for a specific cluster in a specific population, we 184 

combined each gene’s moderated t statistics for one versus all comparisons into a vector of 185 

length 10,930. To generate comparable labels across k = 3 and k = 4 analyses, the k = 3 cluster 186 

which was most strongly correlated with a k = 4 cluster in the TCGA data was labeled “cluster 1” 187 

and the second strongest “cluster 2” etc. Clusters in other populations that were most strongly 188 

correlated with the TCGA clusters were assigned the same label. For each centroid assignment, 189 

clusters most positively correlated across populations form a syn-cluster (SC); i.e. the clusters 190 

from each population that are most correlated with each other and with TCGA “cluster 1” belong 191 
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to SC1. We also compared our sample assignments to subtypes reported in the Tothill, TCGA, 192 

and Konecny publications. 193 

 194 

Identifying Biological Processes Associated with Syn-Clusters  195 

 To annotate the SCs with associated biological processes, we first identified the 196 

statistically significantly differentially expressed genes in each SAM list. We used a Bonferroni 197 

adjustment taking into account the total number of genes considered (10,930) resulting in a p-198 

value cutoff of 4.6x10-6. We used the intersection of these cluster-specific genesets across 199 

populations to create the final SC associated genesets. We then input these SC associated 200 

genesets into a PANTHER analysis [19] to determine SC-specific overrepresented biological 201 

pathways (Supplementary Materials). 202 

 203 

RESULTS: 204 

Sample Cluster Assignment 205 

To visually inspect the consistency and distinctness of clusters, we compared sample-by-206 

sample correlation heatmaps (Fig. 1). For both k values and in each population, we observed high 207 

sample-by-sample correlations within clusters and relatively low sample-by-sample correlations 208 

across clusters (Fig. 1). The clusters in the Bonome population are depicted in gray scale because 209 

in cross-population analyses to identify SCs their expression patterns did not correlate with the 210 

clusters observed consistently in the four other populations (Table 2).  Clustering results using 211 

NMF are similar to the k means assignments (Supplementary Fig S2.) 212 

To better understand the changes in cluster assignment for k = 3 versus k = 4, we 213 

compared the number of samples belonging to each cluster within each population (excluding 214 
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Bonome; Fig. 2). Overall, the cross-k pattern was consistent across populations. Cluster 1 215 

contained essentially the same samples for both k = 3 and k = 4, as did cluster 2, but samples 216 

from cluster 3 when k = 3 tended to be split between clusters 3 and 4 when k = 4. Additionally, 217 

cluster 3 in k = 4 tended to have varying numbers of samples from cluster 1 in k = 3, and cluster 218 

4 in k = 4 tended to include some samples from cluster 2 in k = 3 (Fig. 2). These specific patterns 219 

were consistent in each population. 220 

 221 

Correlation of Cluster-Specific Expression Patterns 222 

Within populations, we observed high Pearson correlations of moderated t score vectors 223 

between analogous clusters across k = 3 and k = 4 (Table 2). Across populations, we observed 224 

strong positive correlations of moderated t score vectors between analogous clusters in the 225 

TCGA, Tothill, Mayo, and Yoshihara cluster assignments (Fig. 3; Table 3). However, while the 226 

clusters across k = 3 and k = 4 were correlated within the Bonome data, they did not correlate 227 

strongly with clusters identified in the other populations (Table 3). Because the correlations were 228 

low compared to those observed in all four other populations, the Bonome data were not 229 

included in subsequent analyses. Across populations, positive correlations between clusters 230 

belonging to the same SC, and negative correlations between clusters in different SCs, were 231 

stronger for clusters identified when k = 3 than when k = 4 (Figure 3).  This analysis effectively 232 

demonstrates that three subtypes fit the data more consistently than do the previously accepted 233 

four subtypes. We observed strong positive correlations for both SC1 and SC2 within and across 234 

all populations. Importantly, we also observed strong negative correlations between SC1 and 235 

SC2 within and between populations (ranging from -0.42 to -0.63 for k = 3 and -0.12 to -0.64 for 236 

k = 4). Weaker and more variable positive correlations were observed for SC3 and SC4 across 237 
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populations. For k = 4, Yoshihara cluster 3 appears to be correlated to both clusters 3 and 4 in the 238 

other populations, and cluster 4 to be weakly correlated to cluster 2 in the other populations. In 239 

contrast, for k = 3, SC3 is positively correlated across populations (though more weakly than 240 

SC1 and SC2 correlations across populations), and tends to be uncorrelated or inversely 241 

correlated with SC1, and consistently inversely correlated with SC2. 242 

Within each population, clusters identified by NMF were very similar to those identified 243 

using k-means clustering (Fig. 4). Again, both positive and negative correlations are stronger for 244 

k = 3 than for k = 4. Across k = 3 and k = 4, correlations are strongest for clusters 1 and 2. 245 

Sample cluster assignments for both k-means and NMF clusters are provided in Table S2. 246 

 247 

Reproducibility of previous HGSC subtyping studies 248 

We evaluated the number of subtypes that fit the data best by observing the cophenetic 249 

correlation coefficients within individual datasets, setting NMF to find 2 through 8 clusters 250 

inclusively. We observed a similar pattern in each population (Supplementary Fig S3 – S7) in 251 

which the highest cophenetic correlation was reached for two clusters and, based on the 252 

heatmaps, appeared to have the highest consensus. Importantly, in each dataset, four clusters 253 

were not observed to represent the data better than two or three. 254 

 255 

Comparison with previously-identified HGSC clusters 256 

Our clustering results for the Tothill, TCGA, and Mayo datasets are highly concordant 257 

with the clustering described in the original publications [3–5], as evidenced by the high degree 258 

of overlap in sample assignments to the previously-defined clusters (Table 4). Our SC1 for both 259 

k-means analyses was mapped to the “Mesenchymal” label from TCGA, “C1” from Tothill, and 260 
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mostly to “C4” from Mayo. SC1 was the most stable in our analysis within all datasets, across k 261 

= 3 and k = 4, and across clustering algorithms. SC2, which was also observed consistently, was 262 

most similar to the “Proliferative” label from TCGA, “C5” from Tothill, and “C3” from Mayo. 263 

SC3 for k = 3 was associated with both the “Immunoreactive” and “Differentiated” TCGA 264 

labels, “C2” and “C4” in Tothill, and “C1” and “C2” in Mayo. When setting k-means to find four 265 

clusters, SC3 was associated with “Immunoreactive”, “C2”, and “C1” while SC4 was associated 266 

with “Differentiated”, “C4”, and “C2” for TCGA, Tothill, and Mayo respectively. Pathway 267 

analysis results for all SCs are summarized in more detail in the supplementary materials and are 268 

presented in supplementary table S5. 269 

 270 

DISCUSSION: 271 

Single-population studies have reported four subtypes of HGSC [3–5, 7], but it is difficult 272 

to compare the results because each study performed analyses with different sample inclusion 273 

criteria and different statistical methods. To address this, we used uniform sample inclusion 274 

criteria and applied k-means clustering and NMF through a standardized bioinformatics pipeline 275 

to five independent HGSC datasets including American, Australian, and Japanese women to 276 

systematically characterize HGSC subtypes within and between populations.  277 

This allowed us to identify syn-clusters (SC), or groups of analogous clusters observed 278 

across populations. Despite considerable diversity in the populations studied and the assay 279 

platforms used, in four of the five populations studied, we identified two distinct and highly 280 

robust SCs (SC1 and SC2). SC1 and SC2 consisted of mostly the same samples when k = 3 and k 281 

= 4, and global differential gene expression patterns were similar in across populations. Taken 282 

together, these observations increase our confidence that each of these clusters represents a set of 283 
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reproducible biological signals. The strong positive correlations of subtype-specific gene 284 

expression signatures indicate homogeneity of gene expression patterns across populations for 285 

SC1 and SC2. The strong negative correlations between SC1 and SC2 also indicate that they are 286 

distinct from one another; this is emphasized by the inverse direction of expression for the 287 

immune system process genes. 288 

We also identified a third SC (SC3) and potentially fourth SC (SC4), though both 289 

positive correlations across populations and negative correlations between these and other 290 

subtypes within populations are weaker. In fact, we observed a positive correlation between 291 

clusters that belong to these SCs within some populations, particularly in the Japanese 292 

population. In contrast with the previous reports of four subtypes of HGSC [3–5], we observed 293 

that both concordance of analogous subtypes and inverse correlations between distinct subtypes 294 

were stronger for analyses of three clusters as opposed to four. 295 

Because cross-population comparisons suggest that three clusters show more consistency 296 

than four, we explored within-study heuristics that suggested four subtypes in previous research. 297 

Heuristics using our sample inclusion criteria are consistent with two or three as opposed to four 298 

subtypes in each population, which is in fact consistent with results from analyses performed in 299 

the previous reports. The cophenetic coefficient measures how precisely a dendrogram retains 300 

sample by sample pairwise distances and can be used to compare clustering accuracy [20]. While 301 

both Konecny and TCGA reported four subtypes, in both analyses k = 3 resulted in a higher 302 

cophenetic coefficient than k = 4 and larger drops in cophenetic coefficient were observed after 303 

three than four, indicating that 3 subtypes fit the data better than 4 [3], [5]. However, in TCGA’s 304 

re-analysis of the Tothill et al. HGSC samples shown in supplemental Figure S6.2 in their 305 

publication, the cophenetic coefficient dropped dramatically at k = 3 before recovering at k = 4, 306 
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which would support the existence of 4 subtypes [3]. Notably, TCGA’s figure legend for this 307 

supplemental result indicates that they did not remove samples with low malignant potential 308 

(LMP) from the Tothill data. Our analysis of Tothill et al. differed from TCGA’s in that our 309 

unified pipeline specifically removed LMP samples, and instead supports the existence of 2 or 3 310 

subtypes (Supplemental Figure 6). To evaluate the influence of the LMP samples in the Tothill 311 

data, we repeated our analyses including them, and observed a drop in the cophenetic coefficient 312 

for k = 3 relative to k = 4 (Supplementary Figure 8). This suggests that the 4 subtypes observed 313 

in TCGA’s analysis of the Tothill data may be due, in part, to the inclusion of LMP samples. 314 

In our study, results for each population were similar for the k means and NMF clustering 315 

algorithms that were applied in previous studies, further validating both the presence of two 316 

reproducible subtypes and the less stable nature of the other subtypes. Compared to the clusters 317 

reported in TCGA, Tothill, and Konecny, SC1 was most similar to the mesenchymal/C1/C4 318 

subtype and SC2 was most similar to the proliferative/C5/C3 subtype, respectively. While 319 

concordance between the original Tothill and TCGA subtypes was reported in the TCGA HGSC 320 

publication [3], our analysis included an additional 59 TCGA samples. As well, we included an 321 

additional 210 samples from Mayo that were not analyzed in the original Konecny et al. 322 

publication [5]. We did not observe strong patterns in survival differences across the subtypes 323 

that we identified (see Supplementary Material). However, we would not necessarily expect to 324 

find differences in survival unless the biological characteristics of the tumor subtypes translate 325 

into different responses to standard treatments. Instead, the goal is to identify the most consistent 326 

subtypes so that they can be exhaustively characterized and targeted treatments can be developed 327 

[21].   328 
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The consistency of SC1 and SC2 across k parameters and between diverse populations is 329 

remarkable for a number of reasons. While these studies represent the largest collections of 330 

HGSC tumors to date, given the difficulties in collecting fresh frozen tissue for large-scale gene 331 

expression studies, it is unclear how accurately any of these data sets reflect the underlying 332 

population distribution of HGSC subtypes. Results from gene expression/RNA sequencing 333 

assays in large, population-based formalin-fixed paraffin-embedded (FFPE) tumor collections 334 

will be important in further informing the definitions of HGSC subtypes. Given the intra-tumor 335 

heterogeneity that is likely to exist [22], our approach would be strengthened by having data on 336 

multiple areas of the tumors. Finally, since histology and grade classification have changed over 337 

time [23, 24], it is unclear whether the populations we studied used comparable guidelines to 338 

determine histology and grade. We attempted to exclude all low grade serous and endometrioid 339 

samples because they often have very different gene expression patterns and more favorable 340 

survival compared to their higher grade counterparts [2]. While the Bonome publication 341 

specified that they included only high-grade tumors, grade is not included in the Bonome 342 

GSE26712 data set, so we were unable to determine whether the grade distribution differs from 343 

the other studies [6] . At any rate, it is unclear why the Bonome clusters, while internally 344 

consistent across k, did not correspond to the clusters observed in other populations. If samples 345 

are misclassified with respect to grade or other characteristics, depending on the extent of the 346 

misclassification, lower correlations and consequently difficulty assigning SCs could result.  347 

In summary, our study demonstrates that two SCs of HGSC, “mesenchymal-like” and 348 

“proliferative-like”, are clearly and consistently identified within and between populations. This 349 

suggests that there are two reproducible HGSC subtypes that are either etiologically distinct, or 350 

acquire phenotypically determinant alterations through their development. These two SCs have 351 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2016. ; https://doi.org/10.1101/030239doi: bioRxiv preprint 

https://doi.org/10.1101/030239
http://creativecommons.org/licenses/by/4.0/


 

15 
 

different sets of significantly enriched pathways, which may indicate distinct processes 352 

regulating tumor progression. The “mesenchymal-like” subtype includes genes involved with 353 

extracellular matrix and cell to cell adhesion processes, while the “proliferative-like” subtype 354 

includes lower expressed immune-related genes, consistent with previous studies which have 355 

identified a negative immune signature in this subtype [5]. Our study also suggests that the 356 

previously described “immunoreactive-like” and “differentiated-like” subtypes appear more 357 

variable across populations. These may represent, for example, steps along an immunoreactive 358 

continuum or could represent the basis of a third, but more variable subtype. Because the 359 

“mesenchymal-like” and “proliferative-like” subtypes are consistently observed within and 360 

between populations, at the current time these subtypes are the strongest candidates for 361 

development of subtype-specific treatment strategies.  362 
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FIGURE LEGENDS: 377 

Figure 1. Sample by sample Pearson correlation matrices. Top panel: k = 3. Bottom panel: k = 4. 378 

The color bars are coded as blue, syn-cluster 1 (SC1); red, SC2; green, SC3; and purple, SC4. In 379 

the matrices, red represents high correlation, blue low correlation, and white intermediate 380 

correlation. The scales are slightly different in each population because of different correlational 381 

structures. The grey Bonome clusters indicate clusters not correlating well with any cluster from 382 

the other populations. 383 

 384 

Figure 2. Sample membership distribution changes when setting k means to find k = 3 and k = 4. 385 

The bars represent sample cluster membership with k = 4 and the colors indicate the same 386 

samples’ cluster assignments for when k = 3. Samples from the third cluster with k = 3 tend to 387 

split apart to form the third and fourth clusters when k = 4. 388 

 389 

Figure 3. SAM moderated t score Pearson correlations reveal consistency across populations. 390 

The color bars are coded as blue, syn-cluster 1 (SC1); red, SC2; green, SC3; and purple, SC4. 391 

(A) Correlations across datasets for k means k = 3. (B) Correlations across datasets for k means k 392 

= 4. The matrices are symmetrical and the upper triangle holds scatter plots for each comparison 393 

where each point represents one of the 10,930 genes measured in each population. For k = 3 and 394 

k = 4, clusters associated with SC1 and SC2 are highly consistent across populations. 395 

 396 
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Figure 4. SAM moderated t score Pearson correlations of clusters formed by k means clustering 397 

and NMF clustering reveals consistency between clustering methods. Results are shown for both 398 

methods when setting each algorithm to find 3 and 4 clusters. The color bars are coded as blue, 399 

syn-cluster 1 (SC1); red, SC2; green, SC3; and purple, SC4. 400 

 401 

Supplementary Figure S1. Overlapping genes assayed using either the HG-U1133 Affymetrix 402 

platform (TCGA, Tothill, Bonome) or the Agilent 4x44K platform (Mayo, Yoshihara). 403 

Differences across datasets arise from inherent array differences and/or differences in quality 404 

control preprocessing. 405 

 406 

Supplementary Figure S2. NMF consensus matrices for datasets when (A) k = 3 and (B) k = 4. 407 

The first track represents cluster membership for k means clusters and the second track 408 

represents silhouette widths. Note however that the NMF clusters are not mapped to the ordered 409 

k means clusters. 410 

 411 

Supplementary Figure S3. TCGA dataset (n = 499). Consensus NMF clustering of 3,698 most 412 

variably expressed genes across five HGSC ovarian cancer datasets. Data displays consensus 413 

clustering for k = 2 to k = 6 for 10 NMF runs alongside the cophenetic correlation results for k = 414 

2 to k = 8. 415 

 416 

Supplementary Figure S4. Mayo dataset (n = 379). Consensus NMF clustering of 3,698 most 417 

variably expressed genes across five ovarian cancer datasets (all high grade serous samples were 418 
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retained). Data displays consensus clustering for k = 2 to k = 6 for 10 NMF runs alongside the 419 

cophenetic correlation results for k = 2 to k = 8. 420 

 421 

Supplementary Figure S5. Yoshihara dataset (n = 256). Consensus NMF clustering of 3,698 422 

most variably expressed genes across five HGSC ovarian cancer datasets. Data displays 423 

consensus clustering for k = 2 to k = 6 for 10 NMF runs alongside the cophenetic correlation 424 

results for k = 2 to k = 8. 425 

 426 

Supplementary Figure S6. Tothill dataset (n = 242). Consensus NMF clustering of 3,698 most 427 

variably expressed genes across five HGSC ovarian cancer datasets. Data displays consensus 428 

clustering for k = 2 to k = 6 for 10 NMF runs alongside the cophenetic correlation results for k = 429 

2 to k = 8. 430 

 431 

Supplementary Figure S7. Bonome dataset (n = 185). Consensus NMF clustering of 3,698 432 

most variably expressed genes across five HGSC ovarian cancer datasets. Data displays 433 

consensus clustering for k = 2 to k = 6 for 10 NMF runs alongside the cophenetic correlation 434 

results for k = 2 to k = 8. 435 

 436 

Supplementary Figure S8. Tothill dataset including low malignant potential samples (n = 260). 437 

Consensus NMF clustering of 3,698 most variably expressed genes across five HGSC ovarian 438 

cancer datasets. Low malignant potential (borderline) samples (n = 18) were not removed prior 439 

to clustering (these samples were removed in Supplementary Figure S6). Data displays 440 
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consensus clustering for k = 2 to k = 6 for 10 NMF runs alongside the cophenetic correlation 441 

results for k = 2 to k = 8. 442 

 443 

Supplementary Figure S9. Kaplan-Meier survival curves. For each population, the top plot is 444 

for k = 3 and the bottom plot is for k = 4. 445 

 446 
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Table 1: Characteristics of the populations included in the seven analytic data sets 534 
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NA: Data not reported 536 

 aOne sample was labeled as 'Grade 4' in TCGA   537 

bsamples without full survival data were exluded in survival analyses 538 
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Table 2: SAM moderated t score vector Pearson correlations between clusters identified using k 539 

= 3 versus k = 4 within each population. 540 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4a 

TCGA 0.99 0.98 0.69 0.53 

Mayo 0.91 0.97 0.48 0.67 

Yoshihara et al. 1.00 0.94 0.80 0.59 

Tothill et al. 0.95 1.00 0.22 0.89 

Bonome et al. 0.98 0.99 0.80 0.28 

aCorrelations for cluster 3 (k = 3) versus cluster 4 (k = 4). 541 

 542 

Table 3: SAM moderated t score vector Pearson correlations between analogous clusters across 543 

populationsa 
544 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

k = 3a 0.77 - 0.85  0.80 - 0.90 0.65 - 0.77 NA 

k = 4a 0.77 - 0.85  0.83 - 0.89 0.51 - 0.76  0.61 - 0.75 

Bonome k = 3b 0.45 – 0.46 -0.02 - 0.12 0.22 - 0.42 NA 

Bonome k = 4b 0.50 - 0.57 -0.04 - 0.04 0.13 - 0.29 0.26 - 0.43 

aCorrelation ranges for TCGA, Mayo, Yoshihara, and Tothill. 545 

bBonome is removed from gene set analyses because of low correlating clusters. 546 

 547 

 548 
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Table 4: Distributions of sample membership in the clusters identified in our study by the 549 

original cluster assignments in the TCGA, Tothill, and Konecny studies. Clusters identified in 550 

our study using k-means clustering with k = 3 and k = 4 551 

 TCGA Tothill et al. Konecny et al. 
 Mes Pro Imm Dif NCa C1 C2 C3 C4 C5 C6 NCa C1 C2 C3 C4 NAb 

Cluster 1 98 2 20 11 6 77 22 0 0 0 0 6 16 13 2 26 82 
Cluster 2 1 111 0 11 16 1 0 0 3 35 2 5 0 16 36 0 56 
Cluster 3 0 21 75 106 21 0 22 6 41 0 0 22 26 31 5 0 70 
 Mes Pro Imm Dif NCa C1 C2 C3 C4 C5 C6 NCa C1 C2 C3 C4 NAb 
Cluster 1 97 4 12 12 5 74 0 0 0 0 0 0 7 12 3 25 62 
Cluster 2 1 85 0 0 13 1 0 0 1 34 2 5 0 9 31 0 41 
Cluster 3 0 5 80 3 12 3 42 0 1 1 0 14 29 6 0 1 57 
Cluster 4 1 40 3 113 13 0 2 6 42 0 0 14 6 33 9 0 48 
aNC = Samples not clustered in original publication 552 

bNA = Samples not assessed at the time of the original publication 553 

NOTE: The corresponding labels for the generally similar HGSC gene expression subtypes 554 

observed in the TCGA, Tothill, and Konecny studies are, respectively: mesenchymal/C1/C4, 555 

proliferative/C5/C3, immunoreactive/C2/C1, and differentiated/C4/C2) 556 
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