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ABSTRACT: 49 

Background  50 

Three to four gene expression-based subtypes of high-grade serous ovarian cancer (HGSC) have 51 

been previously reported. We sought to systematically determine the similarity of HGSC 52 

subtypes between populations. 53 

Methods  54 

We independently clustered (k = 3 and k = 4) five publicly-available HGSC mRNA expression 55 

datasets with >130 tumors using k-means and non-negative matrix factorization. Within each 56 

population, we summarized differential expression patterns for each cluster as moderated t 57 

statistic vectors using Significance Analysis of Microarrays. We calculated Pearson’s 58 

correlations of these vectors to determine similarities and differences in expression patterns 59 

between clusters. We defined syn-clusters (SC) as sets of clusters that were strongly correlated 60 

across populations, and associated their expression patterns with biological pathways using 61 

geneset overrepresentation analyses.  62 

Results  63 

Across populations, for k = 3, moderated t score correlations for clusters 1, 2 and 3, respectively, 64 

ranged between 0.77-0.85, 0.80-0.90, and 0.65-0.77. For k = 4, correlations for clusters 1-4, 65 

respectively, ranged between 0.77-0.85, 0.83-0.89, 0.51-0.76, and 0.61-0.75. Within populations, 66 

comparing analogous clusters (k = 3 versus k = 4), correlations were high for clusters 1 and 2 67 

(0.91-1.00), but were lower for cluster 3 (0.22-0.80). Results are similar using non-negative 68 

matrix factorization. SC1 corresponds to previously-reported mesenchymal-like, SC2 to 69 

proliferative-like, SC3 to immunoreactive-like, and SC4 to differentiated-like subtypes. 70 

Conclusions  71 
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The mesenchymal-like and proliferative-like subtypes are remarkably consistent across 72 

populations and could be uniquely targeted for treatment. The other two previously described 73 

subtypes are considerably less robust, and since cross-population comparison reveals that k = 3 74 

and k = 4 are both consistent with our results, they may not represent clear subtypes. 75 

 76 

INTRODUCTION: 77 

Ovarian cancer is a heterogeneous disease typically diagnosed at a late stage, with high 78 

mortality (1). The most aggressive and common histologic type is high-grade serous (HGSC) (2), 79 

characterized by extensive copy number variation, methylation events, and mutations (3). Given 80 

the genomic complexity of these tumors, mRNA expression can be thought of as a summary 81 

measure of these genomic and epigenetic alterations, to the extent that the alterations influence 82 

gene expression. Efforts to use whole genome mRNA expression analyses to stratify HGSC into 83 

clinically relevant subtypes have yielded potentially promising results, with all studies to date 84 

observing three to four subtypes with varying components of mesenchymal, proliferative, 85 

immunoreactive, and differentiated gene expression signatures (3–6), and some studies observing 86 

survival differences across subtypes (4,5). Tothill et al. first identified four HGSC subtypes (as 87 

well as two other non-HGSC subtypes) in an Australian population using k-means clustering. 88 

The authors labeled the subtypes as C1-C6, and observed that women with the C1 subtype, with 89 

a stromal-like gene signature, experienced the poorest survival compared to the other subtypes 90 

(4). Later, in The Cancer Genome Atlas (TCGA), an assemblage of tumors from various 91 

institutions throughout The United States, non-negative matrix factorization (NMF) clustering 92 

confirmed the identification of four subtypes which they labeled as mesenchymal, differentiated, 93 

proliferative, and immunoreactive, but there were no observed differences in survival (3). The 94 

TCGA group also applied NMF clustering to the Tothill data, and noted that analogous subtypes 95 
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had similar significantly differentially expressed genes (3). Konecny et al. also used NMF 96 

clustering in HGSC samples from the Mayo Clinic and identified four subtypes labeled as C1-C4 97 

(5). While these subtypes are similar to those described by TCGA, the Konecny et al. refined 98 

classifier was better able to differentiate survival between groups in their own data, and in data 99 

from TCGA and Bonome et al. (6). In the Konecny et al. population, as similarly observed in 100 

Tothill et al., the mesenchymal-like (described as stromal-like in Tothill et al.) and proliferative-101 

like subtypes had poor survival, and the immunoreactive-like subtype had favorable survival (5).  102 

While results from these studies are relatively consistent, in more recent TCGA analyses 103 

by the Broad Institute Genome Data Analysis Center (GDAC) Firehose initiative with the largest 104 

number of HGSC cases evaluated to date, three subtypes fit the data better than did four (7,8). 105 

Also, in the original analysis of the TCGA data, over 80% of the samples were assigned to more 106 

than one subtype (9), as were 42% of the Mayo samples. In both TCGA and Tothill et al., ~8-107 

15% of samples were not able to be classified. Therefore, because of this large degree of 108 

uncertainty in HGSC subtyping, further characterization of subtypes is essential in order to 109 

determine etiologic factors and to develop targeted treatments. 110 

We characterize the underlying patterns of gene expression for three and four HGSC 111 

subtypes through a unified bioinformatics pipeline in five independent populations, and assess 112 

the robustness of subtypes across these populations. Instead of identifying subtypes in a single 113 

population and applying a classification algorithm to identify the same subtypes in other 114 

populations, we use unsupervised clustering (performed using both k-means clustering and 115 

NMF) separately in each population to systematically identify HGSC subtypes. We summarize 116 

the expression patterns of over 10,000 genes for each identified subtype and comprehensively 117 

characterize correlations between subtype-specific gene expression both within and between 118 
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populations.  We identify a set of clusters characterized by similar differentially expressed genes 119 

that are correlated across populations, which we term “syn-clusters” (SC). 120 

 121 

METHODS: 122 

Data Inclusion 123 

We applied inclusion criteria as described in the supplementary materials using data from 124 

the R package, curatedOvarianData (10; Table S1) and a separate dataset (“Mayo”; 5). We 125 

deposited the Mayo high-grade serous samples as well as other samples with mixed histologies 126 

and grades, for a total of 528 additional ovarian tumor samples, in NCBI’s Gene Expression 127 

Omnibus (GEO; 11). The data can be accessed with the accession number GSE74357 128 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74357).  All tumor samples uploaded 129 

were collected with approval by an institutional review board and by the U.S. Department of 130 

Health and Human Services. After applying the unified inclusion criteria pipeline, our final 131 

analytic datasets include: TCGA (n = 499; 3,7,8); Mayo (n = 379; GSE74357; 5); Yoshihara (n = 132 

256; GSE32062.GPL6480; (12); Tothill (n = 241; GSE9891; 4); and Bonome (n = 185; 133 

GSE26712; 7; Table 1). We restricted to the 10,930 genes measured in all 5 populations (Fig. 134 

S1). Code to replicate all analyses can be downloaded from 135 

https://github.com/greenelab/hgsc_subtypes. 136 

 137 

Clustering 138 

Because 3 or 4 subtypes had been reported previously, we focused on examining cluster 139 

assignment within and across populations for clusters identified using k = 3 or k = 4.  As detailed 140 

in the supplemental methods, we combined the 1,500 genes with the highest variance from each 141 
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population (n = 3,698). We performed k-means clustering on these 3,698 genes in each 142 

population using the R package “cluster” (version 2.0.1; 13) with 20 initializations, and we 143 

characterized patterns of changes in sample assignment to clusters when k = 3 versus k = 4. We 144 

further characterized clustering solutions within populations using sample-by-sample Pearson’s 145 

correlation matrices. We repeated our analyses using NMF in the R package “NMF” (version 146 

0.20.5; 14) with 100 initializations used for each k.  147 

 148 

Identification of Syn-Clusters 149 

 We performed a significance analysis of microarray (SAM) (15,16) analysis on all 150 

clusters from each population for k = 3 and k = 4 using all 10,930 genes. This resulted in a 151 

cluster-specific moderated t statistic for each of the input genes (17). To summarize the 152 

expression patterns of all 10,930 genes for a specific cluster in a specific population, we 153 

combined the moderated t statistics into a vector of length 10,930. To generate comparable labels 154 

across k = 3 and k = 4 analyses, the k = 3 cluster which was most strongly correlated with a k = 4 155 

cluster in the TCGA data was labeled “cluster 1” and the second strongest “cluster 2” etc. 156 

Clusters in other populations that were most strongly correlated with the TCGA clusters were 157 

assigned the same label. Clusters strongly correlated across populations form a syn-cluster (SC); 158 

i.e. the clusters from each population that are strongly correlated with each other and with TCGA 159 

“cluster 1” belong to SC1. We also compared our sample assignments to subtypes reported in the 160 

Tothill, TCGA, and Konecny publications. 161 

 162 

Identifying Biological Processes Associated with Syn-Clusters  163 
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 To annotate the SCs with associated biological processes, we first identified the 164 

statistically significantly differentially expressed genes in the SAM list. We used a Bonferroni 165 

adjustment taking into account the total number of genes considered (10,930) resulting in a p-166 

value cutoff of 4.6x10-6. We used the intersection of these cluster-specific genesets across 167 

populations to create the final SC associated genesets. We then input these SC associated 168 

genesets into a PANTHER analysis (18) to determine SC-specific overrepresented biological 169 

pathways (Supplementary Materials). 170 

 171 

RESULTS: 172 

Sample Cluster Assignment 173 

To visually inspect the consistency and distinctness of the clusters, we compared sample-174 

by-sample correlation heatmaps (Fig. 1). For both k values and in each population, we observed 175 

high sample-by-sample correlations within clusters and relatively low sample-by-sample 176 

correlations across clusters (Fig. 1). The clusters in the Bonome population are depicted in gray 177 

scale because, in cross-population analyses to identify SCs, their expression patterns did not 178 

correlate with the clusters observed consistently in the four other populations (Table 2).   179 

To better understand the changes in cluster assignment for k = 3 versus k = 4, we 180 

compared the number of samples belonging to each cluster by k within each population 181 

(excluding Bonome; Fig. 2). Overall, the cross-k pattern was consistent across populations. 182 

Cluster 1 contained essentially the same samples for both k = 3 and k = 4, as did cluster 2, but 183 

samples from cluster 3 when k = 3 tended to be split between clusters 3 and 4 when k = 4. 184 

Additionally, cluster 3 in k = 4 tended to have varying numbers of samples from cluster 1 in k = 185 

3, and cluster 4 in k = 4 tended to include some samples from cluster 2 in k = 3 (Fig. 2).  186 
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 187 

Correlation of Cluster-Specific Expression Patterns 188 

Within populations, we observed very high Pearson correlations of moderated t score 189 

vectors between clusters across k = 3 and k = 4 (Table 2). We observed strong positive 190 

correlations of moderated t score vectors between analogous clusters across TCGA, Tothill, 191 

Mayo, and Yoshihara cluster assignments (Fig. 3; Table 3). However, while the clusters across k 192 

= 3 and k = 4 were correlated within the Bonome data, they did not correlate strongly with 193 

clusters identified in the other populations (Table 3). Because the correlations are so low 194 

compared to those observed in all four other populations, the Bonome data are not included in 195 

subsequent analyses. Across populations, positive correlations between clusters belonging to the 196 

same SC, and negative correlations between clusters in different SCs, were stronger for clusters 197 

identified when k = 3 than when k = 4 (Figure 3).  We observed strong positive correlations for 198 

both SC1 and SC2 across populations, and strong negative correlations between SC1 and SC2. 199 

Weaker and more variable positive correlations were observed for SC3 and SC4 across 200 

populations. For k = 4, Yoshihara cluster 3 appears to be correlated to both clusters 3 and 4 in the 201 

other populations, and cluster 4 to be additionally weakly correlated to cluster 2 in the other 202 

populations. 203 

Within each population, clusters identified by NMF were very similar to those identified 204 

using k-means clustering (Fig. 4). Again, both positive and negative correlations are stronger for 205 

k = 3 than for k = 4. Across k = 3 and k = 4, correlations are strongest for clusters 1 and 2. 206 

Sample cluster assignments for both k-means and NMF clusters are provided in Table S2. 207 

 208 

Comparison with previously-identified HGSC clusters 209 
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Our clustering results for the Tothill, TCGA, and Mayo datasets are highly concordant 210 

with the clustering described in the original publications (3–5), as evidenced by the high degree 211 

of overlap in sample assignments to the previously-defined clusters (Table 4). Our SC1 for both 212 

k-means analyses was mapped to the “Mesenchymal” label from TCGA, “C1” from Tothill, and 213 

mostly to “C4” from Mayo. SC1 was the most stable in our analysis within all datasets, across k 214 

= 3 and k = 4, and across clustering algorithms. SC2 was most similar to the “Proliferative” label 215 

from TCGA, “C5” from Tothill, and “C3” from Mayo. This was the second most stable SC. SC3 216 

for k = 3 was associated with both the “Immunoreactive” and “Differentiated” TCGA labels, 217 

“C2” and “C4” in Tothill, and “C1” and “C2” in Mayo. When setting k-means to find four 218 

clusters, SC3 was associated with “Immunoreactive”, “C2”, and “C1” while SC4 was associated 219 

with “Differentiated”, “C4”, and “C2” for TCGA, Tothill, and Mayo respectively. Pathway 220 

analysis results for all SCs are summarized in more detail in the supplementary materials and are 221 

presented in supplementary table S5. 222 

 223 

DISCUSSION: 224 

Previous studies have identified three to four subtypes of HGSC, but it is difficult to 225 

compare the results because each study performed analyses with different sample inclusion 226 

criteria, different gene expression platforms, and different statistical methods. In contrast, we 227 

used uniform sample inclusion criteria and applied k-means clustering and NMF through a 228 

standardized pipeline to five distinct publicly-available HGSC datasets including American, 229 

Australian, and Japanese women. To identify the HGSC clusters, we included only the 1,500 230 

most variable genes in each population, as was done in TCGA analyses. However, we used the 231 

combined set of most variable genes across the five populations to perform clustering, to ensure 232 
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that important genes, which may not have met the threshold in one population but did in others, 233 

were still considered. For each cluster in each population, we summarized the differential 234 

expression of 10,930 genes, and compared these cluster-specific gene expression patterns both 235 

within and between populations to determine which genes in a specific cluster were over- or 236 

under-expressed. This process allowed us to identify syn-clusters (SC) as groups of analogous 237 

clusters observed across populations. Despite considerable diversity in the populations studied 238 

and the assay platforms used, in four of the five populations studied, we identified two very 239 

distinct SCs (SC1 and SC2), and a third SC (SC3) and potentially fourth SC (SC4) that are much 240 

less robust across populations. The results were also similar using two distinct unsupervised 241 

clustering algorithms in all populations, which further validate the presence of robust gene 242 

expression based subtypes. Compared to the clusters reported in TCGA, Tothill, and Konecny, 243 

SC1 was most similar to the mesenchymal/C1/C4 subtype and SC2 was most similar to the 244 

proliferative/C5/C3 subtype, respectively. While concordance between the original Tothill and 245 

TCGA subtypes was reported in the TCGA HGSC publication (3), our analysis included an 246 

additional 59 TCGA samples. As well, we included an additional 210 samples from Mayo that 247 

were not analyzed in the original Konecny et al. publication (5). 248 

While the groupings of samples from these data-driven, agnostic analyses are quite 249 

similar to those previously reported, we did not observe any strong patterns in survival 250 

differences across the subtypes that we identified (see Supplementary Material). However, we 251 

would not necessarily expect to find differences in survival unless the biologic characteristics of 252 

the tumor subtypes translate into different responses to standard treatments. Instead, our goal is 253 

to identify robust subtypes so that they can be exhaustively characterized and targeted treatments 254 

can be developed.  That SC1 and SC2 were found regardless of the number of clusters specified, 255 
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and global expression patterns were so similar in separate distinct populations, increases our 256 

confidence that each of these clusters represents a set of reproducible biological signals. As well, 257 

the strong positive correlations within and between populations indicate homogeneity of gene 258 

expression patterns across populations for SC1 and SC2. The strong negative correlations 259 

between SC1 and SC2 also indicate that they are clearly distinct from one another; this is 260 

emphasized by the inverse direction of expression for the immune system process genes. For 261 

SC3 and SC4, both positive and negative correlations are less strong, and there is some positive 262 

correlation between the two clusters, particularly in the Japanese population. 263 

The consistency of SC1 and SC2 across k parameters and between diverse populations is 264 

remarkable for a number of reasons. While these studies represent the largest collections of 265 

HGSC tumors to date, given the difficulties in collecting fresh frozen tissue for large-scale gene 266 

expression studies, it is unclear how accurately any of these data sets reflect the underlying 267 

population distribution of HGSC subtypes. Results from gene expression/RNA sequencing 268 

assays in large, population-based formalin-fixed paraffin-embedded (FFPE) tumor collections 269 

will be important in further informing the definitions of HGSC subtypes. As well, given the 270 

intra-tumor heterogeneity that is likely to exist (20), our approach would be strengthened by 271 

having data on multiple areas of the tumors. Finally, since histology and grade classification 272 

have changed over time (21,22), it is unclear whether the populations we studied used 273 

comparable guidelines to determine histology and grade. We attempted to exclude all low grade 274 

serous and endometrioid samples because they often have very different gene expression patterns 275 

and more favorable survival compared to their higher grade counterparts (2). While the Bonome 276 

publication specified that they included only high-grade tumors, grade is not included in the 277 

Bonome GSE26712 data set, so we were unable to determine whether the grade distribution 278 
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differs from the other studies (7). At any rate, it is unclear why the Bonome clusters, while 279 

internally consistent across k, did not correspond to the clusters observed in other populations. If 280 

samples are misclassified with respect to grade or other characteristics, depending on the extent 281 

of the misclassification, lower correlations and consequently difficulty assigning SCs could 282 

result.  283 

Our study demonstrates that two SCs of HGSC, “mesenchymal-like” and “proliferative-284 

like”, are clearly identified within and between populations. This suggests the presence of at least 285 

two robust HGSC subtypes that are either etiologically distinct, or acquire phenotypically 286 

determinant alterations through their development. These two SCs have different sets of 287 

significantly enriched pathways, which indicate distinct processes regulating and promoting 288 

tumorigenesis. The “mesenchymal-like” subtype includes aberrant regulated genes involved with 289 

extracellular matrix and cell to cell adhesion processes, while the “proliferative-like” subtype 290 

includes down-regulated immune-related genes, consistent with previous studies which have 291 

identified a negative immune signature in this subtype (5). The results also suggest that one or 292 

more additional subtypes, “immunoreactive-like” and “differentiated-like”, exist but are more 293 

variable across populations or may represent, for example, steps along an immunoreactive 294 

continuum. Data on copy number alterations, mutation burden, or epigenetic effects may capture 295 

more of these clusters’ variability. Because the “mesenchymal-like” and “proliferative-like” 296 

subtypes are consistently observed within and between populations, these subtypes are the best 297 

candidates for further characterization and development of subtype-specific treatment strategies. 298 

Future studies are needed to better sub-classify tumors that do not belong to either of these 299 

subtypes.  300 

 301 
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 314 

FIGURE LEGENDS: 315 

Figure 1. Sample by sample Pearson correlation matrices. Top panel: k = 3. Bottom panel: k = 4. 316 

The color bars are coded as blue, syn-cluster 1 (SC1); red, SC2; green, SC3; and purple, SC4. In 317 

the matrices, red represents high correlation, blue low correlation, and white intermediate 318 

correlation. The scales are slightly different in each population because of different correlational 319 

structures. The grey Bonome clusters indicate clusters not correlating well with any cluster from 320 

the other populations. 321 

 322 
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Figure 2. Sample membership distribution changes when setting k means to find k = 3 and k = 4. 323 

The bars represent sample cluster membership with k = 4 and the colors indicate the same 324 

samples’ cluster assignments for when k = 3. 325 

 326 

Figure 3. SAM moderated t score Pearson correlations. The color bars are coded as blue, syn-327 

cluster 1 (SC1); red, SC2; green, SC3; and purple, SC4. (A) Correlations across datasets for k 328 

means k = 3. (B) Correlations across datasets for k means k = 4. The matrices are symmetrical 329 

and the upper triangle holds scatter plots for each comparison where each point represents one of 330 

the 10,930 genes measured in each population. 331 

 332 

Figure 4. SAM moderated t score Pearson correlations of clusters formed by k means clustering 333 

and NMF clustering. Results are shown for both methods when setting each algorithm to find 3 334 

and 4 clusters. The color bars are coded as blue, syn-cluster 1 (SC1); red, SC2; green, SC3; and 335 

purple, SC4. 336 

 337 

Supplementary Figure S1. Overlapping genes assayed using either the HG-U1133 Affymetrix 338 

platform (TCGA, Tothill, Bonome) or the Agilent 4x44K platform (Mayo, Yoshihara). 339 

Differences across datasets arise from inherent array differences and/or differences in quality 340 

control preprocessing. 341 

 342 

Supplementary Figure S2. NMF consensus matrices for datasets when (A) k = 3 and (B) k = 4. 343 

The first track represents cluster membership for k means clusters and the second track 344 
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represents silhouette widths. Note however that the NMF clusters are not mapped to the ordered 345 

k means clusters. 346 

 347 

Supplementary Figure S3. Kaplan-Meier survival curves. For each population, the top plot is 348 

for k = 3 and the bottom plot is for k = 4. 349 

 350 
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Table 1: Characteristics of the populations included in the seven analytic data sets 409 
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NA: Data not reported 411 

 aOne sample was labeled as 'Grade 4' in TCGA   412 

bsamples without full survival data were exluded in survival analyses 413 
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Table 2: SAM moderated t score vector Pearson correlations between clusters identified using k 414 

= 3 versus k = 4 within each population. 415 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4a 

TCGA 0.99 0.98 0.69 0.53 

Mayo 0.91 0.97 0.48 0.67 

Yoshihara et al. 1.00 0.94 0.80 0.59 

Tothill et al. 0.95 1.00 0.22 0.89 

Bonome et al. 0.98 0.99 0.80 0.28 

aCorrelations for cluster 3 (k = 3) versus cluster 4 (k = 4). 416 

 417 

Table 3: SAM moderated t score vector Pearson correlations between analogous clusters across 418 

populationsa 
419 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

k = 3a 0.77 - 0.85  0.80 - 0.90 0.65 - 0.77 NA 

k = 4a 0.77 - 0.85  0.83 - 0.89 0.51 - 0.76  0.61 - 0.75 

Bonome k = 3b 0.45 – 0.46 -0.02 - 0.12 0.22 - 0.42 NA 

Bonome k = 4b 0.50 - 0.57 -0.04 - 0.04 0.13 - 0.29 0.26 - 0.43 

aCorrelation ranges for TCGA, Mayo, Yoshihara, and Tothill. 420 

bBonome is removed from gene set analyses because of low correlating clusters. 421 

 422 

 423 
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Table 4: Distributions of sample membership in the clusters identified in our study by the 424 

original cluster assignments in the TCGA, Tothill, and Konecny studies. Clusters identified in 425 

our study using k-means clustering with k = 3 and k = 4 426 

 TCGA Tothill et al. Konecny et al. 
 Mes Pro Imm Dif NCa C1 C2 C3 C4 C5 C6 NCa C1 C2 C3 C4 NAb 

Cluster 1 98 2 20 11 6 77 22 0 0 0 0 6 16 13 2 26 82 
Cluster 2 1 111 0 11 16 1 0 0 3 35 2 5 0 16 36 0 56 
Cluster 3 0 21 75 106 21 0 22 6 41 0 0 22 26 31 5 0 70 
 Mes Pro Imm Dif NCa C1 C2 C3 C4 C5 C6 NCa C1 C2 C3 C4 NAb 
Cluster 1 97 4 12 12 5 74 0 0 0 0 0 0 7 12 3 25 62 
Cluster 2 1 85 0 0 13 1 0 0 1 34 2 5 0 9 31 0 41 
Cluster 3 0 5 80 3 12 3 42 0 1 1 0 14 29 6 0 1 57 
Cluster 4 1 40 3 113 13 0 2 6 42 0 0 14 6 33 9 0 48 
aNC = Samples not clustered in original publication 427 

bNA = Samples not assessed at the time of the original publication 428 

NOTE: The corresponding labels for the generally similar HGSC gene expression subtypes 429 

observed in the TCGA, Tothill, and Konecny studies are, respectively: mesenchymal/C1/C4, 430 

proliferative/C5/C3, immunoreactive/C2/C1, and differentiated/C4/C2) 431 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2015. ; https://doi.org/10.1101/030239doi: bioRxiv preprint 

https://doi.org/10.1101/030239
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2015. ; https://doi.org/10.1101/030239doi: bioRxiv preprint 

https://doi.org/10.1101/030239
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2015. ; https://doi.org/10.1101/030239doi: bioRxiv preprint 

https://doi.org/10.1101/030239
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2015. ; https://doi.org/10.1101/030239doi: bioRxiv preprint 

https://doi.org/10.1101/030239
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2015. ; https://doi.org/10.1101/030239doi: bioRxiv preprint 

https://doi.org/10.1101/030239
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2015. ; https://doi.org/10.1101/030239doi: bioRxiv preprint 

https://doi.org/10.1101/030239
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2015. ; https://doi.org/10.1101/030239doi: bioRxiv preprint 

https://doi.org/10.1101/030239
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2015. ; https://doi.org/10.1101/030239doi: bioRxiv preprint 

https://doi.org/10.1101/030239
http://creativecommons.org/licenses/by/4.0/

