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ABSTRACT

Two-photon calcium imaging of the brain allows the spa-
tiotemporal activity of neuronal networks to be monitored at
cellular resolution. In order to analyse this activity it must first
be possible to detect, with high temporal resolution, spikes
from the time series corresponding to single neurons. Previ-
ous work has shown that finite rate of innovation (FRI) theory
can be used to reconstruct spike trains from noisy calcium
imaging data. In this paper we extend the FRI framework for
spike detection from calcium imaging data to encompass data
generated by a larger class of calcium indicators, including
the genetically encoded indicator GCaMP6s. Furthermore,
we implement least squares model-order estimation and per-
form a noise reduction procedure (‘pre-whitening’) in order
to increase the robustness of the algorithm. We demonstrate
high spike detection performance on real data generated by
GCaMP6s, detecting 90% of electrophysiologically-validated
spikes.

Index Terms— Calcium imaging, Calcium transient de-
tection, Finite rate of innovation, GCaMP6s

1. INTRODUCTION

Optical imaging of populations of neurons at cellular resolu-
tion may prove crucial to developing our understanding of the
function of the brain. In order to analyse the spatiotemporal
activity of neuronal networks, one must first be able to de-
tect, with high temporal precision, the time at which action
potentials (or spikes) were fired from individual neurons.

As the concentration of intracellular free calcium is a
reliable indicator of spiking activity, several optical imaging
methods rely upon calcium-sensitive fluorescent indicators
(calcium indicators) which visualise spiking activity via a
change in their fluorescence intensity. Recent advances
in protein engineering have produced genetically encoded
calcium indicators (GECIs) which have, for the first time,
exceeded the sensitivity of the traditionally used synthetic
indicators [1]. GECIs have a proven capability for imaging
the same in vivo neuronal populations over multiple weeks
[2] and they can be targeted to selected cellular and subcel-
lular compartments. Due to the above advantages of GECIs,
they are becoming the preferred tool for calcium imaging

experiments. Spike detection algorithms which are suited to
the kinetics of these indicators are thus required.

A spike in a neuron produces a pulse with a character-
istic shape in that neuron’s fluorescence signal, this pulse is
referred to as a calcium transient. Several algorithms employ
template-matching approaches which locate portions of the
fluorescence signal which correspond to the expected pulse
template [3, 4, 5]. The performance of such algorithms which
include strict assumptions on the template’s amplitude [5] de-
teriorates on real data, in which transient amplitudes vary
greatly. Vogelstein et al. developed a fast algorithm that per-
forms a maximum a posteriori estimation to infer the most
likely spike train given the imaging data and a model of intra-
cellular calcium dynamics [6].

In [7], Onativia et al. exploited the fact that calcium imag-
ing data, which can be modelled as streams of decaying expo-
nentials, are a class of signals with a finite rate of innovation
(FRI) [8]. They used FRI theory to develop a fast spike de-
tection algorithm which demonstrated both high accuracy and
high temporal precision when detecting spikes from calcium
imaging data generated by the synthetic dye Oregon Green
BAPTA 1-AM (OGB-1).

The main focus of this paper is to extend the FRI frame-
work for calcium transient detection to be used on a larger
class of calcium indicators. Ofiativia et al. modelled the char-
acteristic pulse template as an instantaneous rise and an expo-
nential decay. This is a good approximation for some calcium
indicators, but not for those with a slow rise such as the GECI
GCaMP6s, which has already been shown to be highly use-
ful for the study of neuronal networks [9, 1, 10]. Transients
generated by GCaMP6s take 200-300ms to reach peak ampli-
tude and thus will be detected with low temporal precision by
algorithms which assume an instantaneous rise time.

In Section 2 we generalise the FRI framework for calcium
transient detection for a pulse template which approximates
the dynamics of a larger class of calcium indicators. In Sec-
tion 2.2 we introduce a method to increase the robustness of
spike detection from noisy fluorescence signals and in Sec-
tion 2.3 we outline our least squares model-order estimation
framework. Finally, in Section 3 we demonstrate the perfor-
mance of the modified FRI algorithm on real data generated
by the calcium indicator GCaMP6s.
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2. FINITE RATE OF INNOVATION THEORY
APPLIED TO CALCIUM TRANSIENT DETECTION

A spike in a neuron produces a calcium transient with a char-
acteristic pulse shape in the corresponding neuron’s fluores-
cence signal. This signal can therefore be modelled as a con-
volution of the spike train z(t) = Zszl a0 (t — t) with the
known characteristic pulse shape p(¢), such that

f(@) = a(t) xp(t). (D

Finite Rate of Innovation (FRI) theory is a framework for the
sampling and reconstruction of signals that can be completely
defined by a finite number of free parameters. The signal f(t)
is an example of such a signal as it is completely defined by
the parameter set {ay, tx }_;.

In [7], Ofativia et al. develop an FRI algorithm to de-
tect the time points of calcium transients whose shape is char-
acterised by an instantaneous rise and an exponential decay.
They initially filter the signal f(¢) with an exponential repro-
ducing kernel and compute weighted finite differences of the
samples. These operations allow the authors to transform the
problem from one of estimating the time points of calcium
transients to the classical FRI problem of retrieving the loca-
tions of a stream of Diracs. Transforming the problem into
a classical one in the FRI framework enables the authors to
use FRI methods (see [11]) to retrieve the time points of the
calcium transients.

We now focus on extending the FRI framework for cal-
cium transient detection to those whose shape is characterised
by a slower (not instantaneous) rise and an exponential decay.
We model their characteristic pulse shape as

p(t) = (e — e ) Lz, 2

where o and v are known parameters. In order to use the FRI
framework for this pulse shape, we first need to identify the
filtering scheme that transforms the estimation problem into
sampling and reconstructing a stream of Diracs.

Proposition 1. Filtering f(t) = z(t)
in (3)

* p(t) with the scheme

Yn = <f(t),<,0 (% - TL) >
Zn =y — € Ty, 3)
wy, =2y — e T2y,

is analogous to sampling the stream of Diracs x(t) with the
kernel

U(t) = @(t) * Boar(—t) * B_yr (1), @

where B_r and S_.r are first order E-splines and T is the
sampling period.

Proof. From the initial filtering operation we obtain
Yn = <f(t)790 (% - n)>
= (2(t) *p(t), ¢ (£ —n)) )
= (2(t),p(= Do (+—n))-

We take finite differences

—aT —~T
Yn—1, Wp = 2n — € v

Zn-1, (6)

Zn = Yn — €
so that we have
Wp = Yn — (eiaT + ei’YT) Yn—1 + 67&T€7VTyn72~ (7)

We write w,, = (x(t), h(t)) where, from (5) and the linearity
of the inner product, we have

h(t) =p(—t) * ¢ (% —n)
() (F—m-D) (e +e7T)  ®
+p(—t) x o (F — (n—2)) e e,

Due to Parseval’s relation w,, can be expressed as

wn = g (F {z(t)}, Z {h(t)}), ©)

where % {z(t)} := Z(w) denotes the Fourier Transform (FT)
of z(t). By the linearity of the FT and the FT convolution
theorem, we have

7 (W)} =7 {p(—1)) (9 {o(t—n))

~Z{e(z - (=)} (e +eT) (10)
L7 (o (b - (n—2)) eaTevT)
Noting that
Z (1)) = =i (an
F{e (£ —n)} =Te(wT)e ™", (12)

Equation (10) becomes

FA{nb)} =

R iwn 1—e—T(a—iw)\(]_e—T(v—iw)
To(wT)e 7 (a—w))((v—iw) ) (y—a).
13)
The FT of a time-reversed and scaled E-spline with parameter
—al'is i
7 {ﬁ*D‘T (_%)} = 1_60472'4»' (14)
From (12) and (14) it follows that
F{(t)} = Z{e(z-n)} )
ﬁ‘ {ﬂ—aT (=7)} F {B-r (=1)}-
Using Parseval’s relation once more we can write
Wn = ('Y - Oé) <$(t)7
16
t ‘ ; (16)
@(T_n)*ﬂfaT T * Byt T )
which, with ¥(t) = ¢(t) * B_ar(—t) * B_yr(—t), is the
statement of the proposition. O
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2.1. Detection of calcium transients in the noisy scenario

The process of detecting the time points of calcium transients
from a noisy fluorescence signal is summarised in Algorithm
1 and described in further detail in this section. We model the
samples ¥, as being corrupted by additive white noise so that

we have
Yn = <f(t)7<p(%_n)>+€n

=Y, +e a7

where €, are i.i.d Gaussian with zero mean and standard de-
viation o. The sampling kernel ¢ is chosen to be an exponen-
tial reproducing kernel. This is defined such that, when it is
combined in a weighted sum with shifted versions of itself, it
reproduces exponentials:

Z Cmnp(t —n) = esmt, (18)

neZ

Here, ¢, , are referred to as the coefficients of the kernel.
The weighted finite differences in (3) result in noisy samples

where ¥,, are Gaussian but no longer i.i.d. We compute sam-
ple moments

Sm = § dm,nwn
n

= Z dm,nwn + Z d’m,nﬁn (20)

= Sm+bmu

using the coefficients d,, ,, of the kernel % (from (4)) which
also reproduces exponentials (see [12]). By choosing ¢ so
that ¥ reproduces exponents (,, in the form (,, = (o + mA,
we can write s,,, in power-sum series form:

K
Sy = Z bl ¥2))
k=1

where b, = (v — a)akGCo% and ug = ek%. The sample mo-
ments s,,, are used to construct a Toeplitz matrix S=S+ B,
where S is the idealised noiseless Toeplitz matrix and B is
due to the noise b,,, corrupting the sample moments. The pa-
rameters uy, and thus the time points of the calcium transients
t;. are then retrieved from S by the matrix pencil method [13].
As the noise has been colored by the filtering process, we first
include a pre-whitening step which improves the robustness
of the subspace estimation from S.

2.2. Pre-whitening to increase robustness to noise

We implement the matrix pencil method to recover the pa-
rameters uy, and thus the time points ¢ = %ln (ug), from

the noisy Toeplitz matrix S = S + B. This method performs

Algorithm 1: Estimate spike times and amplitudes

Input: f(¢t), K, «a, ~

Output: {a;,t;}1,

Filter: §, = (f(t), o (% —n)) +en

Weighted finite differences: z,, = 4, — e~ “" §n—1
Weighted finite differences: @,, = %, — e 7T %,_;
Compute sample moments: s,,, = Zn CrmnWn,

aT

Create Toeplitz matrix S from 3,,,
Pre-whiten Toeplitz matrix: S’ = SW
Use Matrix Pencil Method to estimate {Z; }5{:1 from S’

Estimate {a,; }le by least squares from samples and
resynthesized sample estimates

@ N T AW N

well when the matrix B is white,i.e. R := E [BHB} =al
for some real a.

The weighted finite differences in Algorithm 1 result in
colored noise, such that Rp # al. We therefore follow the
method of Urigiien et al. [14] to pre-whiten S. We do this
by post-multiplying S with the matrix W := Rgz (where '/2
denotes the square root of the pseudo-inverse) to obtain

S:=8+B

- (22)
=SW + BW = SW.

We thus have a noisy Toeplitz matrix S’ which is corrupted by
white noise. The matrix pencil method can then be applied
to S’ to obtain the same signal parameters uj as would be
obtained from S (for a detailed explanation see [15]) whilst
maintaining robustness to noise.

2.3. Least squares model-order estimation

We implement a least squares model-order estimation frame-
work similar to that proposed by Dogan et al. [17] to estimate
the number of spikes in a window of the trace. The train-
ing error between the samples and the resynthesized sample
estimates is computed for each possible model order k. We
estimate the model order & as the value of & which minimises
the training error, we then estimate the corresponding spike
times, according to Algorithm 1. This procedure is completed
sequentially in a sliding window along the fluorescence sig-
nal. Finally, spike time estimates which are not consistently
detected across windows are deemed to be spurious spikes
due to noise and are pruned.

3. RESULTS

We now demonstrate the performance of the modified FRI al-
gorithm on real GCaMP6s imaging data [16]. The dataset,
which is recorded from in vivo V1 neurons, contains simul-
taneous calcium imaging (sampled at 60Hz) and electrophys-
iology. This allows us to compare estimated spike positions
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Fig. 1: The modified FRI algorithm performs well on a real GCaMP6s dataset [16] of length 239s containing 181 spikes.

a) Comparison of the ROC curves of the modified and original FRI algorithms. b) Spike detection performance on a section
of the trace. c¢) The measured amplitude of the fluorescence signal after a spike against the expected amplitude according to a
model of uniform fluorescence change per spike. It can be seen that amplitudes sum supralinearly.

from the calcium imaging data with the ground truth from
the electrophysiology. We assess algorithm performance on 3
traces of combined length 678s containing 532 spikes.

A spike is deemed detected if one is estimated within 2
sample widths (0.034s) of the original spike. As the rise of
a GCaMP6s transient lasts approximately 15 sample widths,
this is a strict target. Of the alternative spike detection algo-
rithms that do compare their spike time estimates against the
ground truth, they either tend to not declare the length of their
spike detection window [6, 18, 19] or allow a generous time
period [20], thereby relaxing the performance metric.

In Figure la we show the ROC curves for the modified
and original FRI algorithms on one dataset. The true positive
rate is the percentage of correctly detected spikes and the false
positive rate is the percentage of detected spikes which are not
within 2 sample widths of a true spike. It can be seen that the
modified FRI algorithm correctly detects a higher proportion
of spikes than the original FRI algorithm for all false positive
rates in the range of practical interest.

Figure 2 displays the average ROC curves over all three
datasets for the modified and original FRI algorithms and Vo-
gelstein et al.’s fast non-negative deconvolution algorithm [6],
which is commonly used due to its speed and ease of im-
plementation. To compute the average ROC curves a least
squares spline fit was computed for each curve and the values
of those splines were averaged per algorithm.

Vogelstein et al.’s method detects a high proportion of
false positives on this dataset. This is likely due to their as-
sumption of a uniform fluorescence change per spike which,
as is shown in Figure lc and noted in [1], is not true for
GCaMP6s. Although the deconvolution algorithm has pre-
viously shown good performance on in vitro data generated
by the synthetic dye OGB-1, it doesn’t perform as well on
GCaMP6s data. This demonstrates the necessity of tailor-
ing algorithms to the calcium indicator when performing cal-

cium transient detection. Furthermore, in Figure 2 we can see
that the modified FRI algorithm detects a higher proportion of
spikes than the original algorithm for all false positive rates.

4. CONCLUSION

We extended the FRI framework for spike detection from cal-
cium imaging data to encompass calcium transients with a
slow rise, such as those generated by the genetically encoded
calcium indicator GCaMP6s. We introduced a noise reduc-
tion technique (pre-whitening) and least squares model-order
estimation to improve the robustness of the algorithm. On
real GCaMP6s data we showed that these modifications im-
proved the spike detection rate of the algorithm compared to
the original for all false positive rates in the range of practical
interest. Furthermore, on real data we achieve spike detection
rates of 90% of electrophysiologically-validated spikes within
2 sample widths (0.034s) of the real spike.

100
9
80
70
60
50
40
30

20 / Modified FRI
10 " = Original FRI
Deconvolution

True positive rate (%)

0D 20 40 60 80 100
False positive rate (%)

Fig. 2: ROC analysis for two variants of the FRI algorithm
and the Vogelstein et al. [6] algorithm, averaged over three
datasets for which electrophysiological ground truth is avail-
able [16]. A spike is deemed detected if one is estimated
within 0.034s (2 sample widths) of the true spike position.
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