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ABSTRACT 
Summary: How can I quickly find the key events in a pathway that I 
need to monitor to predict that a/an beneficial/adverse 
event/outcome will occur? This is a key question when using signal-
ing pathways for drug/chemical screening in pharmacology, toxicol-
ogy and risk assessment. By identifying these sufficient causal key 
events, we have fewer events to monitor for a pathway, thereby 
decreasing assay costs and time, while maximizing the value of the 
information. I have developed the “aop” package which uses back-
door analysis of causal networks to identify these minimal sets of 
key events that are sufficient for making causal predictions.  
Availability and Implementation: The source for the aop package 
is available online at Github at 
https://github.com/DataSciBurgoon/aop and can be installed using 
the R devtools package. The aop package runs within the R statisti-
cal environment. The package has functions that can take pathways 
(as directed graphs) formatted as a Cytoscape JSON file as input, or 
pathways can be represented as directed graphs using the 
R/Bioconductor “graph” package. The “aop” package has functions 
that can perform backdoor analysis to identify the minimal set of key 
events for making causal predictions. 
Contact: lyle.d.burgoon@usace.army.mil 
 

1 INTRODUCTION  
Pathways provide a mechanism to biologically anchor and provide 
context for data from high throughput in vitro and in vivo screen-
ing assays, as well as omics studies. When these pathways are 
associated with a biological effect, they generally provide a causal 
path showing how perturbations in metabolite/protein/gene activ-
ity/expression following chemical exposure leads to a biological 
effect. Overlaying screening data onto the pathway yields insights 
as to the potential information flow and the activation/inactivation 
of the enzymes/proteins in the pathway. This can give us clues as 
to whether or not a drug/chemical exposure may lead to a biologi-
cal effect. 

However, there are generally more than one pathway that may 
lead to a biological effect, and these pathways may interact in a 
myriad of ways. For instance, if there are two parallel pathways 
that both converge at the same biological effect, there are many 
possible situations that can arise. Both pathways may be necessary 
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to activate the biological effect. Alternatively, activation of either 
pathway in the absence of the other may be sufficient to lead to the 
biological effect. There may also be cross-talk such that one path-
way can interfere with the other, and prevent activa-
tion/deactivation of the biological effect.  

In the field of toxicology, the adverse outcome pathway (AOP), 
has recently emerged as a concept that allows for efficient model-
ing of the necessary key events that ultimately lead to an adverse 
outcome (Ankley et al., 2010). AOPs are causal networks, where 
activation of a key event parent leads to either the activation or 
inactivation of a child key event, and so on, ultimately leading to 
some adverse outcome. 

Although it would be ideal to have a high throughput screening 
assay for every key event in an AOP, it is simply impractical. Fi-
nancial factors alone render a toxicology screening program fo-
cused on measuring every key event across every conceivable 
AOP impractical. For cost and efficiency reasons, a smaller num-
ber of assays that are sufficient to predict an adverse outcome is 
needed. 

Thus, I have developed an R package, called “aop”, which im-
plements Pearl’s backdoor algorithm to identify those one or more 
key events that are sufficient to be measured and predict whether 
or not an adverse outcome is likely. The backdoor algorithm uses 
causal network analysis to identify the sufficient key event nodes. 
The package also contains functions that can ingest AOPs con-
structed in Cytoscape exported as Cytoscape JSON files, as well as 
AOPs constructed as graphs (graphNEL objects) using the Biocon-
ductor “graph” package.  

2 ALGORITHM 
For the sake of this description, consider a biological pathway to 
be the same as a mathematical graph. A graph is a set of nodes/key 
events that are connected to each other through edges/lines/arrows. 
Because this is a causal graph, the edges are directed, such that if 
node A activates node B, an arrow is drawn from node A to node 
B. This is generally the same convention used in most biological 
pathways. AOPs by definition are causal graphs. The “aop” pack-
age requires that the input AOP network be a directed acyclic 
graph. 
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Pearl’s backdoor algorithm can be used to identify the nodes be-
tween a chemical’s entry into the graph/pathway and the adverse 
outcome that needs to be measured to make the causal argument 
that the chemical exposure results in the adverse outcome. In the 
backdoor algorithm, the first step is to introduce an edge between 
parent nodes that share a child node. Next, the algorithm identifies 
the shortest path (using the “igraph” package) starting at the ad-
verse outcome and ending at the key event specified by the user 
where the chemical enters the pathway. The causal node is the 
second node in the path returned from igraph, where the first node 
is the adverse outcome. The algorithm then removes the causal 
node from the pathway, and re-runs the path-finding algorithm to 
identify the next causal node, and continues this sequence until 
there are no paths leading from the adverse outcome to the user-
specified key event where the chemical enters. 

The package has functions to ingest AOPs drawn in Cytoscape 
as Cytoscape JSON files. The package can also utilize AOPs 
stored as graphNEL objects (graphNEL is a class from the graph 
library). The package vignette and examples contains additional 
details. 

3 EXAMPLE 
Figure 1 shows an AOP for hepatosteatosis, or non-alcoholic fatty 
liver disease, based on the Reactome Peroxisomal Lipid Metabo-
lism Pathway 
(http://www.reactome.org/PathwayBrowser/#DIAGRAM=390918) 
and other articles (Kay et al., 2011; Reddy, 2001). This AOP net-
work shows two parallel tracks that can both result in hepatosteato-
sis. 

The hepatosteatosis adverse outcome pathway network consists 
of two adverse outcome pathways, both leading to an abnormal 
accumulation of fat in the liver (hepatosteatosis). Although one 
could measure all of the key events starting just after the molecular 
initiating event (MIE; the point where the chemical enters the 
pathway) through the adverse outcome, this would be costly and 
time-consuming. 

Because adverse outcome pathways are causal networks, the 
backdoor algorithm provides the capability to identify those key 
events/nodes that should be monitored to identify causality. Run-
ning the backdoor algorithm using MIE2 as the starting point and 
the steatosis node as the adverse outcome, the algorithm identifies 
that fatty acid beta-oxidation and lipogenesis both need to be moni-
tored. 

If these nodes cannot be monitored due to a lack of assays, the 
backdoor algorithm can be re-run using fatty acid beta-oxidation or 
lipogenesis as the ending nodes in the path, keeping MIE2 as the 
starting point. This identifies that measuring DHB4 and lipogene-
sis are necessary to inform what is happening at the fatty acid beta-
oxidation node. Likewise, measuring LXR-alpha and fatty acid 
beta-oxidation are necessary to inform us about whether or not 
lipogenesis is occurring. By combining this information, we can 
see that if lipogenesis and fatty acid beta-oxidation cannot be 
measured then we need to measure DHB4 and LXR-alpha to draw 
conclusions about whether or not steatosis is occurring. By allow-
ing investigators to focus on running assays tied to a smaller num-
ber of sufficient key events, organizations can maximize effi-
ciency, decreasing time to decisions and decreasing overall testing 
costs as compared to having to run assays for all of the key events 
across the pathway. 

 
Fig. 1. Hepatosteatosis Adverse Outcome Pathway Network. This 
depicts an AOP network with two parallel paths leading to steato-
sis and steatohepatitis. The solid arrows are causal linkages be-
tween the key events (nodes: circles and diamonds). The nodes 
MIE1 and MIE2 are 2 hypothesized molecular initiating events 
where a chemical may perturb the network. The dotted arrows are 
edges that the algorithm infers. The diamond shaped key events are 
the sufficient causal ones identified by the algorithm. 

4 CONCLUSIONS 
One key challenge with respect to using pathways to inform deci-
sion-making (e.g., go/no-go in drug development based on toxicity, 
chemical hazard identification) is the identification of the minimal  
 
set of key events that need to be monitored through assays. 

The backdoor algorithm identifies the nodes that are sufficient 
for inferring whether an adverse outcome will occur. These key 
event nodes are the ones that are the most cost-effective (largest 
value of information) for monitoring, allowing decision-makers to 
identify if an adverse outcome is likely to occur while minimizing 
testing costs. 
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