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Abstract

There is a growing interest in developing novel brain stimulation methods to control disease-related

aberrant neural activity and to address basic neuroscience questions. Conventional methods for ma-10

nipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and,

crucially, do not restore the original computations performed by the network. Thus, they are often

accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptu-

ally simple but effective method, to control pathological oscillations in spiking neural networks. Using

mathematical analysis and numerical simulations we show that DFC can restore a wide range of aber-15

rant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly,

DFC besides steering the system back to a healthy state, it also recovers the computations performed

by the underlying network. Finally, using our theory we isolate the role of single neuron and synapse

properties in determining the stability of the closed-loop system.
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In the past decades open-loop brain stimulation has been used as a common tool to restore20

aberrant neuronal activity. The most successful example is the application of high-frequency

deep-brain-stimulation (DBS) used to ameliorate motor symptoms in Parkinson’s disease (PD).

However, even in this case the stimulation induces side-effects such as gait imbalance, cognitive

impairment, speech impairment, depression etc1 . The main cause of these side-effects is likely

to be the constant stimulation, but additional explanations are plausible, e.g. the inability of25

open-loop stimulation to recover the original computations carried out by the impaired brain

area. Thus, there is a clear need for more sophisticated brain stimulation schemes2–4 .

Moreover, to exploit the full potential of external brain stimulation as a research and therapeutic

tool it is important to obtain theoretical insights that can guide the design of novel stimulation

protocols. The goal for these new stimulation methods should ideally be twofold: to alter the30

dynamical state of the brain activity in a desired manner and to recover the computations

performed by the network. Here, we demonstrate that DFC, an effective feedback method with

origins in chaos control5,6 , achieves this objective.

To show that DFC is effective in altering the global activity state, we focus on its ability

to switch the network state between synchronous-irregular (SI) oscillatory and asynchronous-35

irregular (AI) non-oscillatory activity. This choice is motivated by the fact that several brain

diseases are manifested as a transformation of the AI state to persistent SI oscillations, such as

in PD7 and in certain forms of epilepsy8 , or as the inability of the network to generate transient

SI activity, e.g. in schizophrenia9 . To demonstrate that DFC facilitates the recovery of certain

types of computations, we illustrate how a network under DFC can effectively process and route40

rate as well as temporally coded signals. Therefore, DFC not only steers the system to a more

physiological activity regime, but it also recovers the coding abilities of the network as they were

present before the onset of the pathology.

Previous theoretical models of closed-loop stimulation are not suitable to study the control of SI

oscillations because the dynamics that arise in networks of phase oscillators10–12 , in networks of45

Hodgkin-Huxley neurons13,14 and in Wilson-Cowan type of firing rates models15 are qualitatively

different from the SI oscillations16,17 . In addition, the physiologically plausible SI oscillations
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are known to be robust to both noise and heterogeneities18–20 and, therefore, require a more

differentiated control approach. Finally, the theoretical insights we provide into the mechanisms

of feedback control in SNNs could provide an explanation for the recent success of event-driven50

stimulation schemes21–23 as well.

Results

Excitation and inhibition (EI) in balanced random SNNs cause asynchronous, irregular (AI)

and non-oscillatory population activity. This state resembles the ongoing activity in the healthy

state17 . Changes in the EI balance, caused by altered inputs and/or changes in the recur-55

rent synaptic strengths, can result in two qualitatively different types of oscillations. The

synchronous-regular (SR) oscillations arise when the mean input to the individual neurons

exceeds their spiking threshold, resulting in high firing rate and high frequency regular oscil-

lations16,17 . By contrast, the synchronous-irregular (SI) oscillations arise because of synaptic

strong coupling and increased variance of the total input to the neurons. In the SI state indi-60

vidual neurons spike irregularly at a lower rate than the oscillation frequency. Importantly, the

emergence of the SI oscillations is accompanied with a change in the network transfer function

and its ability to represent stimulus-related activity. Persistent SI oscillations often are signature

of brain diseases, e.g. in PD7 and epilepsy8 . The altered network transfer function and the

robustness of the oscillations to noise and neuronal heterogeneities pose a serious challenge for65

stimulation-based therapeutic approaches. In the following we show that DFC is able to both

quench SI oscillations and to recover the original network transfer function.

Control of SI activity in I-I networks

While our goal is to reveal the mechanisms by which DFC controls SI activity in excitatory-

inhibitory SNNs, it is more instructive to first demonstrate the concept in a simple, purely70

inhibitory SNN. In such a network, the emergence of SI oscillations can be investigated by

analyzing the stability of the network firing rate in the AI state18,19 . A small perturbation of
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the steady-state firing rate

r(t) = r0 +Re[r̂1(λ)eλt]

leads to a perturbation in the recurrent input

I(t) = I0 +Re[Î1(λ)eλt]

with Î1(λ) = −JS(λ)r̂1, where J is the synaptic coupling strength and S is the synaptic response75

function. Both perturbations have to be consistent, that is

r̂1(λ) = R(λ)Î1(λ)

where R is the neuron response function. This results in:

J ·R(λ) · S(λ) = 1 (1)

In a purely inhibitory network J is negative, but here the negative sign of J has been absorbed

in the phase S(λ). We can then compute the eigenvalue spectrum, that is the roots λ that satisfy

(1). When the eigenvalues have a positive real part, the AI state is unstable and the SNN settles80

in the SI state. Note that due to the synaptic delays the spectrum is infinite. However, in time-

delay systems of the retarded type that we are considering here, the total number of unstable

eigenvalues is always finite24 . Increasing J shifts the spectrum towards more positive values

on the real axis. For a critical value Jcr a complex pair of eigenvalues crosses the imaginary

axis and the system becomes unstable through a supercritical Hopf bifurcation18 (Figure 1).85

In the following we consider an SNN in which J > Jcr resulting in SI oscillations. We aim

at designing a controller that can alter the global activity state from SI to AI by placing the

unstable eigenvalues back to the left half-plane (Figure 1A).

We want to stimulate the network in a closed-loop to alter the SI activity, thus we need to
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Figure 1 Generation of stochastic oscillations
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modify equation (1) to include the contribution due to DFC:90

JR(λ)S(λ)e−s·d −KR(λ)M(λ)e−s·dc = 1 (2)

where K is the control gain, dc the control delay and M the control kernel. The roots of

the above equation (see methods) yield the range of parameters K, dc that move the unstable

eigenvalues back to the left-half plane (Figure 1A), which results in a switch of activity from

SI to AI.

We simulated a population of 10,000 sparsely connected leaky-integrate-and-fire (LIF) neurons95

coupled with inhibitory synapses. Consistent with the analytical predictions from the mean-

field approximation, for a critical coupling value Jcr the asynchronous irregular (AI) activity

destabilizes and stochastic oscillations emerge. Switching on the DFC with parameters estimated

from equation (2), almost immediately results in suppression of oscillations and in a network

state that resembles the AI regime (Figure 2A-D). The suppression of stochastic oscillations is100

evident both in the spiking activity of single neurons (Figure 2A) and in the network population

activity (Figure 2B). The spike count variability and the irregularity of single neuron interspike

intervals, estimated by the Fano Factor (FF) and the coefficient of variation (CV) respectively,

confirm that under DFC the firing of individual neurons in the network follows Poisson statistics

(AI: FF = 1.04, CV = 1.01, DFC: FF = 1.02, CV = 0.99). Moreover, the oscillation index105

that captures the degree of oscillatory activity (see methods) is in both conditions comparable

(AI:PT = 1.47 , DFC: PT = 1.45) and significantly smaller than in the SI state (PT = 3). The

change in the network spiking activity is also observed in the subthreshold membrane potential

of individual neurons (Figure 2C,D).

Control of SI activity in E-I networks110

Next we demonstrate the applicability of DFC in changing the SI state in recurrent networks of

excitatory and inhibitory neurons. To this end we simulated a SNN composed of 8000 excitatory

and 2000 inhibitory neurons and tuned the parameters to get an SI state. The self-consistency
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equation for the coupled EI-network is given by

JEI ·RE(λ) · SEI(λ)e−s·dEI · JIE ·RIE(λ) · SIE(λ) · e−s·dIE = 1 (3)

where Jij , dij is the synaptic coupling strength and delay from population j to population i and115

RE (RI) is the neuron response function of excitatory (inhibitory) neurons. We implemented

DFC by recording the activity of neurons in the inhibitory population while stimulating excita-

tory neurons. Switching on the controller yielded a near instantaneous transition in the network

activity from SI to AI (Figure 2E-H). In this case the original physiological state we want to

recover was characterized by slightly less irregular firing of the individual neurons. Nevertheless,120

DFC successfully steered the network to a regime with statistics comparable to the AI activity

(DFC: FFE = 0.85, CVE = 0.91, AI: FFE = 0.83, CVE = 1.03).

In a coupled network with more than one population additional possibilities for recording and

stimulating neurons exist. For instance, we could both record and stimulate the excitatory

population (see below “stability and robustness of control domains”). Our results, however,125

do not depend on the exact identity of the recorded and stimulated neurons. The oscillation

frequency in the SI state of the network was in the beta range, (f ∼ 30Hz), which is characteristic

for PD7 . This suggests that if one of the factors contributing to oscillations in PD is strong

coupling between STN and GPe25,26 , then this control approach could be used to suppress

these beta band oscillations. The results presented here are general and the same approach can130

be applied to suppress oscillations in other frequency bands as well.

Stability and robustness of control domains

To determine the range of values that led to stable control we fixed the control kernel M , using

a box function of width 1 ms, and parametrized the system by the gain K and delay dC . For

each pair of values we simulated the SNN and computed the oscillation index. The (K, dc)-135

plane shows that a stable control domain exists at 7 ms. That is, an effective control delay of

dc,eff = 7 ms yields the maximum stability for the resulting AI state. The semi-analytical results
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derived from mean-field theory are in good agreement with the numerical simulations. The only

discrepancy occurs when the difference between synaptic and control coupling is small. In this

case it is more difficult to maintain constant rates of the stimulated population and the system140

may become effectively excitatory leading to rate instabilities27 . Moreover, fluctuations in the

mean input that are ignored in our mean-field approach could also become more important.

The analysis of these fluctuations is beyond the scope of this work and will be addressed in a

future study.

Differential control145

Despite the fact that one stable control domain exists, a compensation mechanism to maintain

constant firing rates is required to achieve stable control. In real-life applications a detailed fine-

tuning may not always be possible. Therefore, we modified our control protocol and introduced

an additional delay term dC2, thus, effectively feeding into the controller the difference between

two time-delayed versions of the population activity. For such differential DFC scheme the150

control signal is given by (see methods):

IC(t) = K ·M(t) ? (v(t− dc1)− v(t− dc2))

Differential control has been previously used to control unstable periodic orbits5,28 and to sup-

press synchrony in networks with discrete-time neuron models29 . Here, we accounted for the

fact that recording neural activity and injecting a control current into the neurons introduces

a finite time-delay. Therefore, we used a small but non-zero value for dC2, i.e. dC2 = 1 ms,155

which is close to the feedback delays introduced by current technologies30,31 . A crucial advan-

tage of differential DFC is that no additional rate compensation is required, because the mean

contribution of the control signal vanishes

lim
T→∞

1
T

ˆ T

0
(v(t− dc1)− v(t− dc2))dt = 0
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Moving in the control parameter space (K, dc) , therefore, did not affect the firing rates of the

neurons. This was reflected in the near perfect overlap of theoretical predictions and numerical160

simulations of the SNN (Figure 3B). In addition, differential DFC introduced two positive

effects on the stability of the control domains : (i) The first domain was expanded, which

amounts to an increase in the robustness in the parameter variation. That is, small deviations

from the estimated values of the gain and the delay would not be critical for the stability of

the AI state. (ii) A new stable control domain appeared at t =23 ms. Thus, with differential165

control there is an increase of the range of parameters that lead to stability.

DFC also enhanced the robustness of the system to external disturbances, e.g. undesired sig-

nals at the controller output, measurement noise etc. This becomes evident when we consider

the distance Bcr of the complex eigenvalues λi from the imaginary axis for the main stable

control domain at t = 7 ms. The higher the values of Bcr are the more robust the closed-170

loop system is. Direct and differential control yielded Bcrdiff = max(Re(λi)) = −257 and

Bcrdirect = max(Re(λi)) = −224 respectively, clearly revealing a more robust system with differ-

ential DFC.

Both direct and differential control were effective in coupled E-I populations as well. The location

of the stable control domains depended on the exact implementation (Figure 3). When the175

activity of the inhibitory population was monitored while the excitatory population stimulated

the main stable control domain appeared at t = 7 ms (Figure 3C). This location is identical

with the purely inhibitory network and reflects the overall delay of the I-E path (I-I loop) in the

E-I (I-I network). Indeed for both the I-E path and E-I loop the effective delay is deff = 7 ms

(see methods). By contrast, when the excitatory population was both recorded and stimulated180

then the location of the domains shifted to around t = 15 ms reflecting the larger overall delay

in the E-I-E loop. (Figure 3D,E). Note that in this case the stable control domain for direct

control was smaller. The reason is that the size of the stable control domains shrinks for larger

delays.
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DFC control vs noise injection185

In both the I-I and E-I network we applied an identical control signal to all stimulated neurons.

That is, we did not disrupt oscillations and decorrelated network activity by injecting different

currents to each of the neurons. This is in contrast with a wide-held assumption that common

input always tends to increase correlations in neural activity32 . The results from the application

of DFC reveal that common input can both increase or decrease correlations in SNNs. It is the190

timing and amplitude of the common input that determines the direction in which correlations

are affected.

It is important to point out that injection of a control signal is not equivalent to the appli-

cation of additive noise to the system. To demonstrate this we simulated an I-I network and

injected Gaussian noise with the same mean and variance as the control signal to all neurons.195

This stimulation approach failed to suppress SI oscillations (Figure 4A,B) indicating that the

temporal structure of the control signal is crucial for successful control. Increasing further the

noise intensity, e.g. by a factor of ten, eventually resulted in desynchronization of the activity

and in quenching of oscillations (Figure 4D,E). However, with such strong strong external

noise the network dynamics is predominantly influenced by the input rather than the recurrent200

activity. This condition is disastrous from a computational point of view, because any informa-

tion processing taking place within the stimulated brain region would be severely impaired. To

illustrate this we recorded the subthreshold dynamics of ten randomly selected neurons in the

network (Figure 4F). The huge fluctuations in the membrane potential under the influence of

strong external noise are rather pathological. By contrast, the fluctuations in the case of DFC205

are comparable to those in the physiological AI regime.

Recovery of network function

The detrimental effect of strong external noise became even more apparent when we studied the

response of the network to incoming stimuli. We examined two scenarios. First, we tested how

a series of incoming pulse packets composed of randomly distributed spikes are processed by the210
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SNN. We evaluated the network response by the area under the curve (AUC, see methods) for

each of the following network states: AI, SI under DFC and SI under noise stimulation. A high

AUC value reflects better separability of two conditions. It is evident that the AUC in the AI

state and in the DFC condition is close to unity indicating that both conditions are comparable

in terms of stimulus separability (Figure 5A,B). By contrast, when the SI oscillations were215

suppressed by the injection of strong external noise the AUC dropped significantly. That is,

DFC, in contrast to strong noise stimulation, does not impair the ability of the network to detect

incoming stimuli. These results suggest that processing of incoming signals either locally or by

downstream areas is feasible in a DFC scheme.

The previous test only captured the firing-rate coded processing that the network may be per-220

forming. Therefore, next we tested how DFC affects temporal aspects of the network response.

To this end, we provided external correlated inputs to all stimulated neurons and measured

the spike train similarity in the network response. We computed the spike distance D33 that

captures the time-resolved degree of synchrony between individual spike-trains (see methods).

Again DFC did not impair the temporal processing as indicated by a clear separation of the225

two clusters during baseline DB and stimulation DS (Figure 5C). For external noise, however,

the two distributions of values strongly overlapped, showing that aspects of temporal processing

as measured by pairwise synchrony are clearly compromised when the SI state is disrupted by

open-loop noise injection.

Mechanism of DFC230

The above two results clearly demonstrate that DFC has multiple advantages compared to the

open-loop noisy stimulation. DFC does not only suppress SI activity steering the network to

an AI regime, it also facilitates the recovery of the network’s ability to process stimulus related

information. From its design it is evident that DFC effectively counteracts the increase in

coupling strength, which is one of the main causes for the emergence of SI activity. Indeed,235

the goal of the DFC design was to move the poles of the system at, or close, to their original
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positions. Ideally, the stimulation kernel M would match the synaptic kernel S with dc = d and

the amplitude of the control gain K would be tuned to match the pathological increase of the

coupling strength ∆J . If this were the case, DFC would completely eliminate the effects on the

mean recurrent input. This is evident if we consider the modulation to a perturbation in the240

average input to a neuron

I(λ) = (J + ∆J) ·R(λ) · S(λ) · e−λd −K ·R(λ) ·M(λ) · e−λdc

K=∆J,M=S= (J + ∆J) ·R(λ) · S(λ) · e−λd −∆J ·R(λ) · S(λ) · e−λd

= J ·R(λ) · S(λ) · e−λd

That is, under DFC the effects of ∆J are not visible in the perturbed current term. In practical

applications a perfect match between the control parameters (K,dc,M) with the synaptic values

is not feasible, because the exact shape of the synaptic kernels are not known a priori and have

to be estimated. Nevertheless, within a certain reasonable range of parameters (see also section245

“stable control domains”), DFC still places the eigenvalues close to their initial position before

the onset of pathology. Therefore, as we showed above, aspects of both rate and temporal coding

that the network may be performing are recovered.

Effects of neuronal and synaptic response function

The understanding of the exact mechanisms by which DFC suppressed SI activity allowed us250

to precisely investigate how the neuron and synapse response function R and S respectively

influence the stability of the closed-loop system. To this end, we used again the mean-field

approximation, because it incorporates explicit expressions for R and S. In general, the neuron

response R depends on the specific neuron model as well as on the external input. Here,

we did not change the neuron model, but altered the external Gaussian white noise input by255

using different values for the mean and variance (µ, σ2). We then assessed the stability of the

system. It is apparent that for a given pair of coupling and control parameters (J, d) and (K, dc),
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respectively, the system becomes unstable as we move in the two dimensional parameter-space

(Figure 6A). For meaningful comparison we used (µ, σ2)-combinations that yield constant

rates. In the ideal case where M(λ) = S(λ) and dc = d equation (2) becomes:260

J ·R(λ) · S(λ) · e−λd −K ·R(λ) ·M(λ) · e−λdc = 1

(J −K) ·R(λ) · S(λ) · e−λd = 1 (4)

(J −K) ·GS ·Rn(λ) · S(λ) = 1

where Gs is the slope of the ‘f-I curve’ at the operating point or static gain and Rn the normalized

neuron response (see methods). The critical effective coupling is then given by

Lcr(λ) = (J −K)(λ) = 1
Gs|Rn(λ) · S(λ)|

As we move along the constant output firing rate lines both Gs and |Rn(λ)| increase (Figure 6

- figure supplement 1A,B ) leading to a decrease of Lcr. The changes in Gs are significantly

larger than those in |Rn(λ)|, implying that the static gain is the dominant factor that affects265

stability. The changes in |S(λ)| are negligible (Figure 6 - figure supplement 1C). This is

expected, because the frequency range we are interested in is much smaller than the cut-off

frequency of the synaptic filter ω < ω3db. Thus, when the system operates in a dynamic regime

in which single neurons’ responses have a higher gain the control domains shrink and the range

of K values that stabilizes the system decreases.270

Next, we investigated the interaction between the synaptic S(λ) and the control kernel M(λ).

The amplitude responses for different kernels do not vary significantly (Figure 6 - figure

supplement 2) Therefore, the important factor that influences stability is the phase difference

or, alternatively, the difference ∆d between the effective delays of the synaptic deff and the

coupling kernel dc,eff . An optimal result is achieved if this difference vanishes (see methods)275

∆d = deff − dc,eff = 0
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This point is illustrated for the case where dc = d+ 1ms (Figure 6C). These results show that

DFC does not depend strongly on the shape but rather on the effective delay of the kernel.

DFC induced SI activity

Interestingly, the same control strategy can be used to induce or enhance rather than to suppress

oscillations. Choosing appropriate control parameters to increase the effective coupling, i.e.280

selecting K to have the same sign as J (see methods), results in SI activity (Figure 7). This may

be helpful for the treatment of symptoms in several pathological conditions that are characterized

by impaired oscillations, e.g. gamma power decrease in schizophrenia34 . Thus, DFC is a generic

control approach that, depending on the particular situation, can be used both to quench or to

enhance oscillatory activity.285

Discussion

Open-loop stimulation has been the main non-pharmacological approach to control the symp-

toms in a wide range of pathological conditions. It has been successful in parts, but it often

introduces clinical side-effects35 . Moreover, it inherits the drawbacks from open-loop systems:

(i) The stimulation profile is predetermined and is not adjusted to the clinically observed short-290

term fluctuations in the patients’ symptoms36 . In addition, stimulation is continuously applied

even though it may not be always necessary (ii) The stimulation does not adapt to long-term

changes of the system, e.g. structural alterations due to the progression of the disease. (iii) The

operating point cannot be altered to deal with perturbations, caused, for instance, by a drift of

the electrode lead37 (iv) External disturbances due to transient undesired signals are not being295

suppressed.

In contrast to this, closed-loop control can by design deal with all these situations. For this

reason studies have started to investigate feedback-control both experimentally2,21–23 and theo-

retically38 . The goal of the experimental work has been to demonstrate that closed-loop control

is indeed effective, whereas the theoretical studies aimed at providing a deeper understanding300
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of the underlying mechanisms.

Here, we provide a theory for DFC, a conceptually simple but powerful form of control,5,6 applied

to the suppression of stochastic SI oscillations in SNN. These oscillations are generic, they occur

in many brain areas and in multiple conditions39 and they emerge via a supercritical Hopf

bifurcation16 . Therefore the control objective was specific: to counteract this bifurcation. We305

provide a mean-field approximation to estimate the DFC parameters and confirm the analytical

predictions in numerical simulations in purely inhibitory and in coupled excitatory-inhibitory

SNNs.

We used two control approaches, direct and differential control, and demonstrated that both

schemes are effective in suppressing oscillations. Consistent with previous findings5,29 , our310

results reveal that differential control has two main advantages over direct control. First, the

control domains are enlarged, which renders the selection of control parameters an easier task.

Larger control domains implies increased robustness of the system both to perturbations in

the parameters and to disturbances. This means that neither small deviations from the nom-

inal values of K, dC1 , dC2 nor external signals compromise its stability. Second, in differential315

control the stimulation signal vanishes which translates to decreased power consumption. In

clinical settings this is a highly desirable property and is, in fact, a basic requirement of any

neuroprosthetic device.

The key advantage of the approach we presented here is that the system under control is being

steered back towards its primary operating point (Figure 8). That is, DFC effectively decreases320

the synaptic coupling strength and, therefore, it counteracts the causes that originally led to

the instability. This is obviously true only for the first-order statistics, because DFC does not

counteract changes in the variance of the input that a random neuron in the network receives.

Nevertheless, this is sufficient for the network to recover basic processing abilities both for rate

and temporal coding schemes. Alternative approaches that rely on increased external noise are325

able to suppress oscillations40 , but they do not allow the network to perform any meaningful

computations. We think that a similar explanation is valid also for the traditional open-loop

DBS. The exact mechanisms of this type of DBS are still debated41 , but one of the reasons for
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the induced side-effects may be compromised information processing.

DFC suppresses oscillations in SNN not by decorrelating individual neurons, but rather by330

applying a common signal to all neurons that counteracts the mean input they receive from

the network. Besides the many advantages described earlier, the utility of DFC lies in the

fact that it is a very general control strategy, which does not depend qualitatively on lower

level properties such as the specific coupling kernels of the connections. Neither does it depend

qualitatively on the exact neuronal type (Figure 2 - figure supplement 1). Thus, DFC can335

in principle deal with more complex scenarios, e.g. heterogeneities in network and in neuronal

properties. Nonetheless, the exact shapes of the neural and synaptic response functions do affect

the system quantitatively and do modify the stability landscape. It is, thus, essential to have a

good understanding of their precise contribution.

The results we presented provide a clear picture about how exactly the static gain of the neuron340

affects the size of the stable control domains. We also showed that the width rather than

the shape of the control kernel affects the stability boundary. Further, we explained how the
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coupling strength and delay influence the overall stability landscape. These insights have besides

the theoretical value a direct implication for the design of neuroprosthetic devices and are,

therefore, of immediate practical and clinical relevance.345

It is also important to address certain limitations in our approach. First, we assumed that we

can stimulate neurons by current injection. In practice this is currently not possible, therefore

incorporation of volume conduction models42 to describe the effects of external stimulation on

individual neurons would be required. Second, we used the population average of single neuron

firing as our state variable. Again, in more realistic settings an indirect measure of population350

activity such as a local-field potential (LFP) signal2 has to be used. Third, our theoretical anal-

ysis was based on a mean-field approximation that ignores fluctuations in the input. Analytical

and numerical results were largely in a good agreement, but additional work is necessary to

specifically deal with the fluctuations in the activity. Last, we had access to the relevant param-

eters required for the tuning of the controller. In real applications these parameters have to be355

estimated online from the recorded activity. The delay could be inferred from the frequency of

the oscillatory activity. Inference of the coupling strength is less straightforward, but may still

be feasible. Alternatively, once the delay is estimated, methods of adaptive tuning could be used

to retrieve also the optimal control gain (Supplementary figure 1). Tuning the controller is

in general a difficult problem, even for open-loop DBS, and additional research in this direction360

is required.

Differences from previous work

View studies have addressed the problem of suppressing oscillations in neural activity (see38

for a detailed review). They are based (i) on population dynamics4315 (ii) on detailed single

neuron descriptions13 or on combinations thereof14 . These approaches have their merits, but365

they come with limitations: (i) the parameters cannot be directly mapped to experimental

measurable quantities (ii) it is not clear if the results scale to large network of neurons.

The approach that we presented here is a trade-off between biophysical realism and analytical
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tractability. We used the LIF model, which captures single-neuron dynamics to a sufficient

degree, while at the same time allows computationally efficient simulations of large networks.370

We applied DFC that was originally proposed in the context of chaotic systems as a method

to control unstable periodic orbits5 . It was later used to control coherence44 and to suppress

synchronous activity in networks in which the neurons themselves act as oscillators10–12 .

Here, we did not use simplified population dynamics or phase oscillators. Instead, we used

spiking neurons that fire irregularly and are nevertheless able to generate oscillations. We also375

used realistic models of synaptic dynamics and were therefore able to explicitly study their con-

tribution to stability. This allowed us to design an appropriate control kernel, which resulted in

increased control domains. In addition, by using a mean-field theory that explicitly incorporates

the synaptic and neuronal response functions we could study their contribution in a systematic

way. The neuronal response function enabled us to investigate the influence of external and380

recurrent inputs and to relate them to experimentally measurable quantities. Indeed, as we

showed above, the statistics of the mean field for activity states with very similar firing rate

profiles may be significantly different affecting stability. Therefore, feasible measurements of the

population activity can be directly used to characterize the operating point of the network and

to fine-tune the control parameters to achieve the desired results.385

Conclusions

We used DFC, a relatively simple form of control that includes only a proportional gain term,

because it is still possible to analytically study the stability of the closed-loop control system.

More sophisticated control strategies could further increase the performance of the system. They

come, however, at the price of increasing the number of control parameters that have to be390

estimated and of increasing complexity precluding a formal proof of stability. The approach we

presented here spans multiple levels of analysis of neuronal dynamics, enabling an understanding

of how the control stimulus interacts with both low-level synaptic and high-level properties of

the population activity to influence stability. At the same time the complexity of the controller
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is kept low to be of practical relevance. Thus, here we have provided a general conceptual395

framework for future studies that address both theoretical and practical aspects of closed-loop

control in neuronal systems.

Methods

Numerical simulations

We use networks of N LIF neurons randomly connected with a probability of ε = 0.1. Thus400

each neurons receives C = εN connections from other neurons in the network. For the purely

inhibitory network we use N = NI and for the coupled excitatory-inhibitory case N = NE +NI .

The subthreshold dynamics of a neuron i in the network is given by

τm
dvi(t)
dt

= (vrest − v(t)) +R · Ii,rec(t) +R · Ii,ext(t) (5)

where τm is the membrane time constant and vrest is the resting potential. The recurrent input

term405

Ii,rec(t) = −
C∑
j=1

Jij
∑
k

s(t− tkj − dij) (6)

(7)

describes the total synaptic current arriving at the soma due to presynaptic spikes. Each

presynaptic spike causes a stereotypical postsynaptic current s(t) modeled as an α-function45

s(t) = t

τs
e1− t

ts H(t) (8)

where τs is the synaptic time constant and H(t) the Heaviside function.

The double sum in equation 5 runs over all firing times tkj of all presynaptic neurons 1, 2, .., C

connected to neuron i. For all connections in the network we use the same synaptic coupling410
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strength Jij = J/N and the same connection delay dij = d. The external input

Ii,ext(t) = µ+ σ
√
τmηi(t) (9)

contains a mean term µ and a fluctuating term resulting from the Gaussian white noise ηi(t)

that is uncorrelated from neuron to neuron with < ηi(t) >= 0 and < ηi(t)ηi(t′) >= δ(t− t′).

Asynchronous state

In the stable asynchronous state the population activity is constant v(t) = v0. The mean415

recurrent input that each neuron receives is therefore also constant and given by

Irec(t) = N · J/N · (s ? v)[t]

= N · J/N ·
ˆ
s(τ)v(t− τ)dτ

= J · v0 ·
ˆ
s(τ)dτ

= J · v0 · e · τs

We study the stability of the asynchronous state following a linear perturbation approach18 .

A small oscillatory modulation of the stationary firing rate r(t) = r0 + r1e
−λt with v1 � 1

and λ = x + jω where ω is the modulation frequency leads to corresponding oscillation of the

synaptic current420

I1 = −J · r1 · e · τs
(1 + λ · τs)2 e−λd (10)

The firing rate in response to an oscillatory input is given by

r1 = I1 · r0

σ(1 + λτm) (
∂U
∂y (yt, λ)− ∂U

∂y (yr, λ)
U(yt, λ)− U(yr, λ) ) (11)

The function U is given in terms of combinations of hypergeometric functions
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U(y, λ) = ey
2

Γ( 1+λ·τm

2 )
F (1− λ · τm

2 ,
1
2 ,−y

2)

+ ey
2

Γ(λ·τm

2 )
F (1− λ · τm

2 ,
3
2 ,−y

2)

In a recurrent network the modulation of the firing rate and the modulation of the synaptic

input must be consistent. Combining (10) and (11) we get

1 = −J · r0·e · τse−λd

σ(1 + λτm)(1 + λτs)2

∂U
∂y (yt, λ)− ∂U

∂y (yr, λ)
U(yt, λ)− U(yr, λ) )

which we write as425

1 = J ·R(λ) · S(λ) · e−λd (12)

where the terms

R(λ) = 1
σ(1 + λτm)

∂U
∂y (yt, λ)− ∂U

∂y (yr, λ)
U(yt, λ)− U(yr, λ) )

and

S(λ) = e · τs
(1 + λ · τs)2

describe the neuronal and synaptic response functions respectively. The negative sign of J is

absorbed in the phase of S(λ).

The critical coupling values at which modes have marginal stability with frequency ωi can then430

simply be computed by

Ji = 1
R(ωi) · S(ωi)

The smallest value Jcr = min{Ji} is the critical coupling at which the first complex pair of

eigenvalues crosses the imaginary axis and the system becomes unstable. In the case of the

inhibitory network for m = 14 mV and σ = 6 mV we have Jcr = 115 mV. In the simulations

we used for the coupling between two neurons i and j, Jij = 0.2mV thus the total coupling is435

J = C · Jij = 1000 · 0.2 mV= 200 mV >Jcr (Figure 2A-D).
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Stability

The eigenvalues λ of the self-consistency equation (12) determine the stability of the system.

If for all solutions the real part is negative, Re{λ} < 0, then the system is stable otherwise it

is unstable. The stability border, λ = jω, is characterized by the occurrence of a supercritical440

Hopf bifurcation. At this point the population activity will be oscillatory with frequency ω.

Delayed feedback control

In the simulations we implement DFC by recording and stimulating all neurons in the network.

The subthreshold dynamics of a neuron i with DFC is given by

τm
dvi(t)
dt

= (vrest − v(t)) +R · Ii,rec(t) +R · Ii,ext(t) +R · IC(t) (13)

where IC(t) is the control input. Note that IC(t) is identical for all neurons in the network given445

by

IC(t) = K ·m(t) ? (v(t− dc)) (14)

where v(t) is the instantaneous population activity at time t and ? denotes the convolution

operation (f ? g)(t) =
´∞
−∞ f(t− τ) g(τ) dτ. We used as control kernel m(t) a box function

m(t) = H(t− a)−H(t− b)

where H(t) is the Heaviside function

H(t) =


0, t < 0 ms

1, 0 ≤ t ≤ 1 ms

Thus the control input IC(t) was updated in steps of 1ms.450
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Direct control

In the case of direct DFC a modification of the self-consistency equation (12) yields

1 = J ·R(λ) · S(λ) · e−λd −K ·R(λ) ·M(λ) · e−λdc (15)

whereM(λ) describes the control kernel in the frequency domain and the negative sign captures

the fact that the control stimulus counteracts the effects of the synaptic coupling J .

The box function has response characteristics given by455

M(λ) = e−aλ − e−bλ

λ
e−λ·dC

= 1− e−bλ

λ
e−λ·dC

where a = 0 , b is the width of the kernel and dc is the control delay.

Differential control

In differential DFC we the control input IC(t) is a function of the difference between two time-

delayed versions of the population activity v(t). It is given by

IC(t) = K ·M(t) ? (v(t− dc1)− v(t− dc2)) (16)

In this case the self-consistency equation (12) is modified to give460

1 = J ·R(λ) · S(λ)−K ·R(λ) ·M(λ)(e−λ·dC1 − e−λ·dC2 ) (17)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2015. ; https://doi.org/10.1101/030189doi: bioRxiv preprint 

https://doi.org/10.1101/030189


30

Rate compensation

In all simulations we adjust the mean µ and variance σ of the external input to the neurons

such that the firing rates are approximately equal for all conditions, that is

v0 = vJ = vK = v(µ, σ)

where v0, vJ , vK are the firing rates of the uncoupled, coupled and network under DFC respec-

tively. In this way we can exclude any effects due to changes in the firing rates.465

Stability analysis

The eigenvalues λ of the self-consistency equations (15) and (17) determine the stability of the

system. We compute for both direct and differential control the real part of the rightmost

eigenvalue Re{λ1} that determines stability. We use the (IK , dc)-parameter pair with IK ∈

[0, 300] mV and dc ∈ [0, 30] ms. The second delay term in differential control was in both cases470

dc2 = 1 ms.

DFC induced SI activity

If the control gain K has the same sign as the synaptic coupling J and the control delay is

chosen to be close to the synaptic delay, dc ' d, then the effective coupling in the network

increases resulting in SI activity (Figure 7). In this case the self-consistency equation is given475

by

1 = J ·R(λ) · S(λ) · e−λd +K ·R(λ) ·M(λ) · e−λdc (18)

Static gain

In the frequency domain the neuron response function R(f) is simply the Fourier Transform of

the impulse response h(t), i.e. R(f) = F [h0(t)](f). The impulse response h(t) can be separated
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in two parts480

h(t) = ∂µr · hn(t) = Gs · hn(t)

where hn(t) is the normalized impulse response such that
´∞

0 hn(t)dt = R(f = 0) = 1 and

Gs = ∂µr is a constant term that we denote as the static gain of the response. It corresponds

to the slope of the ‘f-I’ curve at the operating point and captures the ‘susceptibility’ of the rate

to small changes in the mean µ.

We can rewrite the self-consistency equation 4 as485

(J −K) ·R(λ) · S(λ) · e−λd = 1

(J −K) ·Gs ·Rn(λ) · S(λ) · e−λd = 1

(J −K) ·Gs · |Rn(λ) · S(λ)|eiφ = 1

where we have separated the complex expression Rn(λ) · S(λ) in an amplitude and phase part.

Splitting this complex equation in two real ones we get

φ = (2k + 1)π

and

(J −K) ·Gs|Rn(λ) · S(λ)| = 1

⇒ Lcr(λ) = (J −K)(λ) = 1
Gs|Rn(λ) · S(λ)|

The first equation gives us the critical frequencies ωcr for which the modes exhibit marginal490

stability, i.e. λ = iωcr. From the second equation we can compute the corresponding effective

critical coupling Lcr(ωcr).
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Control kernel dependence

To study how stability depends on the control kernel we write again the self-consistency equation

(J + ∆J) ·R(λ) · S(λ) · e−λd −K ·R(λ) ·M(λ) · e−λdc = −1

((J + ∆J) · S(λ) · e−λd −K ·M(λ) · e−λdc) ·R(λ) = −1

where ∆J is a pathological increase in the synaptic coupling that the controller needs to coun-495

teract. Separating amplitude and phase we get

((J + ∆J) ·As(λ)eiφS −K ·AM (λ)eiφM ) ·R(λ) = −1

J · eiφS + (∆J · eiφS −K · eiφM ) ·R(λ) = −1

where we used AS(iω)) = AM (iω) = 1, which is valid for the frequency range that we are

interested in ω < 300 rad (Figure 6 - figure supplement 2). To counteract the increase ∆J

we need to minimize the effective coupling term

Leff = ∆J · eiφS −K · eiφM

which leads to500

K = ∆J

φS = φM

For the control kernel we use a box function defined as

M(iω) = 1− e−iωb

iω
e−iω·dC
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with phase

φM = ω · dc + ω · b2

whereas the synaptic kernel is the α-function

S(iω) = e · τr
(1 + iωτr)2 e

−iω·d

φS = ω · d+ 2 · atan(ω · τr)

Thus505

ω · d+ 2 · atan(ω · τr) = ω · dc + ω · b2

and if we assume that atan(ω · τr) ≈ ω · τr then

ω · d+ 2 · ω · τr = ω · dc + ω · b2

ω(d+ 2 · τr) = ω · (dc + b

2)

ω · ds,eff = ω · dc,eff

Thus, the most optimal control is achieved when the effective delays of synaptic and control

kernel deff and dc,eff respectively are identical

∆d = ds,eff − dc,eff = 0

In our simulations we used d = 5 ms and τr = 1ms, thus ds,eff = 7ms. For the controller we

used dc = 6.5 ms and b = 1ms, thus dc,eff = 7ms.510
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Recovery of network function

Response to random pulse packets

We computed the response of the network to incoming stimuli that arrived in form of random

Gaussian pulse packets. A pulse packet was composed of a predefined number of spikes npp = 100

with normally distributed random displacements ti ∼ N(µ = 0, σpp = 10) from the center time515

tc of the pulse. It was fully defined by the tuple (tc,npp, σpp). In total, ten pulse-packets with

center times ti = (200i + 200) ms and 1 ≤ i ≤ 10 were applied to 100 randomly chosen

neurons in an inhibitory network of size N = 1000. We computed the population response at

time points ti + 10 ms and compared it with the population activity during baseline at time

points ti + 100 ms. For this, we performed a receiver operating characteristic (ROC) analysis520

evaluating the true positive and false positive rate for various thresholds. We then computed the

area under the ROC curve (AUC), which indicates how well the response can be distinguished

from baseline activity. An AUC value of 1 means full separability of the two activity states,

whereas an AUC value of 0.5 indicates full overlap of the activity sampled during the two different

conditions. We computed the AUC values for three different scenarios: (i) physiological AI state525

(ii) pathological (oscillatory) state controlled with DFC (iii) pathological (oscillatory) state with

noise. The results are shown in Figure 4A,B.

Response to common input

We defined a spike train of nST = 500 equally spaced spikes in a window of TST = 50 ms.

Ten copies of exactly the same spike train with time onset ti = (200i + 200) was provided as530

input to 100 randomly chosen neurons in an inhibitory network of size N = 1000. Thus, in this

scenario all stimulated neuron received identical input during the stimulation periods. However,

in this case we were interested in the temporal aspects of the network response. To this end,

we measured the synchrony between the spike trains of all neurons in the network using the

SPIKE-distance metric33 . The SPIKE-distance is a measure of (dis)-similarity which allows for535

a time-resolved analysis and can track instantaneous changes. We computed the multivariate
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SPIKE-distance S both during the 50ms of stimulation (SST ) and also during 50 ms of baseline

activity (SBL). We then computed the temporal average for the stimulation

DST (t) = 1
TST

ˆ t+Tst

t

S(t) · dt

and for the baseline DBL(t) = DST (t+100). The results, again for the three scenarios described

above (AI, DFC, noise) can be seen in Figure 4C.540

Oscillation index

We estimated the discrete power spectral density P (ω) of the population activity r(t) using the

standard Fast Fourier Transform (FFT) method. We then computed the total power in the

range [0, 250/π] rad

PT =
∑
i

P (ωi)

and used log10PT as a descriptor of oscillation strength.545
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Figure Legends

Figure 1. Generation of stochastic oscillations. (A) The network is in an asynchronous iregular

(AI) regime. Single neuron firing follows Poisson statistics and (B) the population activity is

stationary. (C) The network generates stochastic oscillations. Single neuron firing is still ireg-

ular, (D) but the population activity is oscillatory. (E) Eigenvalue spectrum computed from660

equation 1. The emergence of oscillations can be explained by the onset of a Hopf bifurcation.

When a complex pair of eigenvalues crosses the imaginary axis the network activity becomes

unstable. (blue dots: AI regime, red dots: SI oscillations) (F) Schematic illustrating closed loop

control. The neural activity is being continuously monitored and processed by the controller C,

which dynamically generates an appropriate signal that is fed back to the network.665

Figure 2. Closed-loop control of oscillations. (A) Inhibitory network. Switching on the con-

troller at t=200 ms leads to suppression of oscillations. (B) Population activity without (grey)

and with control (red). (C) Single membrane potential trajectories of ten randomly chosen neu-

rons in the network (D) Averaged trace of subthreshold dynamics. (E) Excitatory-Inhibitory670

network. Switching on the controller at t=250 ms leads to suppression of oscillations. (F) Ac-

tivity of excitatory population without (grey) and with control (blue). (G and H) Same as (C

and D), now membrane potential of excitatory neurons is shown. For better visualization the

spike trains in A and E are thinned out.

Figure supplement 1. DFC control in heterogeneous networks.675

Figure 3. Stability landscape of the network actvitity under DFC. (A) Direct DFC in the in-

hibitory network. One stable control domain appears at t = 7 ms. The results from mean field

theory correctly predict the location and shape of the domain (dashed line). The discrepancy

for K>200 mV is explained by a deviation of the firing rates between numerical simulations680

and mean-field theory. (B) Differential DFC in the inhibitory network. The first stable con-

trol domain around 7 ms is enlarged. An additional small, but stable control domains appears
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around t=23 ms. Moving in the state space does not affect the firing rates and therefore no

rate compensation is required. The numerical and analytical results (red contour) are in perfect

agreement. (C) Direct DFC in an E-I network. The excitatory population is being stimulated685

while the activity of the inhibitory neurons is recorded. A stable control domain appears around

t=7 ms which reflects the effective delay from the inhibitory to the excitatory population. (D)

Same as (C) but here the excitatory population is both recorded and stimulated at the same

time. The theoretical analysis yields a small but stable control domain around t=15 ms. The

location of the domains reflects the larger E-I-E loop (see text). In the numerical simulations690

this control domain does not arise, because fluctuations, which are ignored by the mean field-

approach, quickly destabilize the system. (E) Same as (D) but differential DFC is used. The

stable control domain is enlarged showing that differential DFC yields more robust control in

coupled E-I networks as well. In all panels regions of stable activity are indicated by shades of

blue color. The dashed line denote that total network coupling J.695

Figure 4. Noise injection (A andB) Injecting Gaussian noise with the same mean and variance

as the control signal does not result in suppression but rather in an enhancement of oscillations.

(C) Current injected into the somata of the neurons. Grey: Gaussian noise, red: DFC signal

used in fig 2a-d. (D and E) Injecting strong Gaussian noise, σ = 14 mV, yields to suppression of700

the oscillatory activity. (F) The subthreshold dynamics of ten randomly chosen neurons reveal

that this strong external noise results in very large fluctuations in the membrane (grey). By

contrast, the fluctuations under DFC are significantly smaller (red).

Figure 5. Recovery of rate and temporal based computations. (A) AUC values indicating705

how well the population rate response to incoming stimuli estimated for different time scales

(different dots within each group) is separated from baseline activity for three different scenaria.

(B) AUC values for DFC are systematically higher and close to one compared to noise injection.

(C) A clear separation of spike distance values between baseline (dots) and response to incoming

stimuli (triangles) indicates that temporal aspects of computations during DFC are comparable710
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to the AI state. By contrast, noise injection leads to a strong overlap of the two distributions

resulting in impaired temporal processing.

Figure 6. Effects of neuronal and synaptic response functions on stability. (A) For fixed

network and control parameters (J,d) and (K,dc) respectively the stability of the closed-loop715

system changes with the operating point (µ, σ). (B) The static gain Gs is the dominant fac-

tor for stability (see main text and Figure 6 - figure supplement 1). Lighter shades of red

correspond to higher gain Gs. The gain changes significantly even along the constant firing

rate lines (blue lines, 10-60 sp/s). (C) The most stable control is achieved if the difference

∆d = (d+2τr)−(dc+b/2) between effective delays of control and synaptic kernels is minimized.720

The blue dashed line corresponds to d = dc where the optimal kernel width is b = 4τr. It

predicts correctly the stable regime for the range where atan(ωτr) ≈ ωτr (see Methods). In our

simulations the effective control delay is dc,eff = 7 ms, which is very close to the optimal value

(star). In panels (A) and (C) the stable and unstable regimes are marked by red and white

colors respectively.725

Figure supplement 1. Static gain.

Figure supplement 2. Control kernels.

Figure 7. Creating oscillations. DFC can also be used to create rather than suppress oscilla-

tions. (a) E-I network. Switching on the controller at t=250 ms causes oscillatory activity. (b)730

Population activity of excitatory (blue) and inhibitory neurons (red). (c) Single membrane po-

tential trajectories of ten randomly chosen excitatory neurons. Averaged trace of subthreshold

dynamics is shown in red.

Figure 8. Recovery of network computations. DFC decreases the effective coupling between

the neurons steering the system back to its original operating point and restoring the original735

transfer function T1(ω). Alternative approaches, e.g. noise injection may suppress oscillations,

but they drive the system to a dynamical regime characterized by a different transfer function

T2(ω) where physiological computations are impaired.
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Effects of neural heterogeneity: bursting neurons740

We test how well DFC performs under neural heterogeneity by substituting a fraction of regular

spiking neurons with bursting ones. This particular choice is motivated by the fact that around

30% of neurons in the GPI/STN (,46H. Bergman: personal communication) exhibit bursting

activity. We used a novel implementation of a bursting neuron type, in which the f-I curve of

the neuron is not affected by the generation of bursting spike patterns (Saharasnamam, Vlachos,745

Aertsen, Kumar, under revision). It is evident that the existence of bursting neurons does not

decrease the efficacy of the controller, which upon activation sufficiently suppresses oscillations

(Figure 2 - figure supplement 1). These results suggest that DFC is effective in a wide range

of networks where single neuron properties may be of secondary importance. Indeed theoretical

work on the control of time-delayed system suggests that DFC is applicable to any system750

that undergoes a supercritical Hopf bifurcation as well as other types of bifurcations.6,47 Thus,

for the application of DFC on the mean-field of the network activity neuronal heterogeneity

does not pose a serious problem, which renders DFC particularly relevant for neuroprosthetic

applications.
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Figure 2 - figure supplement 1. DFC control in heterogeneous networks. (a) Raster plot.
Replacing regular spiking by bursting neurons (top 30% in excitatory and inhibitory population)
does not compromise the effects of control. (b) Population activity of E-neurons (blue) and I-
neurons (red). (c) Single membrane potential trajectories of ten randomly chosen E-neurons in
the network. The averaged trace of the subthreshold dynamics is shown in red.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2015. ; https://doi.org/10.1101/030189doi: bioRxiv preprint 

https://doi.org/10.1101/030189


47

14 16.5 19
µ    (mV)

1.0

1.4

1.8

2.2

Ne
t c

ha
ng

e

Gs

14 16.5 19
µ    (mV)

Rn (ωcr)

14 16.5 19
µ    (mV)

S(ωcr)
a b ca b ca b ca b ca b ca b ca b ca b ca b ca b c

Figure 6 - figure supplement 1. Static gain. In order to maintain constant firing rates in
each population we increase the mean input µ while decreasing the variance of the input σ. (a)
Moving in the state-space while maintaining the firing-rates yields significant changes in the
static gain Gs. (b) The changes in the normalized neuronal response Rn are modest (b) and
the changes in the normalized synaptic response Sn are negligible (c).
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Supplementary figure 1. Adaptive parameter tuning. An adaptive procedure is used to find
the optimal value for the control gain K. (a) I network. Switching on the controller at t=100
ms results in suppresion of oscillations. (b) Population activity of inhibitory neurons (blue). (c)
The algorithm converges to an optimal value (red dashed line) for the control input within 200
ms after initiation of the procedure.
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Supplementary Table I: Model parameters755

Neuron Parameters

Spike threshold uth 20 mV

Reset potential ur 14 mV

Resting potential urest 0 mV

Refractory period tref 1 ms

Membrane capacitance Cm 250 pF

Membrane time constant τm 10 ms

Synaptic Parameters

Synaptic rise time τr 1 ms

Synaptic decay time τd 1 ms

Synaptic weight J

Synaptic delay d 2 ms

Input Parameters

Inhibitory network

Input, mean - I population µI 14 mV

Input, variance - I population σI 6 mV

Excitatory-Inhibitory network

Input, mean - E population µE 20.8 mV

Input, mean - I population µI 16.5 mV

Input, variance - E population σE 20.8 mV

Input, variance - I population σI 16.5 mV

Network Parameters

Inhibitory network

Number of inhibitory neurons NI 10, 000

Excitatory-Inhibitory network

Number of excitatory neurons NE 8, 000

Number of inhibitory neurons NI 2, 000

Control Parameters

Inhibitory network

Control input IK 0− 300 mV

Control delay, direct control dc 0− 30 ms

Control delay, differential control dc1,dc2 0− 30 ms, 1 ms

Excitatory-Inhibitory network

Control gain K 0− 300 mV

Control delay, direct control dc 0− 30 ms

Control delay, differential control dc1,dc2 0− 30 ms, 1 ms
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