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Abstract 
Plasmids are central contributors to microbial evolution and genome innovation. Recently, they have 
been found to have important roles in antibiotic resistance and in affecting production of metabolites 
used in industrial and agricultural applications. However, their characterization through deep 
sequencing remains challenging, in spite of rapid drops in cost and throughput increases for sequencing. 
Here, we attempt to ameliorate this situation by introducing a new plasmid-specific assembly algorithm, 
leveraging assembly graphs provided by a conventional de novo assembler and alignments of paired-
end reads to assembled graph nodes. We introduce the first tool for this task, called Recycler, and 
demonstrate its merits in comparison with extant approaches. We show that Recycler greatly increases 
the number of true plasmids recovered while remaining highly accurate. On simulated plasmidomes, 
Recycler recovered 5-14% more true plasmids compared to the best extant method with overall 
precision of about 90%. We validated these results in silico on real data, as well as in vitro by PCR 
validation performed on a subset of Recycler’s predictions on different data types. All 12 of Recycler’s 
outputs on isolate samples matched known plasmids or phages, and had alignments having at least 97% 
identity over at least 99% of the reported reference sequence lengths. For the two E. Coli strains 
examined, most known plasmid sequences were recovered, while in both cases additional plasmids only 
known to be present in different hosts were found. Recycler also generated plasmids in high agreement 
with known annotation on real plasmidome data. Moreover, in PCR validations performed on 77 
sequences, Recycler showed mean accuracy of 89% across all data types – isolate, microbiome, and 
plasmidome. Recycler is available at http://github.com/Shamir-Lab/Recycler 
 
Introduction  

Plasmids are extra-chromosomal DNA segments carried by bacterial hosts. They are usually shorter 
than host chromosomes, circular, and encode nonessential genes. These genes are responsible for 
either plasmid-specific roles such as self-replication and transfer, or context-specific roles that can be 
beneficial or harmful to the host depending on its environment. Along with viruses and transposable 
elements, plasmids are members of the group termed mobile genetic elements [1] as they transmit 
genes and their selectable functions between microbial genomes. Plasmids play a central role in 
horizontal gene transfer [2], and thus genome innovation and plasticity - fundamental forces in 
microbial evolution.    

Much interest has recently arisen for plasmid extraction and characterization, in particular because of 
their known roles in antibiotic resistance and in increasing metabolic outputs of agricultural or industrial 
byproducts. For instance, antibacterial resistance genes encoded on plasmids have long been known as 
a major issue for human health in clinical practice [3], but are also one of today’s standard tools in 
microbiology and genetics when used to select for specific cells [4]. In order to derive plasmid 
sequences (which may be known or novel), one may choose from the  following approaches: sequence 
already isolated microbes with their residing plasmids, sequence the overall microbial community of 
genomes (termed metagenome) from some environment, or, as was recently described, sequence only 
the overall plasmid fraction from a given environment  (termed plasmidome) [5],[6]. The first technique 
obtains a mixture of chromosomal and plasmid DNA occurring together in a single strain. Since 
sequenced reads are devoted to only a few different sequenced DNA elements (the genome in question 
or any of its mobile elements), each is expected to be highly covered, and thus for species having low 
repeat content a good assembly can be achieved.   
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For natural environments containing many elements, often including those that are difficult to culture 
[7] in a lab, metagenome assembly is attempted. This technique allows a much broader view of all taxa 
present and their plasmids, but is limited in that the characterization of each individual element depends 
on its coverage in the mixed DNA sample and the frequency of co-occurring repeats shared among 
different elements of the sample. Resulting assembled genomes of elements that are rare in the 
environment are thus often fragmented, and very high coverage [8] is needed for accurately assembling 
them. However, assembly of metagenomes remains a highly active area of research: current assembly 
outputs are lacking and do not represent the true genetic capacity and synteny of genomes present in 
complex microbial communities. Since most of the DNA in these environments is due to host genomes, 
this approach currently provides only limited resolution of plasmids. 
 
Most recently, a third technique has emerged that allows recovery of far greater numbers of plasmids. 
Plasmidome sequencing [5], [6], [9] allows nearly all sequencing resources to be devoted to circular 
DNA. Using a protocol described in [5], chromosomal DNA is filtered out and circular DNA segments 
are selectively amplified. Based on this protocol, hundreds of new plasmids were identified in the cow 
rumen [6] and rat cecum [9]. In [9], Jørgensen et al. applied the protocol introduced in [5] combined 
with bioinformatic validation of circularity. This post-assembly analysis resulted in a 95% PCR 
validation rate out of 40 randomly selected assembled contigs. This success raises the prospect of in 
silico refinement of plasmids beyond the initial assembly. Although Jørgensen et al.’s method was 
shown to have a high validation rate, its output is limited by the contiguity of the underlying assembler's 
contigs (in their case IDBA-UD [10]), because it provides no means of combining multiple overlapping 
contigs to form cycles. It is a filtering process meant to identify probable circular sequences among 
sequences already output by the assembler. To date, no tools for plasmid assembly from short reads 
have been introduced to address these limitations. 
 
In all of the above approaches plasmid assembly is hindered by several inherent characteristics 
derived from their mobile nature. These characteristics include their tendency to carry repetitive 
elements such as insertion sequences and to share genes with other plasmids and microbial genomes. 
In the context of de novo assembly, repeats cause collapse of linear sequences sharing them as 
subsequences. This creates ambiguity in the sense that it becomes unclear which extensions entering 
the repeat should be paired with those exiting it, where sequences begin and end, and whether there 
are unique terminal points at all as opposed to the sequence being circular. De novo assembly for the 
sake of identifying plasmids can be augmented by long-read sequencing [11], [12] because such reads 
may be sufficiently long to bridge repeats short reads cannot. However, this approach is primarily 
limited to isolates or low complexity environments. This is evident in that long reads often depend on 
single molecule sequencing without amplification, thus only capturing relatively abundant DNA 
fragments. Besides repeats, chimeric sequences also present significant challenges to assembly, in that 
they create false connections between sequences and thus may lead to misassemblies. 
 
Here, we wish to use more refined analysis in order to improve de novo assembly of sequenced 
plasmids. Our inputs are an assembly graph G = (V,E), and the mapping of paired-end reads responsible 
for the assembly to its nodes. The set of nodes V are sequences having associated lengths and coverage 
levels, and the set of arcs E is composed of directed connections among the nodes. Arcs are the result 
of branch points in the underlying de Bruijn graph: a branch node has outgoing arcs to two (or more) 
different nodes based on overlaps, and in many cases the assembler does not have a definite way of 
choosing which extension is true in order to simplify the branch into a linear path. We aim to generate 
a set of putative cycles that are likely to be plasmids, and assign a coverage level for each one.  
 
After defining this problem formally below, we present an algorithm (and its implementation) designed 
to address it, called Recycler. Recycler leverages assembly graphs output by the SPAdes assembler [13] 
to specifically enable de novo assembly of plasmids. We show it greatly improves recovery of plasmids 
over naive assembly and alternative methods, namely Jørgensen’s and SPAdes’ built-in repeat 
resolution, introduced in [14]. We demonstrate Recycler’s performance by applying it on both simulated 
and real data. We find that Recycler greatly increases recall while maintaining high precision. This is 
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established via comparisons performed on simulated plasmidomes of various sizes. We also show that 
Recycler can be applied for plasmid assembly on real data from a bovine rumen plasmidome and 
metagenome, and from two different Escherichia coli isolate strains. In the isolate cases, Recycler 
recovered most known plasmids, and predicted additional sequences that matched known mobile 
elements from different hosts – all of which were identical or nearly identical to known reference 
sequences. In all cases on real data, Recycler either matched or exceeded the proportion of outputs 
matching plasmid annotation, as described in [6]. 
 
Related work We note plasmid assembly is a multi-assembly problem, as described in the context of 
RNA-Seq transcriptome assembly [15]. Formulations of such problems often aim to generate a minimal 
set of paths that maximize agreement with observed data [15]–[17]. These methods usually employ 
network flow formulations, which admit polynomial-time algorithms for minimizing flow cost on the 
network; this flow corresponds to a convex function of the sum of coverage differences between 
observed and estimated coverage levels. However, these methods resort to heuristics in selecting a 
minimal set of paths to cover the entire graph, as splitting a flow into a minimal number of path and 
cycle components is an NP-hard problem [18]. 
 
Recycler does not aim to generate a set of paths explaining all coverage levels, and thus does not depend 
on a global objective function encompassing all nodes or edges. This approach is avoided because of 
the presence of linear paths due to either plasmids not fully covered during sequencing or bacterial host 
genomes housing plasmids, which may introduce noise into coverage levels observed and will not be 
part of the solution. Avoiding a global objective imposing parsimony on paths also allows Recycler to 
benefit from a polynomial time algorithm for generating 'good' cycles. Thus, Recycler's approach is 
similar to StringTie [19], in that both repeatedly seek locally best paths or cycles and use coverage 
levels estimated on those to update coverage levels on the original graph, until some stopping criterion 
is met. We note the set of cycles desired is explicitly not minimal, as in cycle cover formulations [20]. 
For example, given a figure 8 component (Supplementary figure S1, I.) Recycler may represent it as 
two cycles separated by distinct coverage levels, where a minimal cover would use only one cycle. 
Instead, we wish to cover as much of the graph as possible with 'good' cycles. 
 
Methods 
Overview of Recycler We present the input to our problem as a directed graph with vertices 
corresponding to non-branching sequence contigs and edges corresponding to connecting overlapping 
k-mers. (The graph can be viewed as obtained from the de Bruijn graph of order k of the sequence data 
by contracting edges (u,v) whenever u has outdegree 1 and v has indegree 1, and the sequence contig 
of the new node replacing u and v is the concatenation of their sequences). Each node has a coverage 
value reflecting its abundance in the input sequences. We search for cycles in the graph that will 
correspond to plasmids. Cycle sequence length, number of vertices, and coverage uniformity are 
factored in the selection process. We also use paired-end read mappings including mates on different 
nodes as a proxy for which of the nodes may have emerged from the same physical DNA fragment. 
This provides a means of inferring whether a candidate cycle is a plasmid or a genomic segment 
including repeats that lead to ambiguous cycles in the graph. Once a best cycle is selected, its latent 
coverage level is determined and subtracted from those of all participating nodes. Nodes whose 
resulting coverage values become non-positive are then removed from the graph, allowing only those 
with some remaining coverage the opportunity to take part in additional cycles. Hence, the whole 
process can be viewed as greedily "peeling off" cycles from the graph. Ideally, one would like the 
process to end in an empty graph, in which case the input graph would be exactly the union of the cycles 
found. In reality, the process is stopped when quality criteria for new cycles in the remaining graph are 
unmet. 
 
Notations and Definitions Our input is a directed graph G = (V,E), where V is a set of linear sequences 
having  either a branch-point or terminal k-mer at each end and no internal branch-points. E is the set 
of overlaps between nodes, where E = {(u,v): the (k-1)-mer suffix of u = the (k-1)-mer prefix of v}. We 
call a node in 𝐺	
  simple if its indegree and outdegree are 1. A node v corresponding to sequence s of 
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length l(s) is assigned two positive values, len(v) and cov(v). len(v) = l(s) − k + 1	
  is called the length 
of the node (the subtraction is in order avoid double-counting bases common to overlapping segments 
at their ends). cov(v), its coverage, reflects the average number of times each k-mer in s appears in the 
input read data. The input can be produced by a short read assembly tool. We further assign a weight 
𝑤 𝑣 = 1

234 4 567(4)
  for each node v, resulting in low weight for high coverage and long nodes. Longer 

contigs tend to be less prone to random fluctuations in coverage, and are thus more reliable coverage 
indicators. For each cycle c in the graph, we assign each node 𝑣 ∈ 𝑐  a value 𝑓(𝑐, 𝑣) representing its 
length fraction in c: 𝑓 𝑐, 𝑣 = 	
   567(4)

567(4)<∈=
. The value 𝑓(𝑐, 𝑣) is used to define the mean and standard 

deviation of weighted coverage of cycle c as 𝜇 𝑐 = 	
   𝑓 𝑐, 𝑣 𝑐𝑜𝑣 𝑣 	
  4∈2	
   and	
  𝑆𝑇𝐷 𝑐 =

[ 𝑓 𝑐, 𝑣 𝑐𝑜𝑣 𝑣 − 𝜇 𝑐
D
]4∈2  respectively, and consequently the coefficient of variation of c, 

𝐶𝑉 𝑐 = 𝑆𝑇𝐷(𝑐)/𝜇(𝑐).	
   CV(c) is used to allow direct comparison of variation levels between cycles, 
independently of the magnitude of coverage of each. CV is indicative of coverage uniformity along the 
cycle, and plasmids are expected to have uniform coverage levels that in many cases are different from 
other plasmids and their hosts. Thus, a cycle with a lower CV is more likely to correspond to a plasmid 
than cycles with higher CV. 
 
Our approach Intuitively, plasmids should form cycles that are distinctive from the rest of the graph 
and have near uniform coverage. We also expect plasmid cycles to include few nodes, as each additional 
node introduced for a fixed sequence length increases fragmentation and the tendency of nodes to be 
common to more than one path. With this in mind, we search for ‘good cycles’ in the graph that 
potentially correspond to plasmids. Formally, we define a good cycle as a simple cycle 𝑐	
  	
   in the graph 
satisfying the following constraints:  
 
1. Minimum path weight for some edge: ∃ 𝑢, 𝑣 ∈ 𝑐 such that 𝑐 ∖ (𝑢, 𝑣) (the path obtained by 
removing (𝑢, 𝑣) from 𝑐) is a minimum weight path (by sum of weights w(v)) from v to u.  
2. Low coverage variation: 𝐶𝑉(𝑐) ≤ 𝜏/|𝑐| , where τ is a defined threshold and |𝑐| is the number of 
nodes in 𝑐. 
3. Concordant read mapping: For pair 𝑟1, 𝑟D of paired-end mates, if 𝑟1 maps to a simple node in 𝑐	
  ,	
  then 
𝑟D must also map to some node in 𝑐. 
4. Sufficient sequence length: 𝑙𝑒𝑛 𝑣 ≥ 𝐿	
  4∈2 , where 𝐿	
   is a defined threshold. 
 
The first constraint is critical in order to avoid merging of two or more plasmids that are connected 
through a repeated region (supplementary figure S1, panel I.). In addition, lower weight cycles 
correspond to longer sequence length and higher coverage nodes, and tend to have fewer nodes. 
Furthermore, for each edge this constraint uniquely determines at most one cycle that passes through 
the edge, thus avoiding consideration or enumeration of an exponential number of possible cycles.  We 
note there are special cases allowing for cycles that visit a single node more than once; such a case is 
shown in supplementary figure S1, panel II. The second constraint ensures that the coverage variation 
is low, thus again increasing our confidence that the cycle corresponds to exactly one plasmid. 
Moreover, this constraint implicitly ensures high coverage cycles, since low coverage cycles tend to 
have higher CV value. The third constraint exploits paired-end reads. Suppose we have a read pair 𝑟1, 𝑟D 
and 𝑟1 maps to a certain node in the candidate cycle 𝑐. We expect 𝑟D to map to the same cycle, unless 
𝑟1 falls on a node that is common to 𝑐 and some other path 𝑝	
  overlapping with it. In that case 𝑟D	
  may 
map to 𝑝	
  as well. Simple nodes are less likely to overlap with several cycles and path, and the third 
constraint leverages this observation. We waive this constraint in case the coverage of 𝑐 is sufficiently 
high, as in such cases the cycle "stands out" from the background coverage. See Supplement for details. 
 
The above definition of a good cycle provides a mechanism for the identification of putative plasmids. 
Recycler processes each strongly connected component separately. It repeatedly finds a good cycle with 
minimum CV value, assigns it latent coverage equal to the mean cycle coverage and subtracts that 
coverage from the graph, creating a new residual coverage (Figure 1). The weights of the vertices in 
the cycle are updated based on their new coverage values, and  vertices whose resulting coverage values 
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become non-positive are removed from the graph, allowing only those with positive residual coverage 
the opportunity to take part in additional cycles. After each such change, cycles are recalculated the 
same way using the updated coverage levels. This process continues as long as new good cycles are 
found. To avoid examining a potentially exponential number of cycles, we consider one minimum 
weight cycle through each edge in the graph. Algorithm 1 sketches the procedure for a single 
component. See the supplement for additional details.  
 

Algorithm 1 ( Inputs:	
  𝐺 = 𝑉,𝐸, 𝑙𝑒𝑛, 𝑐𝑜𝑣,𝑤 , 𝜏,	
  	
  	
  𝐿; Output: Σ, the set 
of cycles  ) 
 
Compute shortest cycles passing through each edge: 
For each edge (u,v)  
 Compute a minimum weight path p from v to u, if one exists 
 Compute the CV of the cycle (p,(u,v))  
Return the set of cycles S 
 
While Σ changes: 

Compute a set S of shortest cycles passing through each edge 
Consider each cycle c in S in increasing order of CV values 
If c is good and not in Σ 

  Add c to the solution set Σ 
  Compute the latent coverage level of c 
  Update the residual coverage of all cycle nodes, removing 
  nodes with non-positive residual coverage 
 
Output Σ and end 

 
Complexity Algorithm 1 presented above terminates in polynomial time. In each iteration, if any  good 
cycles exist, one is chosen and its mean coverage is calculated. There is at least one node in the cycle 
with coverage smaller than the mean coverage of the cycle, which is subsequently removed from the 
graph. Therefore, in each iteration at least one node is removed, and the number of iterations is bounded 
by the number of nodes. Using Johnson’s algorithm [21], the runtime of each iteration is  
𝑂(|𝑉|Dlog	
   |𝑉| + |𝑉||𝐸|). Running times are further reduced by computing the strongly connected 
components of 𝐺 and working separately on each one. 
 
Generating simulated plasmidomes We simulated error-free paired-end reads from plasmids using 
BEAR [23], a read simulator designed to generate artificial metagenome data. To avoid introducing 
coverage drops at sequence ends typical of linear sequences, we modified BEAR 
[https://github.com/rozovr/BEAR] to allow sampling of reads bridging reference sequence ends, as is 
observed for circular sequences. Plasmid reference sequences were selected from the NCBI plasmids 
database and from plasmid sequences reported in [6], filtered to include 2760 sequences with a length 
range of 1 to 20 kbp with a mean of 6337 bp. Five datasets were created, composed of 100 bp mates 
(read pair ends), with insert sizes ∼ 𝑁(500,100), varying from 1.25M pairs sampled on 100 reference 
sequences doubling successively up to 20M pairs sampled on 1600 sequences.  Abundance levels were 
assigned using BEAR’s low complexity option, which concentrates high abundance to few species 
using a power function with parameters derived from [24]: the function takes the form cid, where c=31.4 
and d=-1.28, and i is iteratively assigned values from 1 to the number of species simulated. These values 
are then normalized by their sum to yield a probability distribution. 
 
Evaluating performance To test recovery of the ground truth sequences by each plasmid detection 
program, we used the Nucmer alignment tool [25], which is designed for efficiently comparing long 
nucleotide sequences such as those of whole plasmids or chromosomes. In order to simplify this 
process, we modified reference sequences to remove non-ACGT characters before read simulation and 
alignments. To avoid fragmented alignments caused by differences in start positions, we concatenated 
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each reference sequence to itself before mapping; this allowed identification of complete matches at the 
center of the concatenated contigs when they were present. Output cycles of each tested program were 
defined as true positives (TP) if they had 100% identity hits covering at least 80% of one of the reference 
sequences.  False positives (FP) were any output cycles not meeting these criteria, and false negatives 
(FN) were reference sequences not aligned to in the output set using these criteria. Based on these 
conventions, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
   bc

bcdec
	
  	
  and 𝑟𝑒𝑐𝑎𝑙𝑙 = 	
   bc

bcdeg
	
  .  We used the score 𝐹1 = 	
   D∗jk62lml37∗k62n55

jk62lml37dk62n55
 

[26] to combine these measures in a manner that weighs precision and recall equally.  
 
Primer design and PCR validation of plasmid contigs The plasmidome dataset was divided into two 
separate subsets, including simple (single node) cycles (N=370) and complex (multi-node) paths within 
the graph (N=50). Each of these was divided into coverage bins, and selected representatives from each 
bin (High coverage –60-1000x, mid-high coverage - 15-60x, mid-low coverage – 5-15x, low coverage 
– 1-5x) were validated by PCR. Overall, 24 simple cycles and 39 complex cycles were chosen for PCR 
validation. From the metagenome dataset (N=40), all assembled plasmids were of the same coverage 
bin (1-5X)  from which 10 plasmids were randomly selected for validation. This was also the case for 
the E. coli E2022 isolate (N=4) for which all plasmids were validated by PCR, aside from a recovered 
Phi X control sequence. Primers were designed to produce an amplification product only if their 
template is circular; this was achieved by directing the opposing primers towards the edge of the linear 
plasmid contig. PCR reactions were carried out using Advantage GC Genomic LA PCR Polymerase 
(Clontech) according to the manufacturer’s instructions. The PCR reactions were as follows: 1.5 µl 
Advantage buffer (X10), 0.6 µl of each primer (5mM), 0.15 µl Ex Advantage GC Genomic LA DNA 
Polymerase, 100 ng of template DNA, 1.5 µl of dNTPs (10mM) and DDW was added to a final volume 
of 25 µl. All PCR reactions were carried out in a Sensoquest thermocycler (Gottingen, Germany).   
 
 
Results 
We first simulated plasmidomes using known references. We used these data sets to assess Recycler’s 
precision and recall (along with those of alternative methods) by comparing predictions against the 
ground truth known by the simulation design. We also tested Recycler on real data from two E. Coli 
isolates, and both a cow rumen metagenome and plasmidome[6]. For the bacterial isolates that have 
been sequenced, predicted plasmids were compared against the reference sequences directly. Since no 
references are available for metagenome and plasmidome data, we evaluated the accuracy by PCR 
validation [9] and by measuring the proportion of predicted plasmids having proper annotation as done 
in [6]. Recycler’s inputs were assembly graphs generated by SPAdes version 3.6.2 [13], and alignments 
generated by BWA version 0.7.5 [22]. 
 
Simulated plasmidomes We simulated paired-end reads from known plasmids, and created five 
datasets of 100, 200, 400, 8000 and 1600 plasmids. Plasmid abundance was distributed so that few 
plasmids have high abundance. Dataset sizes were 1.25, 2.5, 5, 10 and 20M pairs, respectively (see 
Methods for details).  Each such dataset was assembled with SPAdes and subsequently its output 
contigs and assembly graphs were used as inputs to the tested methods. Recycler was compared with 
SPAdes with and without repeat resolution (RR), and to a simplified version of Jørgensen’s method 
(described in the appendix). We used SPAdes’ outputs before the repeat resolution stage as inputs to 
Recycler and to a Jørgensen’s method, as we found that contigs have greater precision before RR when 
compared to reference sequences (as shown in supplementary Table 1).  The mapping results are 
presented in supplementary Table 1 and Figure 2.  
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Figure 1 Recycler work-flow. A. The assembly graph. B. A single component is selected from the assembly graph (framed in 
A) and represented with vertices for contigs (arbitrarily colored for identification) and edges for connecting k-mers. C. The 
reduced component after tip removal. Vertex values are observed contig coverage. For simplicity, all lengths are assumed to 
be equal and not shown. D.-F. Two successive steps of peeling cycles are shown with their respective latent coverage 
assignments. Uncolored vertices correspond to contigs with zero coverage that are removed. 
 
As expected, recall generally decreased as the number of simulated plasmids increased.  This was 
common to all tested methods. In general, we found that Recycler generated more predictions than other 
methods, leading it to have higher recall than alternative approaches while maintaining high (~90%) 
precision. The net performance effect is shown in Figure 2 and Table 1 in the supplement: Recycler 
maintains the lead in all cases with 5-14% advantage in both F1 and fraction of true positives. We also 
found that the number of additional Recycler true positives over those provided by SPAdes generally 
increased with higher complexity; this culminated in Recycler adding 62 (13%) true positives to 
SPAdes’ output on the 1600 plasmid set (523 vs. 461). 
 
To further characterize Recycler’s performance, we categorized its predictions in terms of mean total 
cycle length, number of segments in the cycle (“steps”), cycle coverage, and CV value calculated at the 
stage the cycle was removed. For each category, values were subdivided into five ranges. In Figure 3, 
we show the precision values and the relative proportions of counts in the specified ranges. Based on 
this stratification, it can be seen in Figure 3 that Recycler shows little dependence on mean coverage or 
length, but does often preclude candidate cycles that have high CV values or number of steps. This is 
reflected in the sharp drop-off in the plots as the number of steps or the CV grows. 
 
Real data 
All of Recycler’s results on real data were subjected to quantification of annotation results as described 
in [6] and compared against cycles present in the output produced by SPAdes. These results are detailed 
below and a summary of them can be found in Table S2 in the Appendix.  
 
Circular integrity of assembled plasmids Overall, 89% of the 77 chosen plasmids were validated as 
circular DNA molecules. The predicted plasmids from the different samples did not differ in the success 
rate of circular validation. As coverage has a key role in de novo assembly and Recycler’s performance, 
we wished to measure whether the integrity of assembled plasmids would be affected by varying mean 
k-mer coverage. To this end, we validated circularity of plasmids of different coverage levels ranging 
from 1x -1000x divided into bins. As can be seen in Figure 1, there was a slightly lower success rate 
for the lower coverage plasmids. However, coverage and validation rate were not found to be 
significantly correlated. Additionally, the high number of predicted plasmids in the plasmidome data 
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set allowed us to measure the effect of the "complexity" of the path on the graph on the integrity of the 
plasmids. When more edges are involved in a cycle, it is more complex, and the chance of noise in 
coverage levels and errors in sequence increases. Thus, we divided this dataset into two bins according 
to path length on the graph: simple: single node (self-edge) paths, complex: two nodes or more. These 
two bins did not show difference in their validation rate, further stressing Recycler’s strength in 
extracting plasmids from complex paths.      
 

 
 
Figure 2: PCR based validation of Recycler's plasmid predictions. The inner most ring (brown) 
describes the different datasets for which PCR validation was carried out. The second ring (green) 
describes the distribution of tested coverage levels among plasmids tested. High coverage: 60-1000x, 
mid-high:15-60x, mid-low: 5-15x, low: 1-5x. The black lines indicate the success rate (written above 
each bar) in PCR validation in each category. Finally, the numbers outside the light orange lines indicate 
the overall success rate for each dataset. Positive validations are those confirming the presence of 
predicted circular sequences (see text). 
 
 
 
E. Coli isolate data We ran Recycler on two E. Coli strains:  JJ1886, downloaded from 
http://www.ebi.ac.uk/ena/data/view/SRX321704, and E2022, sequenced locally. Annotation for 
plasmids found in both strains was provided in [27]; comparisons against Recycler outputs with this 
annotation are reported in Supplementary Tables 3 and 4. Of the five plamids known for JJ1886, 
Recycler output four complete matches (100% identity over 100% length) having lengths 55.9, 5.6, 5.2, 
and 1.6 kbp. It also output three additional sequences which completely matched previously reported 
plasmids: two are known to be present in S. aureus, and one in S. chromogenes. Further tests will be 
needed in order to validate whether these additional hits are truly present in the sequenced sample, and 
furthermore, whether they are stable residents of the tested hosts or were present as a result of 
contamination. When tested on E2022, Recycler performed similarly, recalling most of its known 
plasmids and outputting a few additional cycles that were complete or near complete matches to known 
plasmids and one phage. These results are also presented in Supplementary Table 2. In summary, all 
reported isolate hits represent highly accurate matches to known mobile elements, and most known 
plasmids for these strains were recovered. In both cases Recycler missed the longest known reference 
plasmids; it remains to be seen whether this is due to Recycler’s use of a shortest path formulation, lack 
of significant coverage difference between these plasmids and the host genome, or other factors. 
 

Plasmidome*simple*paths
(N=39)

Plasmidome*
complex
paths***
(N=24)***

Microbiome*
(N=10)

Isolate
(N=4)

High*Coverage

MidBHigh*Coverage

MidBLow*Coverage

Low*Coverage

Positive*Validation

No*Validation

83%

100%
90%

100%
100%

89%

90%

83%

81%

96%

85%

90%

100%
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Plasmidomes data A bovine rumen plasmidome sample was prepared as described in [6]. This data 
consisted of 5.1 M paired-end 101 bp reads (trimmed to varied sizes for the sake of adapter removal) 
with an expected insert size of 500 bp [data available upon request]. Recycler output 420 cycles when 
provided this data. According to ORF prediction performed as in [6], 314 of the 420 had significant 
annotation hits. 96% of those matching annotations either matched plasmid annotations or aligned with 
plasmids reported in [9]. Thus, a majority are likely to be plasmids.  
 
Metagenome data Metagenome data was derived from the rumen of a different cow residing in te same 
stable as the cow used to derive the plasmidome data. This data consisted of 7.5 M paired end 150 bp 
reads with expected insert size of 500 bp [data available upon request]. Recycler produced 40 cycles 
when run on this data. According to ORF prediction, 37 of the 40 had significant annotation hits. 35% 
of those matching annotations either matched plasmid annotations or aligned with plasmids reported in 
[9]. The proportion of reported cycles matching known plasmid annotations was slightly higher than 
for simple cycles output by SPAdes (33%). Overall, this test reflects the trend seen elsewhere [8] of 
weak annotation results emerging from metagenome assembly of highly diverse environmental 
samples. 
 

 
Figure 3 Methods performance on simulated data. Results are shown for SPAdes without repeat resolution (RR), SPAdes with 
repeat resolution, the method of Jørgensen et al, and Recycler.  The contigs of SPAdes before RR were used as input for the 
three other methods.  Recycler also relied on the graph produced at this stage.  F1 score calculation is described in the main 
text.  The x axis shows the number of simulated reference sequences in each case. 
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Figure 4 Recycler's precision, stratified by different properties.  TOP: For simulated reads, true positive (100% identity over 
80% reference length) alignment proportions were tallied inside 5 bins corresponding to value ranges of different properties - 
total assembly length (LENGTH), number of nodes in the cycle (STEPS), mean coverage level on the paths (COVERAGE), 
and cycle coefficient of variation (CV).  Each point represents the precision rate for all simulated plasmids included in that 
range in the specified reference set.  Reference sets are denoted by different colors and marker shapes. Enlarged empty markers 
are used to indicate the absence of any instances having the given property & bin combination. BOTTOM: relative proportions 
of counts inside each bin out of all outputs. 
 
Discussion 
In this article, we describe Recycler, a new algorithm and the first tool available for identification of 
plasmids from short read-length deep sequencing data. We demonstrate that Recycler discovers 
plasmids that remain fragmented after de novo assembly. We have adapted the approach of choosing 
among likely enumerated paths using coverage and length properties, (often applied in transcriptome 
assembly, e.g., [16], [19], [17]) for extracting a specific but common inhabitant of metagenomes. We 
showed that many more real plasmids can be found by only generating likely cycles on the assembly 
graph versus alternative methods. We validated this approach on both real and simulated data. 
 
Recycler displays high recall and precision on simulated plasmidomes, and we have developed a means 
of separating real plasmids from cycles due to repeats in isolate data. As we have noted, coverage can 
be very useful for the latter, but the assumption that coverage will always differ significantly between 
plasmids and their host genome does not hold universally. It is worth noting that as new plasmids are 
identified and their common sequence motifs are observed, both reference-based identification and a 
priori trained prediction of plasmid features can be improved and harnessed for supplementing 
identification based on coverage and length features alone. We aim to investigate how such knowledge 
can be leveraged for increased precision without sacrificing recall.  
 
Further investigation will be needed to assess how plasmids can be extracted from environmental 
samples, in spite of the limitations now hampering metagenome assembly. This is currently challenging, 
as diverse genomes require very high coverage for rare species to be captured, but such high coverage 
data demand computational resources beyond reach of most investigators. While new techniques have 
aimed to address this problem [8], [28], they have yet to see widespread use, and work best when paired 
with multiple samples to allow for species separation by co-abundance signatures. Along with 
addressing these concerns, it remains to be seen whether a mixed approach of pre-screening 
environmental samples for plasmids and computationally filtering them out may benefit metagenome 
graph simplification. 
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Appendix 
 

No. 
Reference 
Plasmids 

SPAdes 
cycles 
before 

RR 

SPAdes 
TPs 

before 
RR 

SPAdes 
cycles 
after 
RR 

SPAdes 
TPs after 

RR 

Jørgensen 
cycles 

Jørgensen 
TPs 

Recycler 
cycles 

Recycler 
TPs 

No. 
added, 

%  

100 58 58 65 60 62 59 67 63 3, 5 

200 83 82 102 84 88 82 103 92 8, 9.5 

400 147 146 171 153 165 151 186 175 22, 14 

800 274 270 319 283 322 282 350 313 30, 
10.6 

1600 437 434 520 461 498 450 576 523 62, 
13.4 

 
Table 1 Counts of output cycles vs. true positives (TPs) for each method. The number of reference plasmids reflects the 
number of sequences that were simulated. The number of cycles reflects the total output by each method, and the true positives 
represent those that match some reference sequence based on alignment criteria defined in the main text. The last column 
shows Recycler’s advantage over SPAdes with repeat resolution in number of plasmids and percentage added. 
 
 

 
Figure S1 Shortest paths through repeats. Nodes are represented as lines, and edges as arrows. For each node x, x’ 
represents its reverse complement node. All node lengths are 1. I.) Recycler will consider only the shortest paths shown as 
candidates. The shortest path criterion described in the Methods section allows Recycler to avoid looping in a path with the 
shape “figure 8.” II.) For the component on the right, Recycler must consider shortest paths including the figure 8 path 
covering the entire component, as R and R’ have different adjacencies. In such cases, Recycler will assign equal parts of the 
coverage to R and R’: each gets 20. This demonstrates the use of the shortest path criteria in only allowing repeated traversal 
of nodes when warranted by coverage and orientation. 
 
 
Jørgensen’s method 
We only used the first part of the protocol described Jørgensen’s method in order to allow for maximal 
recall; the second part involved further filtering (and thus reduction) of the first part’s results. Circular 
contigs were identified by finding those having opposite ends that overlap. These were then refined by 
breaking those that do have such overlaps into halves, and then gluing the far ends by applying the 
minimus2 assembler, part of the AMOS package. 
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Table 2 – Real data results summary 

 E2022 
Recycler 

E2022 
SPAdes 

JJ1886 
Recycler 

JJ1886 
SPAdes 

metagenome 
Recycler 

metagenome 
SPAdes 

plasmidome 
Recycler 

plasmidome 
SPAdes 

No. seqs 
annotated 

as 
plasmids 5 3 7 3 12 10 249 203 
No. seqs 
with hits 

on [9] data 0 0 0 0 1 0 53 50 
No. seqs 
with any 

nr 
annotation 5 3 7 3 37 30 314 264 
total No. 

cycs 5 3 7 3 40 33 420 361 
% 

annotated 
cycs as 

plasmids 100 100 100 100 32 33 79 77 
% 

annotated 
cycs as 

plasmids 
or [9] 100 100 100 100 35 33 96 96 

% 
annotated 

at all 100 100 100 100 93 91 75 73 
 
 
Table 3 - plasmids detected by Recycler on E. Coli strain JJ1886 
Reference seq. length (Kb) Output seq. length (Kb) Top blast hit ID (%) Len. (%) 

1.6 1.6 JJ1886 plasmid 100 100 

-- 1.6 S. Aureus plasmid 100 100 

-- 2.2 S. Aureus plasmid 100 100 

-- 2.4 S. Chromogenes plasmid 100 100 

5.2 5.2 JJ1886 plasmid 100 100 

5.6 5.6 JJ1886 plasmid 100 100 

56.0 56.0 JJ1886 plasmid 100 100 

103 -- -- -- -- 
 
Tables 3, 4: Recycler output sequences compared to known reference sequences of two E. Coli strains. Values shown 
are sequence lengths and percentages of sequence identity (ID) and reference sequence sequence length covered (Len). 
Cells marked with ‘—‘ reflect unmatched sequences – either Recycler output a sequence not present in the reference 
set, or a sequence in the reference set wasn’t found by Recycler. 
 
Table 4 – plasmids detected by Recycler on E.Coli strain E2022 
Reference seq. length (Kb) Output seq. length (Kb) Top blast hit ID (%) Len. (%) 

-- 1.5 E. Coli FHI63 plasmid 100 100 

2.2 2.1 E. coli GXEC6 plasmid 100 100 

4.1 4.1 Jørgensen et al. plasmid 100 99 

-- 5.4 Enterobacteria phage phi-x174 100 100 

35 33.1 E. Coli GXEC6 plasmid 97 99 

98.3 -- -- -- -- 
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103 -- -- -- -- 
 
 
Algorithm details 
 

Definitions, notation For all 𝑣	
   ∈ 𝑉,wp(v) 	
  = 	
  
1

567 4 234q(4)
. These are used to find minimal cost paths 

in calls to Johnson’s [21] algorithm. When applying Johnson’s algorithm, each edge (u,v) is assigned 
weight w(u), as Johnson’s algorithm depends on edge weights instead of node weights to calculate 
minimum cost paths. Each time a cycle c is peeled from a component, coverage levels are updated to 
be 𝑐𝑜𝑣ld1 = max	
  (𝑐𝑜𝑣l − 	
  𝜇 𝑐 , 0	
  ) for all nodes in c.  
 
len(c) = 𝑙𝑒𝑛 𝑣4∈2  
|c| = the number of contigs in c 
thresh is set to the 75th percentile of simple node coverage levels for plasmidome data sets, and the 
95th percentile for isolate data sets. This threshold is used in the testing for good paths. We use a 
different threshold for the two scenarios as it is easier to distinguish between coverage levels typical 
for the genome vs. foreign elements on isolate data than it is for more diverse environmental samples. 
 
‘Good’ path conditions: 
-   len(c)	
  ≥ 	
   ℓ𝓁 vl7  
-   CV(c) ≤ 	
   w

|2|
 

-   CASE_A: All reads 𝑟l1	
  mapping to simple nodes in path c have their mates 𝑟lD	
  mapping to some 
𝑣l	
  such that 𝑣l	
   is on c 

-   CASE_B: µ(c) ≥ thresh 
Define 𝒓𝒊, 𝒗𝒊 	
  as an alignment of read ri to vi . Then the set of paired-end reads with mates aligned to 
different contigs is denoted as 𝑨𝑮𝑹 = { 𝒓𝟏, 𝒗𝟏 , 𝒓𝟐, 𝒗𝟐 :	
  𝒓𝟏 = 	
  𝒎𝒂𝒕𝒆 𝒓𝟐 , 𝒗𝟏, 𝒗𝟐 ∈ 𝑽, 𝒗𝟏! = 𝒗𝟐} 
Define SCC(G) to be the set of strongly connected components of G 
 
 
 
Algorithm: 
Inputs:	
  𝐺 = 𝑉, 𝐸 , 𝜏,	
  	
  	
  ℓ𝓁vl7	
  	
  	
   , AGR 
 
func recycle(G, AGR, 𝜏,	
  	
  	
  ℓ𝓁vl7	
  	
  	
  ): 
 cycles = {(u,u) : u	
  ∈ 𝑉 is a simple node} 
 for COMP in SCC(G): 
  cycles = cycles U peel_cycles(COMP, AGR, 𝜏,	
  	
  	
  ℓ𝓁vl7	
  	
  	
  ) 
 return cycles 
    
 
func peel_cycles(COMP, AGR):  
 paths = get_shortest_pred_paths(COMP) 
 last_path_count = 0 
     last_node_count = 0 
 while(|final_paths| ≠ last_path_count OR |VCOMP | ≠  last_node_count): 
  last_node_count = | VCOMP | 
          last_path_count = |final_paths| 
  paths = sort_by_CV(paths) 
  curr_path = paths.pop() # get lowest CV path 
  if is_good_path(curr_path, AGR, ) and curr_path ∉ final_paths: 
   update_path_coverage_vals(curr_path, COMP) 
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   final_paths = final_paths U {curr_path}     
  paths = get_shortest_pred_paths(COMP) 

return final_paths 
 
func get_shortest_pred_paths(comp): 
 paths = {} 
 shortest_paths = Johnson(G,W) 
 for v in V_comp: 
  preds = {u: (u,v) ∈ E_comp} 
  (path, path_cost) = shortest_paths(v,u) 
  if path_cost < ∞: 
   paths = paths U {path} 
 return paths 
  
func is_good_path(path, AGR): 
 if (len(path) ≥ ℓ𝓁vl7) AND ( (IS_CASE_A(path)) OR (IS_CASE_B(PATH, AGR)) ): 
  return TRUE 
 else:  
  return FALSE 
 
func update_path_coverage_vals(path, G): 
 µ = weighted_mean_coverage(path) 
 for v in path: 
  cov(v,G) = cov(v,G) – µ 
  if cov(v,G) ≤ 0: 
   remove(v,G) 
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