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abstract

In the Wright-Fisher diffusion, the transition density function (TDF) describes the time-evolution

of the population-wide frequency of an allele. This function has several practical applications in

population genetics, and computing it for biologically realistic scenarios with selection and demog-

raphy is an important problem. We develop an efficient method for finding a spectral representation

of the TDF for a general model where the effective population size, selection coefficients, and muta-

tion parameters vary over time in a piecewise constant manner. The method, called spectralTDF,

is available at https://sourceforge.net/projects/spectraltdf/.

1. Introduction

The transition density function (TDF) of the Wright-Fisher diffusion describes the time-evolution

of the frequency of an allele (Ewens 2004). The TDF is useful for understanding the effects of

demography, mutation, and selection on genetic variation, and it is a key component of a number of

methods for inferring selection coefficients (Williamson et al. 2004, Bollback et al. 2008, Steinrücken

et al. 2014), predicting allele fixation times (Waxman 2011), and computing population genetic

statistics such as the site frequency spectrum (Živković et al. 2015).

Most existing approaches for computing the TDF assume either restrictive models of dominance

(Kimura 1955; 1957) or selective neutrality (Shimakura 1977, Griffiths 1979, Vogl 2014a), or are

computationally slow for selection strengths commonly observed in biological data (Barbour et al.

2000). However, Song and Steinrücken (2012), Steinrücken et al. (2013) recently developed a

numerically stable and computationally efficient method for finding a spectral representation of the

TDF for a general selection model in the case of constant parameters (population size, mutation

rates, and selection coefficients). Despite the utility of this new approach, assuming that model

parameters remain constant over time is often too restrictive for biological applications (Siepielski

et al. 2009).

Živković et al. (2015) have extended the spectral method of Song and Steinrücken (2012) to

handle piecewise-constant population size functions. However, their approach requires a restricted

model of selection in which the fitness of a homozygote is twice that of a heterozygote (i.e., additive

or genic selection). Furthermore, selection parameters are assumed to remain constant over time

and the model does not allow for recurrent mutations.
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Figure 1. Diagram of the model. A population has constant size in each of K
epochs (N1 = 1000, N2 = 600, N3 = 900). An allele, A1, at a locus of interest
evolves over time, subject to pressures of mutation and selection that are constant
within each epoch.

Here, we present the first method for computing the TDF under arbitrary models of dominance

and recurrent mutation while allowing selection parameters, mutation rates, and effective popula-

tion sizes to change over time in a piecewise constant manner.

2. Model and approach

We consider a biallelic locus with two alleles, A0 and A1, evolving in a single panmictic popula-

tion. In the corresponding Wright-Fisher diffusion, Xt denotes the frequency of allele A1 at time

t, measured continuously in units of generations. We assume that either X0 is given or the distri-

bution of X0 is specified. The effective population size, mutation rates, and selection parameters

are assumed to be constant within each of K disjoint epochs. As illustrated in Figure 1, the kth

epoch has effective size Nk (diploid individuals) and duration τk. Epoch boundaries are denoted

by t0, t1, . . . , tK , with tk =
∑k

i=1 τi.

Within the kth epoch, the per-generation probability that a copy of allele A0 mutates to allele

A1 is ak, and the per-generation probability that a copy of allele A1 mutates to allele A0 is bk. In

addition, selection acts in such a way that the relative fitness of an individual carrying i copies of

allele A1 is 1 + ski (i = 1, 2).

Within each epoch, k, a spectral representation of the TDF, pk(t;x, y), can be obtained by

employing the framework of Song and Steinrücken (2012). The challenge in computing the TDF

for the full model with K epochs lies in knitting together the expressions for the densities pk(t;x, y)

across the different epochs. We first review the derivations of Song and Steinrücken (2012) and

Steinrücken et al. (2014) of the TDF in a single epoch of constant size. We then discuss our efficient

polynomial interpolation method for knitting together the TDF across epochs of different constant

sizes.
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2.1. The TDF and its generalization in a single epoch of constant size. We wish to

compute the TDF in the kth epoch, where the density is defined by pk(t;x, y)dy = P(y ≤ Xtk−1+t <

y + dy|Xtk−1
= x), for t ∈ [tk−1, tk). We are also interested in the generalization, φk(t; y) =∫ 1

0 pk(t; z, y)ρk(z)dz, which extends the TDF to the case of a general initial density ρk rather than

a point mass at x.

In an epoch of constant size Nk, let αk = 4Nkak, βk = 4Nkbk, σk,1 = Nksk,1, and σk,2 =

Nksk,2 denote population-size scaled versions of the per-generation mutation parameters (ak, bk)

and selection coefficients (sk,1, sk,2). The Kolmogorov backward operator Lk for the epoch is the

second-order linear differential operator given by

Lk =
1

2
ξ2(x)

∂2

∂x2
+ µ(x)

∂

∂x
.(1)

In Equation (1), the quantity

ξ2(x) = x(1− x)(2)

captures the contribution from genetic drift and the term

µ(x) =
1

2
[αk − (αk + βk)x] + 2x(1− x)[σk,1(1− 2x) + σk,2x](3)

captures the contribution from recurrent mutation and selection. The TDF is the solution of the

Kolmogorov backward equation

∂pk(t;x, y)

∂t
=
Nref

Nk
Lkpk(t;x, y)(4)

satisfying specified boundary conditions [see Song and Steinrücken (2012), p. 119, for a discussion

of the boundary conditions]. We measure time in units of 2Nref generations in all epochs, where

Nref is the size of a fixed reference population. For ease of interpretation, we choose Nref = 1/2 so

that time is measured in units of generations in all epochs.

Song and Steinrücken (2012) derived a formula for the TDF by obtaining a solution of the

backward Equation (4) in the form of the infinite series

pk(t;x, y) =
∞∑
n=0

dk,n(t, y)Bk,n(x) =

∞∑
n=0

e−λk,nt/(2Nk)πk(y)Bk,n(y)Bk,n(x)

〈Bk,n, Bk,n〉πk
,(5)

where {Bk,n(x)}∞n=0 is the set of eigenfunctions of Lk with associated eigenvalues {λk,n}∞n=0 (Section

2.2.1) and the function πk(y) is given by

πk(y) = eσ̄(y)yαk−1(1− y)βk−1,(6)

where σ̄k(y) = 4σk,1y(1− y) + 2σk,2y
2. The inner product 〈f, g〉ω with respect to a weight function

ω(x) in Equation (5) is defined for two functions f and g on an interval [a, b] by

〈f, g〉ω =

∫ b

a
f(x)g(x)ω(x)dx.(7)

In Equation (5), the inner product 〈·, ·〉πk is taken over the interval [0, 1] with respect to πk(y).

Equation (5) can be thought of as a function in either the initial frequency, x, or the final frequency,

y.
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2.2. The generalized TDF. The generalization φk(t; y) = 〈pk(t; ·, y), ρk〉 of Equation (5) to

the case in which the initial probability density is given by ρk(x) is easily obtained by noting

that, viewed as an expansion in the basis functions {Bk,n(x)}∞n=0, the partial sum p
(M)
k (t;x, y) =∑M

n=0 dk,n(t, y)Bk,n(x) converges strongly to pk(t;x, y), from which it follows that

|〈p(M)
k (t; ·, y), ρk〉 − 〈pk(t; ·, y), ρk〉| = |〈p

(M)
k (t; ·, y)− pk(t; ·, y), ρk〉|

= |〈p(M)
k (t; ·, y)− pk(t; ·, y), ρk/πk〉πk |

≤ ‖p(M)
k (t; ·, y)− pk(t; ·, y)‖πk‖ρk‖1/πk → 0 as M →∞,(8)

for ρk(x) satisfying ‖ρk‖1/πk <∞. Thus, we have

φk(t; y) = lim
M→∞

〈p(M)
k (t; ·, y), ρk〉

= lim
M→∞

∫ 1

0
ρk(x)

M∑
n=0

e−λk,nt/(2Nk)πk(y)Bk,n(y)Bk,n(x)

〈Bk,n, Bk,n〉πk
dx

= lim
M→∞

M∑
n=0

[∫ 1
0 ρk(x)Bk,n(x)dx

〈Bk,n, Bk,n〉πk

]
e−λk,nt/(2Nk)πk(y)Bk,n(y)

=
∞∑
n=0

ck,ne
−λk,nt/(2Nk)πk(y)Bk,n(y),(9)

where

ck,n =

∫ 1
0 ρk(x)Bk,n(x)dx

〈Bk,n, Bk,n〉πk
=

∫ 1
0 ρk(x)πk,n(x)Bk,n(x) 1

πk(x)dx

〈πkBk,n, πkBk,n〉1/πk
=
〈ρk, πkBk,n〉1/πk
‖πkBk,n‖1/πk

.(10)

Determining the generalization, φk(t; y), for any initial condition ρk ∈ L2([0, 1], 1/πk) thus amounts

to projecting ρk onto the functions {πkBk,n}∞n=0 and plugging these coefficients into Equation (9)

(Steinrücken et al. 2014, Vogl 2014b).

2.2.1. Computing the eigenfunctions {Bk,n(y)}∞n=0. Before discussing how to extend Equations (5)

and (9) to the case of a population with piecewise constant parameters, which is the goal of this

article, we first review the derivation of the eigenfunctions {Bk,n(y)}∞n=0 derived by Steinrücken

et al. (2014).

Steinrücken et al. (2014) showed that the eigenfunctions {Bk,n(y)}∞n=0 can be expressed as

Bk,n(y) =
∞∑
m=0

wk,n,me
−σ̄k(y)R(αk,βk)

m (y),(11)

where R
(α,β)
m (y) = p

(β−1,α−1)
n (2y − 1), and p

(a,b)
n (y) is the nth classical Jacobi polynomial. The

vector wk,n = (wk,n,0, wk,n,1, . . .) is the left eigenvector of the matrix

Mk := −

(
Λ(αk,βk) +

4∑
`=0

qk,`G
`
k

)
(12)
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corresponding to the nth eigenvalue λk,n. In Equation (12), Λ(α,β) = diag(λ
(α,β)
0 , λ

(α,β)
1 , . . .) is the

diagonal matrix with elements given by λ
(α,β)
n = 1

2n(n+ α+ β − 1) and qk,` and G`
k are given by

qk,0 = αkσk,1,

qk,1 = −(2 + 3αk + βk − 2σk,1)σk,1 + (1 + αk)σk,2,

qk,2 = −10σ2
k,1 − (1 + αk + βk)σk,2 + (2 + 2αk + 2βk + 4σk,2)σk,1,(13)

qk,3 = 16σ2
k,1 − 12σk,1σk,2 + 2σ2

k,2,

qk,4 = −2(σk,2 − 2σk,1)2,

and

[Gk]n,m =



(n+αk−1)(n+βk−1)
(2n+αk+βk−1)(2n+αk+βk−2) , if m = n− 1 and n > 0,

1
2 −

β2
k−α

2
k−2(βk−αk)

2(2n+αk+βk)(2n+αk+βk−2) , if m = n and n ≥ 0,
(n+1)(n+αk+βk−1)

2(2n+αk+βk)(2n+αk+βk−1) , if m = n+ 1 and n ≥ 0,

0, otherwise.

(14)

The eigenfunctions computed using Equation (11) can then be plugged into Equations (5) and

(9), yielding the series expansions of φk(t; y) and pk(t;x, y). In practice, we truncate the summations

in Equations (5) and (9) at some large integer N , yielding

φk(t; y) ≈
N∑
n=0

ck,ne
−λk,nt/(2Nk)πk(y)Bk,n(y)(15)

and

pk(t;x, y) ≈
N∑
n=0

e−λk,nt/(2Nk)πk(y)Bk,n(y)Bk,n(x)

〈Bk,n, Bk,n〉πk
.(16)

We also truncate the summation in Equation (11) at some large integer M ≥ N , yielding

Bk,n(y) ≈
M∑
m=0

wk,n,me
−σ̄k(y)/2R(αk,βk)

m (y).(17)

The eigenvalues, λk,n, and eigenvectors, wk,n, of the matrix Mk in Equation (12) are also computed

by truncating the matrix Mk to dimension D ×D, for some large integer D ≥M .

2.3. The TDF in a population with piecewise-constant parameters. The goal of this work

is to extend the results of Song and Steinrücken (2012) to populations with piecewise constant

parameters. The challenge in computing the TDF for such piecewise constant populations lies in

knitting together the expressions for the densities φk(t; y) across the different epochs. This knitting

procedure can be accomplished by taking the density at the end of epoch k as the initial condition

for the density in epoch k+1 (i.e., ρk+1(y) = φk(tk− tk−1; y)) by transforming the time-propagated

coefficients {ck,ne−λk,n(tk−tk−1)/(2Nk)}∞n=0 at the end of epoch k into the unpropagated coefficients

{ck+1,n}∞n=0 at the beginning of epoch k + 1.

Here, we focus on the extension of the generalization φk(t; y) to multiple epochs, rather than

generalizing pk(t;x, y) itself. The TDF, pk(t;x, y), along with generalized transition densities for
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other initial distributions ρk(x) are obtained as special cases of φk(t; y) in Section 3 by fitting the

initial values of the coefficients {c1,n}∞n=0 to different initial conditions, ρk(x).

2.4. Transforming coefficients across epochs. Plugging Equations (16) and (17) into the con-

dition ρk+1(y) = φk(tk − tk−1; y) and dividing both sides by πk+1(y)e−σ̄k+1(y)/2 gives

N∑
n=0

ck+1,n

M∑
m=0

wk+1,n,mR
(αk+1,βk+1)
m (y)

=
πk(y)e−σ̄k(y)/2

πk+1(y)e−σ̄k+1(y)/2

N∑
n=0

ck,ne
−λk,n(tk−tk−1)/(2Nk)

M∑
m=0

wk,n,mR
(αk,βk)
m (y).(18)

Because the left-hand side of Equation (18) is a polynomial of degree M , it is determined by

M + 1 points. Therefore, we can determine the coefficients on the left-hand side by evaluating

both sides of Equation (18) at a set of points y = {y0, . . . , yM}. We choose the set y to be the

Chebyshev nodes because they minimize Runge’s phenomenon (Epperson 1987).

Evaluating Equation (18) at each of the points {y0, . . . , yM} and re-writing Equation (18) in

matrix form gives

ck+1Wk+1Rk+1(y) = ckEk(tk − tk−1)WkRk(y)Hk,k+1(y),(19)

where the quantities in Equation (19) are given by

[Rk(y)]i,j = R
(αk,βk)
i (yj),(20)

[Ek(τ)]i,j = δi,je
−λk,iτ/(2Nk),(21)

[Wk]i,j = wk,i,j ,(22)

[Hk,k+1(y)]i,j = δi,j
πk(yi)e

−σ̄k(yi)/2

πk+1(yi)e−σ̄k+1(yi)/2
,(23)

and ck = (ck,0, ck,1, . . .). In Equations (21) and (23), δi,j is the Kronecker delta function satisfying

δij = 1 if i = j and δij = 0, otherwise. The coefficients ck+1 in epoch k + 1 are obtained from the

coefficients ck in epoch k by solving Equation (19) for ck+1 using standard approaches for solving

linear systems.

The generalization, φK(t; y), of the TDF at time T =
∑K

k=1 τk is evaluated by iteratively solving

Equation (19) to obtain cK in the final epoch, K, starting from a set of initial coefficients, c1. The

final value of φK(t; y) at time T is then computed as

φK(T ; y) ≈
N∑
n=0

cK,ne
−λK,n(T−tK−1)/(2NK)πK(y)BK,n(y).(24)

Equation (24) can be used to compute φK(t; y), at any time t ∈ [0, T ] by defining T = t, and

choosing K to be the interval such that t ∈ (tK−1, tK ].

3. Initial conditions

By fitting the coefficients, {ck,n}∞n=0, in Equation (24) to different initial distributions of frequen-

cies at time t = 0, we can obtain the multi-epoch TDF, along with generalizations of the multi-epoch
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TDF to other initial distributions. Formulas for the starting coefficients c1 = (c1,0, c1,1, . . .) were

presented in Steinrücken et al. (2014) for three different initial conditions: mutation drift balance,

mutation selection balance, and the case of an initial starting frequency, x0. For completeness,

these formulas are presented again below.

3.1. Initial frequency. When the initial condition is a specified frequency, x0, the initial density

is ρ1(x) = δ(x − x0), where δ(·) is the Dirac delta distribution. Steinrücken et al. (2014) showed

that this choice of initial conditions gives rise to the transition density function p1(t;x0, y), where

the coefficients {c1,n}∞n=0 are given by

c1,n =
〈π1B1,n, ρk〉1/π1
〈π1B1,n, π1B1,n〉1/π1

=
B1,n(x0)

r1,n
,(25)

where

r1,n =

∞∑
m=0

w2
1,n,md

(α1,β1)
m ,(26)

and

d(α,β)
m =

Γ(m+ α)Γ(m+ β)

(2m+ α+ β − 1)Γ(m+ α+ β − 1)Γ(m+ 1)
.(27)

3.2. Mutation-selection balance. Under the initial condition of mutation-selection balance, the

initial density is the normalized stationary density

π1(y)/Cπ1 ,(28)

where π1(y) is given in Equation (6) and Cπ1 is a normalizing constant defined such that∫∞
0 π1(y)/Cπ1dy = 1. Using this initial distribution, Steinrücken et al. (2014) showed that the

initial coefficients are given by

c1,n =
B1,0(0)

r1,0
δ0,n,(29)

where r1,0 is given by Equation (26). The numerator in Equation (29) is given by

B1,0(0) =
∞∑
m=0

(−1)mw1,0,m
Γ(m+ α1)

Γ(m+ 1)Γ(α1)
.(30)

3.3. Mutation-drift balance. Finally, under the initial condition of mutation-drift balance, the

initial density is given by

yα1−1(1− y)β1−1

B(α1, β1)
,(31)
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t = τ1
t = τ1 + τ2
t = T

Figure 2. Plot of the TDF for the model shown in Figure 1 with the parameters
specified in the example in Section 4, evaluated at the times t1, t2, and T .

where B(α, β) is the beta function. Steinrücken et al. (2014) showed that the initial coefficients in

the case of mutation-drift balance are given by

c1,n =
1

d1,nB(α1, β1)B−1,0(0)

∞∑
m=0

w1,n,mw
−
1,0,md

(α1,β1)
m ,(32)

where the values w−k,n,m are the entries of the nth left eigenvector of the matrix Mk with σ1,1 and

σ1,2 replaced by −σ1,1 and −σ1,2, respectively, and B−1,0(x) is the corresponding eigenfunction.

4. Implementation

Our algorithm has been implemented in JAVA. The inputs to the program are the effective pop-

ulation sizes (number of diploid individuals) N = (N1, . . . , NK); epoch durations τ = (τ1, . . . , τK);

per-generation mutation rates a = (a1, . . . , aK) and b = (b1, . . . , bK); selection parameters s1 =

(s11, . . . , sK1) and s2 = (s12, . . . , sK2); initial allele frequency X0; and the time t ∈ [0, T ] at

which the TDF will be evaluated. A plot of the TDF evaluated at each epoch boundary point

(t = τ1, τ1 + τ2, and T ) in Figure 1 is shown in Figure 2. The full command options are detailed in

the user manual distributed with the software.

The approach described in Section 2.3 for knitting together transition densities across epochs,

combined with the method of Song and Steinrücken (2012) for computing the eigenfunctions (Sec-

tion 2.2.1), produces a computationally efficient method for computing pK(t;x, y) and φK(t; y).

Table 1 shows the runtime of our method, SpectralTDF, for different numbers of epochs, and for

different values of the parameters that control the precision of the eigenvalue computations.

High precision computations are sometimes required when selection coefficients are large and

waiting times between sampling events are short. However, such high precision computations
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Table 1. Runtime (in seconds) of the SpectralTDF algorithm for different numbers
of epochs.

Max Number of Epochs
Precision Cutoff 1 2 3 4 5 6 7 8 9 10

60 150 35.8 43.9 51.1 54.4 60.3 67.3 71.9 78.6 83.4 90.7
80 250 108.3 156.6 198.0 223.7 260.3 300.5 339.0 365.4 404.1 443.3

100 350 271.5 444.9 563.6 775.2 928.9 896.7 994.7 1114.3 1241.0 1332.0

are often unnecessary. Table 1 shows that SpectralTDF can be used to compute the TDF in a

population with ten epochs in under two minutes, and for scenarios requiring higher precision in

under ten minutes.

5. Discussion

Our implementation provides a fast and numerically stable method for computing the TDF for a

general model with piecewise-constant population sizes and a broad range of time-varying mutation

and selection parameters. It also allows for a variety of initial conditions, including a specified initial

frequency and stationary distributions under mutation-selection balance or mutation-drift balance.

The JAVA implementation is designed to be used either as a stand-alone application or in

combination with other methods. For example, the code can be easily incorporated into the method

of Steinrücken et al. (2014), allowing the inference of selection parameters from time series data

sampled from populations with time-varying demographic and selection parameters. In general,

the method we present provides a flexible and efficient tool for studying the evolution of allele

frequencies over time under complex evolutionary scenarios.
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